@inproceedings{de-grandi-etal-2025-emotional,
title = "The Emotional Spectrum of {LLM}s: Leveraging Empathy and Emotion-Based Markers for Mental Health Support",
author = "De Grandi, Alessandro and
Ravenda, Federico and
Raballo, Andrea and
Crestani, Fabio",
editor = "Zirikly, Ayah and
Yates, Andrew and
Desmet, Bart and
Ireland, Molly and
Bedrick, Steven and
MacAvaney, Sean and
Bar, Kfir and
Ophir, Yaakov",
booktitle = "Proceedings of the 10th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2025)",
month = may,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.clpsych-1.3/",
doi = "10.18653/v1/2025.clpsych-1.3",
pages = "26--43",
ISBN = "979-8-89176-226-8",
abstract = "The increasing demand for mental health services has highlighted the need for innovative solutions, particularly in the realm of psychological conversational AI, where the availability of sensitive data is scarce. In this work, we explored the development of a system tailored for mental health support with a novel approach to psychological assessment based on explainable emotional profiles in combination with empathetic conversational models, offering a promising tool for augmenting traditional care, particularly where immediate expertise is unavailable. Our work can be divided into two main parts, intrinsecaly connected to each other. First, we present RACLETTE, a conversational system that demonstrates superior emotional accuracy compared to considered benchmarks in both understanding users' emotional states and generating empathetic responses during conversations, while progressively building an emotional profile of the user through their interactions. Second, we show how the emotional profiles of a user can be used as interpretable markers for mental health assessment. These profiles can be compared with characteristic emotional patterns associated with different mental disorders, providing a novel approach to preliminary screening and support."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="de-grandi-etal-2025-emotional">
<titleInfo>
<title>The Emotional Spectrum of LLMs: Leveraging Empathy and Emotion-Based Markers for Mental Health Support</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">De Grandi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Federico</namePart>
<namePart type="family">Ravenda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Raballo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="family">Crestani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2025)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ayah</namePart>
<namePart type="family">Zirikly</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Yates</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bart</namePart>
<namePart type="family">Desmet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Molly</namePart>
<namePart type="family">Ireland</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bedrick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sean</namePart>
<namePart type="family">MacAvaney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kfir</namePart>
<namePart type="family">Bar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaakov</namePart>
<namePart type="family">Ophir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-226-8</identifier>
</relatedItem>
<abstract>The increasing demand for mental health services has highlighted the need for innovative solutions, particularly in the realm of psychological conversational AI, where the availability of sensitive data is scarce. In this work, we explored the development of a system tailored for mental health support with a novel approach to psychological assessment based on explainable emotional profiles in combination with empathetic conversational models, offering a promising tool for augmenting traditional care, particularly where immediate expertise is unavailable. Our work can be divided into two main parts, intrinsecaly connected to each other. First, we present RACLETTE, a conversational system that demonstrates superior emotional accuracy compared to considered benchmarks in both understanding users’ emotional states and generating empathetic responses during conversations, while progressively building an emotional profile of the user through their interactions. Second, we show how the emotional profiles of a user can be used as interpretable markers for mental health assessment. These profiles can be compared with characteristic emotional patterns associated with different mental disorders, providing a novel approach to preliminary screening and support.</abstract>
<identifier type="citekey">de-grandi-etal-2025-emotional</identifier>
<identifier type="doi">10.18653/v1/2025.clpsych-1.3</identifier>
<location>
<url>https://aclanthology.org/2025.clpsych-1.3/</url>
</location>
<part>
<date>2025-05</date>
<extent unit="page">
<start>26</start>
<end>43</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Emotional Spectrum of LLMs: Leveraging Empathy and Emotion-Based Markers for Mental Health Support
%A De Grandi, Alessandro
%A Ravenda, Federico
%A Raballo, Andrea
%A Crestani, Fabio
%Y Zirikly, Ayah
%Y Yates, Andrew
%Y Desmet, Bart
%Y Ireland, Molly
%Y Bedrick, Steven
%Y MacAvaney, Sean
%Y Bar, Kfir
%Y Ophir, Yaakov
%S Proceedings of the 10th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2025)
%D 2025
%8 May
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-226-8
%F de-grandi-etal-2025-emotional
%X The increasing demand for mental health services has highlighted the need for innovative solutions, particularly in the realm of psychological conversational AI, where the availability of sensitive data is scarce. In this work, we explored the development of a system tailored for mental health support with a novel approach to psychological assessment based on explainable emotional profiles in combination with empathetic conversational models, offering a promising tool for augmenting traditional care, particularly where immediate expertise is unavailable. Our work can be divided into two main parts, intrinsecaly connected to each other. First, we present RACLETTE, a conversational system that demonstrates superior emotional accuracy compared to considered benchmarks in both understanding users’ emotional states and generating empathetic responses during conversations, while progressively building an emotional profile of the user through their interactions. Second, we show how the emotional profiles of a user can be used as interpretable markers for mental health assessment. These profiles can be compared with characteristic emotional patterns associated with different mental disorders, providing a novel approach to preliminary screening and support.
%R 10.18653/v1/2025.clpsych-1.3
%U https://aclanthology.org/2025.clpsych-1.3/
%U https://doi.org/10.18653/v1/2025.clpsych-1.3
%P 26-43
Markdown (Informal)
[The Emotional Spectrum of LLMs: Leveraging Empathy and Emotion-Based Markers for Mental Health Support](https://aclanthology.org/2025.clpsych-1.3/) (De Grandi et al., CLPsych 2025)
ACL