@inproceedings{chakraborty-etal-2025-self,
title = "Self-State Evidence Extraction and Well-Being Prediction from Social Media Timelines",
author = "Chakraborty, Suchandra and
Jana, Sudeshna and
Sinha, Manjira and
Dasgupta, Tirthankar",
editor = "Zirikly, Ayah and
Yates, Andrew and
Desmet, Bart and
Ireland, Molly and
Bedrick, Steven and
MacAvaney, Sean and
Bar, Kfir and
Ophir, Yaakov",
booktitle = "Proceedings of the 10th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2025)",
month = may,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.clpsych-1.24/",
doi = "10.18653/v1/2025.clpsych-1.24",
pages = "279--286",
ISBN = "979-8-89176-226-8",
abstract = "This study explores the application of Large Language Models (LLMs) and supervised learning to analyze social media posts from Reddit users, addressing two key objectives: first, to extract adaptive and maladaptive self-state evidence that supports psychological assessment (Task A1); and second, to predict a well-being score that reflects the user{'}s mental state (Task A2). We propose i) a fine-tuned RoBERTa (Liu et al., 2019) model for Task A1 to identify self-state evidence spans and ii) evaluate two approaches for Task A2: a retrieval-augmented DeepSeek-7B (DeepSeek-AI et al., 2025) model and a Random Forest regression model trained on sentence embeddings. While LLM-based prompting utilizes contextual reasoning, our findings indicate that supervised learning provides more reliable numerical predictions. The RoBERTa model achieves the highest recall (0.602) for Task A1, and Random Forest regression outperforms DeepSeek-7B for Task A2 (MSE: 2.994 vs. 6.610). These results highlight the strengths and limitations of generative vs. supervised methods in mental health NLP, contributing to the development of privacy-conscious, resource-efficient approaches for psychological assessment. This work is part of the CLPsych 2025 shared task (Tseriotou et al., 2025)."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chakraborty-etal-2025-self">
<titleInfo>
<title>Self-State Evidence Extraction and Well-Being Prediction from Social Media Timelines</title>
</titleInfo>
<name type="personal">
<namePart type="given">Suchandra</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudeshna</namePart>
<namePart type="family">Jana</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manjira</namePart>
<namePart type="family">Sinha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tirthankar</namePart>
<namePart type="family">Dasgupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ayah</namePart>
<namePart type="family">Zirikly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Yates</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bart</namePart>
<namePart type="family">Desmet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Molly</namePart>
<namePart type="family">Ireland</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bedrick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sean</namePart>
<namePart type="family">MacAvaney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kfir</namePart>
<namePart type="family">Bar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaakov</namePart>
<namePart type="family">Ophir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-226-8</identifier>
</relatedItem>
<abstract>This study explores the application of Large Language Models (LLMs) and supervised learning to analyze social media posts from Reddit users, addressing two key objectives: first, to extract adaptive and maladaptive self-state evidence that supports psychological assessment (Task A1); and second, to predict a well-being score that reflects the user’s mental state (Task A2). We propose i) a fine-tuned RoBERTa (Liu et al., 2019) model for Task A1 to identify self-state evidence spans and ii) evaluate two approaches for Task A2: a retrieval-augmented DeepSeek-7B (DeepSeek-AI et al., 2025) model and a Random Forest regression model trained on sentence embeddings. While LLM-based prompting utilizes contextual reasoning, our findings indicate that supervised learning provides more reliable numerical predictions. The RoBERTa model achieves the highest recall (0.602) for Task A1, and Random Forest regression outperforms DeepSeek-7B for Task A2 (MSE: 2.994 vs. 6.610). These results highlight the strengths and limitations of generative vs. supervised methods in mental health NLP, contributing to the development of privacy-conscious, resource-efficient approaches for psychological assessment. This work is part of the CLPsych 2025 shared task (Tseriotou et al., 2025).</abstract>
<identifier type="citekey">chakraborty-etal-2025-self</identifier>
<identifier type="doi">10.18653/v1/2025.clpsych-1.24</identifier>
<location>
<url>https://aclanthology.org/2025.clpsych-1.24/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>279</start>
<end>286</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Self-State Evidence Extraction and Well-Being Prediction from Social Media Timelines
%A Chakraborty, Suchandra
%A Jana, Sudeshna
%A Sinha, Manjira
%A Dasgupta, Tirthankar
%Y Zirikly, Ayah
%Y Yates, Andrew
%Y Desmet, Bart
%Y Ireland, Molly
%Y Bedrick, Steven
%Y MacAvaney, Sean
%Y Bar, Kfir
%Y Ophir, Yaakov
%S Proceedings of the 10th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2025)
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-226-8
%F chakraborty-etal-2025-self
%X This study explores the application of Large Language Models (LLMs) and supervised learning to analyze social media posts from Reddit users, addressing two key objectives: first, to extract adaptive and maladaptive self-state evidence that supports psychological assessment (Task A1); and second, to predict a well-being score that reflects the user’s mental state (Task A2). We propose i) a fine-tuned RoBERTa (Liu et al., 2019) model for Task A1 to identify self-state evidence spans and ii) evaluate two approaches for Task A2: a retrieval-augmented DeepSeek-7B (DeepSeek-AI et al., 2025) model and a Random Forest regression model trained on sentence embeddings. While LLM-based prompting utilizes contextual reasoning, our findings indicate that supervised learning provides more reliable numerical predictions. The RoBERTa model achieves the highest recall (0.602) for Task A1, and Random Forest regression outperforms DeepSeek-7B for Task A2 (MSE: 2.994 vs. 6.610). These results highlight the strengths and limitations of generative vs. supervised methods in mental health NLP, contributing to the development of privacy-conscious, resource-efficient approaches for psychological assessment. This work is part of the CLPsych 2025 shared task (Tseriotou et al., 2025).
%R 10.18653/v1/2025.clpsych-1.24
%U https://aclanthology.org/2025.clpsych-1.24/
%U https://doi.org/10.18653/v1/2025.clpsych-1.24
%P 279-286
Markdown (Informal)
[Self-State Evidence Extraction and Well-Being Prediction from Social Media Timelines](https://aclanthology.org/2025.clpsych-1.24/) (Chakraborty et al., CLPsych 2025)
ACL