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Abstract

This study aims to enhance the automatic
identification and classification of metadis-
course markers in English texts, evaluating var-
ious large language models for the purpose.
Metadiscourse is a commonly used rhetorical
strategy in both written and spoken language
to guide addressees through discourse. Due
to its linguistic complexity and dependency on
the context, automated metadiscourse classifi-
cation is challenging. With a hypothesis that
LLMs may handle complicated tasks more ef-
fectively than supervised machine learning ap-
proaches, we tune and evaluate seven encoder
language models on the task using a dataset
totalling 575,541 tokens and annotated with 24
labels. The results show a clear improvement
over supervised machine learning approaches
as well as an untuned Llama3.3-70B-Instruct
baseline, with XL Net-large achieving an accu-
racy and F1-score of 0.91 and 0.93, respectively.
However, four less frequent categories record
F-scores below 0.5, highlighting the need for
more balanced data representation.

1 Introduction

Metadiscourse (MD) is an essential rhetorical strat-
egy in both speaking and writing that realizes two
of the metafunctions of language proposed by Hall-
iday (1994): the textual and interpersonal functions.
MD that mainly has a textual function is used to
form a cohesive and coherent text (Kopple, 1985).
The textual dimension comprises transitions (e.g.,
but, and, because), frame markers (firstly, in con-
clusion, the next point is ...), code glosses (e.g.,
in other words, namely, for example), and so on.
Textual MD markers often have fixed forms and
consistent meanings, hence they pose relatively few
challenges in automatic classification. Conversely,
MD that is primarily interpersonal shows differ-
ent features. Addressers use interpersonal MD to
comment on the propositions and to involve the
addressees in their discourse. Examples include
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but are not limited to hedges (e.g., may, probably,
I’'m not sure ...), boosters (e.g., certainly, must, 1
believe), and addressing the addressees (e.g., You
may end up thinking that ..., You may ask..., Can
you hear me?). This dimension is linguistically
more complex as it involves multiple syntactic
classes and has fuzzy span boundaries. The com-
plexity undoubtedly leads to difficulty in automatic
classification. Previous research using supervised
methods reveals the performance gap between the
two broad dimensions (dos Santos Correia, 2018;
Alharbi, 2016). Classification of textual MD has
yielded satisfactory accuracy but classification of
interpersonal MD is lacking.

Automatic MD classification has barely been
studied. We are only aware of the two afore-
mentioned SVM-based studies, where transformer-
based Large Language Models (LLMs) have not
been used. As LLMs encode a broader range of
semantic, syntactic and contextual information due
to the more complex architecture that is pretrained
on various linguistic resources, this study aims to
improve the state of the art in automatic MD classi-
fication with a transformer-based method. !

The raw data used in this paper were sampled
from the International Corpus Network of Asian
Learners of English (ICNALE; Ishikawa, 2023).
They effectively represent the diversity of natural
language by containing both spoken and written
English, as well as data from native speakers and
learners with moderate proficiency in English. In
linguistics, MD is often observed in non-native
speakers’ language. It has been found that learners
may use more MD markers compared to native
speakers because they intentionally put more effort
into linguistic and meta-linguistic matters (Adel,
2006). However, the majority of existing work
about MD has focused on proficient speakers. This
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study will pioneer research on MD used by learners
with less advanced English proficiency.

Given that MD markers are captured in spans
of varied lengths and are sensitive to context, we
include a range of models in our study that are
partly motivated by having a span-related training
objective (SpanBERT: Joshi et al., 2020; ERNIE
2.0: Sun et al., 2020; XLNet: Yang et al., 2019),
being state-of-the-art (ModernBERT: Warner et al.,
2025), being a baseline for comparison (BERT:
Devlin et al., 2019) and being common alternative
choices (RoBERTa: Liu et al., 2019; ELECTRA:
Clark et al., 2020). We also include Llama 3.3
70B-Instruct (Grattafiori et al., 2024) as an untuned
decoder LLM baseline.

We find that the tuned encoder models show
good performance for this task, with XLNet having
the overall best accuracy and weighted F1-score,
and ERNIE achieving a higher macro-F1 score,
meaning better performance on low-frequency cat-
egories. Llama 3.3 70B-Instruct did not achieve
adequate performance, even in a few-shot setting
with per-category examples. Our models also out-
perform previous work, though this work used dif-
ferent MD categorization schemes and different
kinds of text corpora.

2 Background

This section extends the concept of MD to its clas-
sification. Classification first refers to a theoretical
taxonomy, which can be used when labelling the
raw data. Two challenges have been identified in
the theoretical classification and are anticipated to
lead to difficulties in automatic classification.

2.1 Metadiscourse taxonomies

We introduced two main broad categories of MD.
In linguistic practice, MD is classified into many
categories but there is no uniform taxonomy. Along
with the development of relevant research, scholars
in the field came up with taxonomies from varied
perspectives (Kopple, 1985; Crismore et al., 1993;
Mauranen, 1993; Milne, 2003; Hyland, 2005; Adel,
2006, 2010). Among them, Hyland’s (2005) taxon-
omy is the most commonly used one. It provides
a list of discovered MD markers for English based
on corpus data. However, we had concerns about
adopting the taxonomy in this study. Above all, it
might not be sufficient because it is built on the
observations of formal written language, including
textbooks, students’ writing, research articles, etc.
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Thus, it may not include MD markers typical of
spoken language, nor incorporate mistakes such as
grammatical errors and misspellings often found in
learners’ casual communication.

Adel’s (2010) taxonomy is representative of MD
in spoken language. More importantly, the identi-
fication of the categories in this taxonomy relies
primarily on the functions of MD in the discourse.
For example, how the topic is introduced, devel-
oped, and concluded. Nevertheless, this taxonomy
also has a limitation that does not fully meet the
research purposes of this study. Adel’s (2010) tax-
onomy requires high explicitness of MD markers.
If a text span does not contain deictic words that
refer to the discourse or interlocutors, it will not be
counted as MD in this taxonomy but may still be
MD in other taxonomies. Therefore, we use Adel’s
(2010) taxonomy as the basis of our annotation
scheme but some categories from Hyland’s (2005)
taxonomy are added and adjusted. The final taxon-
omy we use is shown in Table 1. The dimensions
of “Metalinguistic comments” and “Discourse or-
ganization” correspond to the textual MD, while
the dimension “Writer-reader/speaker-listener in-
teraction” aligns with the interpersonal MD.

The task of metadiscourse classification should
not be confused with some related tasks that have
been addressed in NLP. The task of dialogue act
classification aims to label all of a dialogue ac-
cording to their communicative function, such as
‘request’. This can also include metadiscourse acts,
but standard dialogue act classification schemes
have been criticized for their unsystematic annota-
tion of metadiscourse acts (Verdonik, 2023). Dia-
logue act classification is a NLP task where tuned
encoder models outperform autoregressive decoder
LLMs, which sometimes fail to beat rule-based
baselines (Qamar et al., 2025), though one study
shows limited success using ChatGPT in multi-
party boardgame dialogue with a four-class scheme
(Martinenghi et al., 2024).

Our task is also related to epistemic stance de-
tection, which identifies statements that mark the
writer’s attitude towards the factuality of reliabil-
ity of propositions (e.g. I think that...). Epistemic
stance can be expressed through MD, but not all
expressions of epistemic stance are MD markers.
Epistemic stance detection also concerns propo-
sitions about others’ stances, which fall outside
the scope of MD. Several categories from our tax-
omony pertain to epistemic stances, specifically
Epistemic attitudes (EPA), Hedges (HDG), Boost-



ers (BST) and Speech act labels (SAL). Eguchi
and Kyle (2023) perform stance detection on an an-
notated corpus of student-written assignments as a
span classification task, using the spaCy SpanCate-
gorizer as a baseline and achieving best results with
a RoBERTa-LSTM model, with results comparable
to human inter-annotator agreement.

2.2 Challenges in MD classification

Two features of MD pose challenges in MD classi-
fication by human annotators and predictably also
in automatic classification. Firstly, MD is highly
context-sensitive. For instance, “so’ functions as
a MD marker when it indicates a causal relation
between two clauses (Example 1.1). However, it
is not a MD marker when it refers to a way some-
thing was described (Example 1.2). The ambiguity
makes the identification of MD from propositional
contents challenging.

Example 1.

e [: All people in the restaurant would be af-
fected by smoking so it should be banned.

e 2: Idon’t think so.

Secondly, a MD candidate may belong to more
than one category. In Example 2, ‘I fully agree
that” is a MD marker to show the speaker’s attitude.
Within it, the MD marker ‘fully’ is a booster.

Example 2.
I fully agree that smoking should be banned in
restaurants.

To date, the annotation of MD still heavily relies
on manual annotation. Research on automatic clas-
sification remains highly limited. Two relatively
in-depth studies have been conducted, focusing
on MD classification in academic lectures (Alharbi,
2016) and TED talk transcripts (dos Santos Correia,
2018), respectively. dos Santos Correia (2018) used
Support Vector Machines (SVMs) and Conditional
Random Fields (CRFs). His study classified 10 cat-
egories and F1-scores for nine categories are below
0.6. Alharbi (2016) also used SVMs for primary
exploration and then improved MD classification
using Continuous Bag-of-Words (CBOW) and Con-
volutional Neural Networks (CNNs). In his study,
three out of 19 categories got F1-scores higher
than 0.8. Nonetheless, the model’s predictions
would not be reliable enough for further linguis-
tic research. The biggest challenge of automatic
classification lies in interpersonal MD because its
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syntactic and semantic features are more inexplicit
and flexible compared to textual MD. For exam-
ple, the Exemplifying (EXP) category achieved an
accuracy of over 0.8 in both studies, while Antic-
ipating the audience’s response (AAR) got only
0.3 in Alharbi’s (2016) work and even lower in dos
Santos Correia’s (2018) findings. We hypothesize
that LLMs outperform these supervised methods.

Chan et al. (2024) also address metadiscourse
using transformer models in the context of auto-
mated essay scoring. While they use a modified
version of Hyland’s (2005) classification scheme
for manual annotation, they only perform a token-
level identification task with a binary classification
scheme. They find little difference between the
performance of BERT, DistilBERT and RoBERTa
on the task, and focus on under/oversampling tech-
niques and different classification algorithms such
as multi-layered perceptrons and AdaBoost. While
useful for automated essay scoring, this identifica-
tion task has limited utility for linguists who wish
to construct a metadiscourse-annotated corpus.

2.3 Selected LLMs

BERT (Bidirectional Encoder Representations
from Transformers, Devlin et al., 2019) introduced
bidirectional encoding by masked language mod-
eling (MLM) and next sentence prediction (NSP).
BERT and its variants, including ModernBERT
(Warner et al., 2025), SpanBERT (Joshi et al.,
2020), and RoBERTa (Liu et al., 2019), consist of
stacked encoders that are trained on unlabeled data
to encode contextualized language representations.
With a token classification head, they have been
used for a wide range of token and span labeling
tasks, such as named entity recognition and part-
of-speech tagging. Metadiscourse classification is
part of the same family of tasks.

SpanBERT is trained with a span-boundary train-
ing objective. This encourages the model to repre-
sent the relationships between tokens within a span.
It predicts the entire span of tokens instead of indi-
vidual tokens. This is useful for tasks that require
representations of text chunks, such as our task
of MD identification and classification. Although
RoBERTa and ModernBERT are not pretrained
with span-specific boundaries, the optimization of
model architecture and training such as dynamic
masking and larger datasets makes them outper-
form the traditional BERT model. It remains un-
known if this general optimization would lead to a
better performance than span-specific pretraining.



Dimension Category Label | Examples
Repairing RPR | I'm sorry...

.. . | Reformulating RFL | fo put it differently...
Metalinguistic Commenting CMT | ... is a difficult question.
comments Clarifying CLF | Idon’t mean to say

Exemplifying EXP | for example
Managing topics MNT | I will focus on...
Organizing statements ORS | and; but; so
. Providing evidentials PED | according to
Discourse .

.. Enumerating ENM | first; at last

organization . . .
Endophoric marking EDP | As we can see in Chapter 111, ...
Previewing PRV | We will discuss...
Reviewing RVW | As I said last time, ...
Epistemic attitudes EPA | I agree that...
Hedges HDG | perhaps; might
. Boosters BST | definitely; should
Writer-reader Speech act labels SAL | I argue that...
/Speaker— Managing comprehension MNC | You know what I mean.
yStener, Managing channel/audience discipline | MCD | Can you hear me?
Interaction Anticipating the audience’s response AAR | You may ask...
Managing the message MNM | What I want to emphasize is...
Imagining scenarios IMS | Suppose you're giving a speech...

Table 1: List of MD categories, labels, and examples

We selected two other models with pretraining
objectives that have particular relevance to our
task. ERNIE’s continual multi-task learning com-
ponent includes two objectives relevant for our task.
Firstly, there is a knowledge masking task, which
requires the model to learn to predict masked spans
and masked named entities rather than just tokens.
Secondly, there is a discourse relation task, which
relies on Sileo et al.’s (2019) discourse marker
dataset to have the model predict the rhetorical re-
lation between sentences during pretraining. This
is related to metadiscourse, as discourse markers
are mostly textual metadiscourse markers.

XLNet (Yang et al., 2019) is an autoregressive
pretraining method of which the objectives include
span-based prediction, where consecutive spans of
up to five tokens are predicted rather than just single
tokens. As textual MD markers are often spans, this
may facilitate MD classification. However, MD
spans go beyond the length of five tokens as well.

Lastly, ELECTRA (Clark et al., 2020) provides
another alternative to masked language modelling
pretraining by basing pretraining on a replaced to-
ken detection task. This approach is shown to out-
perform SpanBERT and perform similarly to XL-
Net on the somewhat related SQuAD benchmark
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(Rajpurkar et al., 2016), where models select spans
that answer questions. Therefore, we also expect
good performance on our MD classification task.
In recent years, autoregressive decoder-only gen-
erative LLMs have shown impressive generaliza-
tion performance on a range of NLP tasks with
few-shot prompting, even to novel tasks and do-
mains without fine-tuning. However, they show
poor results in these settings on text classification
tasks (Bucher and Martini, 2024), span labeling
tasks such as named entity recognition (Keraghel
et al., 2024) and other tasks related to ours such as
dialogue act classification (Qamar et al., 2025) and
implicit discourse relation annotation (Yung et al.,
2024). Nevertheless, we include Llama-3.3-70B-
Instruct (Grattafiori et al., 2024) as a decoder LLM
baseline. We also include a SpaCy baseline.

3 Methods and data

Our data are English learners’ speaking and writing
extracted from the ICNALE corpus. The selection
of this corpus was initially motivated by an interest
in its potential for subsequent qualitative analysis,
specifically in examining learners’ use of MD. The
corpus has four modules, namely spoken mono-
logues (SM), spoken dialogues (SD), writing (WR),



Module ‘ Texts ‘ Tokens | Avg. Tokens

SM 999 | 128,989 129.12
SD 748 | 162,759 217.59
WR 1,100 | 254,064 230.97
EE 130 | 29,729 228.68

Table 2: The descriptive statistics of the dataset

and edited writing (EE). The extracted data con-
cern the four modules and the groups whose first
language is Chinese (Mandarin or Cantonese) and
English, which includes CHN (Chinese mainland),
HKG (Hong Kong), TWN (Taiwan), SIN (Singa-
pore), and ENS (English native speakers). Random
sampling was used to select half of the data for man-
ual annotation. After sampling, the data comprises
2,977 texts totaling 575,541 tokens excluding punc-
tuation. Table 2 shows detailed statistics.

3.1 Annotation

The annotation scheme consists of the 21 MD la-
bels from the taxonomy in Table 1. Three addi-
tional labels pertaining to linguistic errors made by
the writers and ambiguities, including Grammati-
cal errors (ERR), Misuse (MIS), and Uncertainty
(UCT), were also annotated but have been fully ad-
dressed in the gold standard corpus. Thus, they are
excluded from the present experiments. Manual
annotation was conducted using Prodigy (Honni-
bal et al., 2024), an annotation tool for creating
training and evaluation data for machine learning
models. There are two annotators who have de-
grees in linguistics-related subjects. They were
trained in the definition and classification of MD,
difficult examples, and the use of Prodigy. Their
annotation quality was evaluated by inter-annotator
agreement (IAA) using the Cohen’s kappa coef-
ficient (x). This metric for pairwise agreement,
which accounts for chance agreement, was com-
puted per token rather than per span in order to
allow for partial matching. Table 3 reports the IAA
of the overall dataset, along with the label distribu-
tion which is visualized in Appendix 4. We observe
strongly imbalanced class frequencies, which is a
consequence of annotating natural language corpus
data.

The macro average x coefficient for all the MD
categories is 0.79. This suggests that the major-
ity of MD markers can be properly identified and
classified. The disagreement is mainly attributed
to the context-sensitive nature and fuzzy bound-
aries of MD. Taking ‘I think’ as an example, it is a
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Label k| N-Al | N-A2
RPR 0.81 37 35
RFL 0.78 107 157
CMT 0.86 | 1,067 827
CLF 0.92 793 867
EXP 0.74 | 1,080 | 1,750
MNT 091 | 2,829 | 3,202
ORS 0.93 | 23,230 | 23,890
PED 0.88 | 2,077 | 2,488
ENM 095 | 4,887 | 5,076
EDP 0.79 152 173
PRV 0.94 788 801
RVW 0.89 783 866
EPA 0.88 | 15,039 | 14,791
HDG 0.85 | 9,330 | 9,547
BST 0.78 | 8,263 | 10,314
SAL 0.82 921 1,084
MNC 0.84 | 1,300 | 1,089
MCD 0.86 | 1,523 | 1,877
AAR 0.91 456 449
MNM 0.74 249 302
IMS 0.90 131 159
Macro Avg. | 0.79

Table 3: Pairwise Cohen’s x coefficients of inter-
annotator agreement (IAA). N refers to the number of
annotated tokens in spans of the specific label, whereas
A1l and A2 are annotators.

Hedge (HDG) marker when it appears at the end of
a clause, but it is marked with Epistemic attitudes
(EPA) when it starts a clause due to its neutral tone.
Furthermore, fuzzy boundaries are found among
EPA markers, such as ‘I agree (with)” and ‘I agree
(that)’. In this case, ‘with’ and ‘that’ should be
included in the span. Label disagreements and in-
consistent boundaries were resolved by discussion
and the involvement of a third linguist.

We split the dataset into a 70/15/15 division for
training, testing, and validation. We use splits with
fixed random seeds for reproducibility and to en-
sure that every MD category is present in the vali-
dation and test set by re-splitting with a different
fixed seed until this is the case.

3.2 Models

For the classification task, we use the base and
large version of the aforementioned models: BERT,
SpanBERT, ModernBERT, RoBERTa, ELECTRA,
ERNIE and XLNet. We used cased models to facil-
itate the identification of sentence boundaries. We
then tune these models on the task of MD classifi-



cation using the training portion of our corpus.

Specifically, we use these models to jointly per-
form the identification and classification tasks us-
ing token classifier heads tuned on the task. Pre-
dicting a span where no span was annotated is con-
sidered an incorrect prediction. In tuning, every
token that is not covered by an annotated MD span
in the training data, is considered an unlabeled (cat-
egory ‘-’) span. For our evaluation metrics we con-
sider both weighted F1 (also called micro F1) and
macro F1, due to strong class imbalance. Macro F1
weighs all metadiscourse categories equally, includ-
ing those with only a few instances. With our imbal-
anced dataset, this metric emphasizes performance
on small categories. Weighted F1 is weighted by
the frequency of the category, emphasizing perfor-
mance on larger categories.

For hyperparameter tuning, we use Bayesian op-
timization with HyperOpt, and an Asynchronous
Successive Halving scheduler to increase the ef-
ficiency of the process. We tune the learning
rate ~ log-uniform(107%,5075), weight decay
~ U(1073,1071), training batch size ~ U{4, 32}
and warmup steps ~ U{4,32}. We perform the
tuning with 60 sample trials, 20 initial points and
using the weighted F1-score as a metric. We run
the models for 25 epochs. For evaluation, we use
a batch size of 16. Best obtained hyperparameter
combinations can be found in Appendix G.

For the Llama-3.3-70B-Instruct baseline, we
adapted the widely used GPT-NER (Wang et al.,
2025) sequence generation approach for named
entity recognition to the task of metadiscourse clas-
sification. Details on our few-shot prompting ap-
proach with class label explanations are described
in Appendix B. We use the default temperature
hyperparameter of 0.6.

For the SpaCy baseline, included to represent
supervised classifiers as used in previous work,
we experimented with the SpanCategorizer (spaCy,
2024) pipeline. Integrated in Prodigy, it is conve-
nient for corpus linguists who are not proficient
in programming to perform automatic annotation.
The span categorizer uses Tok2Vec embeddings as
features with a vocabulary of 5000 (1000 prefix,
2500 suffix), going into a Maxout Window Encoder.
We used a hidden layer size of 128, four encoding
layers and a max span size of 22. It was trained
with a 70-30 split of data for 20 epochs with the
Adam optimizer, a learning rate of 0.001 with 0.01
weight decay and 10% dropout.
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4 Results

For the SpaCy baseline, we observed the effects of
the class imbalance inherent in our task. Only the
five most frequent labels (ORS, ENM, EPA, HDG,
BST) showed non-zero performance, while other
labels were not predicted. The baseline’s accu-
racy based solely on the non-zero values achieved
0.81 (computed per span), but drops to 0.19 when
all categories are considered. This indicates that
SpanCategorizer fails to generalize across all MD
categories, and this result is inadequate for assist-
ing linguists in semi-automatic MD classification.
The complete results are presented in Appendix A.

The Llama-3.3-70B-Instruct baseline also per-
formed poorly with an accuracy of 0.26, weighted
F1-score of 0.41 and macro F1-score of 0.17 (Ta-
ble 4). To confirm this result, we performed a
follow-up experiment with the potentially more
powerful GPT-40 model (Hurst et al., 2024) on 20
test documents and observed a weighted F1-score
of 0.56 and a macro F1-score of 0.26, outperform-
ing Llama-3.3-70B-Instruct but still trailing behind
the fine-tuned encoder models. Further details on
our decoder model baseline experiments can be
found in Appendix B.

4.1 Model comparison

Table 4 shows the results of the base models on
the metadiscourse classification task. In terms of
accuracy and weighted F1-score, XLLNet with its
span-based prediction pretraining objective clearly
outperforms the other models. However, its macro
F1-score lags behind that of the other models, indi-
cating that the model is relatively good at predict-
ing common MD categories and relatively bad at
predicting uncommon ones. In terms of macro F1,
ERNIE-v2 shows the best performance.

In Table 5, results for the large versions of these
models are shown. Results pattern similarly, with
either no or very minor performance gains for most
models. This indicates that the bottleneck for MD
classification is in the classification head rather
than in the base model, due to the relatively small
amount of labeled data available.

Next, we examine the per-class performance for
the best-performing XLNet-large model in Table 6.
Unlike the spaCy and Llama-3.3 baselines, XLNet
is able to classify all of the MD categories to some
extent, even those with less than 50 labeled tokens
in the test set. Nevertheless, we can observe perfor-
mance issues due to class imbalance — some low



Model-base \ Acc. \ F1 \ MacroF1
BERT 0.871 | 0.901 0.751
SpanBERT 0.856 | 0.893 0.738
ModernBERT | 0.858 | 0.897 0.752
RoBERTa 0.868 | 0.900 0.724
ELECTRA 0.863 | 0.898 0.739
ERNIE 0.870 | 0.904 0.766
XLNet 0.905 | 0.922 0.707
Llama-3.3-70B | 0.257 | 0.409 0.168

Table 4: Evaluation results for different base models

Model-large \ Acc. \ F1 \ MacroF1
BERT 0.868 | 0.900 0.742
SpanBERT 0.857 | 0.894 0.743
ModernBERT | 0.860 | 0.898 0.748
RoBERTa 0.869 | 0.901 0.741
Electra 0.846 | 0.890 0.754
ERNIE 0.866 | 0.900 0.769
XLNet 0.915 | 0.930 0.714

Table 5: Evaluation results for different large models

and mid-frequency categories exhibit F1-scores be-
low 0.5. Figure 2 plots the relationship between the
amount of instances in a category (frequency) ver-
sus the F1-score to visualize this pattern. We can
observe a clear correlation between the two vari-
ables. All low-performing categories (F1< 0.88)
have 1000 tokens or less of support in the test set,
reflecting the distribution in the training set.

This raises the question as to what causes these
differences in performance in the lower frequency
bracket. One potential explanation is lexical vari-
ability — categories that can be expressed by a larger
range of words should be more difficult to classify.

4.2 Unique spans per category

An interesting property of MD categories is that
some categories have far less variation than others.
Textual MD markers are often grammaticalized
and fixed in form, while interpersonal MD can be
expressed in many ways, as discussed in the intro-
duction. Therefore, we also examine the effect of
MD variation on performance per category. Fig-
ure 3 plots each category in terms of their ratio of
unique spans (variation), controlled for frequency,
against the F1-score. Frequency is controlled by
dividing the number of unique spans by the total
amount of spans of that category, similar to how
type/token ratio is computed. So, for example, the
Anticipating the audience’s response (AAR) cate-
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Label P R| F1 N
RPR 0.70 | 0.03 | 0.06 213
RFL 0.97 | 0.83 | 0.89 35
CMT 0.99 | 0.98 | 0.98 486
CLF 0.87 | 0.29 | 0.43 266
EXP 0.99 | 0.96 | 0.98 358
MNT 0.77 | 0.51 | 0.61 | 1,265
ORS 1.00 | 0.92 | 096 | 5,613
PED 0.98 | 0.86 | 0.92 623
ENM 092 | 092 | 0.92 696
EDP 1.00 | 0.67 | 0.80 15
PRV 0.68 | 0.33 | 0.44 234
RVW 0.98 | 0.97 | 0.97 289
EPA 0.99 | 0.99 | 0.99 | 17,130
HDG 099 | 093 | 096 | 4,358
BST 092 | 0.85 | 0.88 | 3,760
SAL 0.90 | 0.87 | 0.89 306
MNC 0.30 | 0.18 | 0.22 376
MCD 0.96 | 0.93 | 0.94 366
AAR 0.99 | 0.33 | 0.50 224
MNM 0.84 | 0.65 | 0.73 55
IMS 0.60 | 0.60 | 0.60 10
Acc. 0.91 | 36,678
Macro 0.83 | 0.67 | 0.71 | 36,678
Weighted | 0.96 | 0.91 | 0.93 | 36,678

Table 6: Results per class for XLNet-large

gory has a ratio of 1, meaning that every instance
of it uses a unique sequence of tokens.

We expect that the more varied categories are
more difficult to classify, but in the top left corner
we see that some of the most diverse categories also
have high F1-scores, even when controlled for fre-
quency. The Reviewing (RVW) and Commenting
(CMT) categories show that even a highly variable
categories can still get a high Fl-score, while a
category with somewhat lower variation, Manag-
ing comprehension (MNC) gets a lower F1-score
while being similar in frequency to the aforemen-
tioned two categories. This indicates that the model
has good generalization capabilities and does more
than just remembering some common words for
each category. We also note a pattern of more fre-
quent categories, e.g., Epistemic attitudes (EPA)
and Boosters (BST), having a lower variation ratio
— this is tied to the frequency factor, as among more
spans there are more likely to be repeated ones.
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Figure 1: Confusion matrix for XLNet-large
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4.3 Class ambiguity

Table 7 contains an overview of the most common
misclassifications, highlighting elements from Fig-
ure 1. Such classification mixups indicate ambi-
guity between the categories, possibly because of
similar MD spans. The overview includes misiden-
tifications, where an annotated span is identified as
not being MD — this is indicated with ‘-’. For each
class, we show its frequency (N), the most common
misclassification (Errl), what percentage of tokens
of this class was misclassified in this way, and the
second most common misclassification (Err2).
The first six categories are the relatively most
commonly misclassified categories, and the corre-
lation with category frequency is visible. For the
least frequent class, Repairing (RPR), we see that
almost all instances are misidentified. The bottom
three categories are the three biggest categories.
We can see that the most misclassified categories
are misclassified as other uncommon categories,
except Clarifying (CLF) which gets confused for
Epistemic attitudes (EPA), the most common cat-
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Figure 3: Relationship between the number of unique
spans per category divided by frequency, and F1-score

egory. So, these confusions are more than a fre-
quency effect.

Observed ambiguity instead appears to be caused
by frequent overlapping of the two labels. They
may co-occur in the same span a lot, as in our Ex-
ample 2, where a Boosters (BST) occurs inside an
Epistemic attitudes (EPA) indication. XLNet-large
misclassifies a BST as EPA 11 times while clas-
sifying EPA as BST 6 times. Another situation
caused by overlapped labels is the confusion be-
tween Managing comprehension (MNC) and BST.
The misclassification particularly happens to the
phrase ‘As we all know’, which is marked as both
MNC and BST by human annotators.

Another potential cause of confusion is semantic
ambiguity and similarity. For the ORS-BST confu-
sion (Organizing Statements-Boosters), we observe
that ORS spans that get misclassified as BST of-
ten contain words such as ‘especially’ and ‘even’,
which are also used as boosters. To cite examples
from the training data, the true label for ‘even still’
is BST, whereas that for ‘even if” or ‘even though’
is ORS. The misclassification of Anticipating the
audience’s response (AAR) as MNC is due to the
same reason. Looking at some of the AAR mark-
ers (e.g., you may say, if you ask me, you might
say that) and the MNC markers (e.g., as you know,
as you can see, you mean), we could find all the
occurrences of the personal pronoun ‘you’ refer to
the readers/listeners and functions as the subject in
the sentence. This semantic similarity and use of
‘you’ by both categories leads to confusion. Simi-
larly, the confusion between Clarifying (CLF) and
Epistemic attitudes is caused by the common use
of ‘I". These confusions are not observed in human
annotators’ performance.



Cat N Err %0 Err2
RPR 213 - 95.31% | MCD
MNC 376 BST | 74.73% | -
AAR 224 | MNC | 59.82% | -
PRV 234 - 44.44% | MNT
MNT | 1,265 | - 43.64% | ENM
CLF 266 EPA | 41.35% | -
HDG | 4,358 | - 2.91% | MNT
ORS 5,613 | BST 3.60% | -
EPA | 17,130 | - 0.99% | HDG

Table 7: Two most common misclassifications and
misidentifications of categories for the 6 most misclassi-
fied categories and the 3 largest ones, by XLNet-large.

5 Discussion

Overall, we observed that tuned encoder LLM-
based approaches are able to perform metadis-
course identification and classification well, clearly
outperforming the spaCy baseline (weighted F1-
score of 0.93 vs 0.81 only for the most frequent cat-
egories) and the Llama-3.3-70B-Instruct decoder
LLM baseline (weighted F1-score of 0.93 vs 0.41).
Only the encoder models are able to classify all MD
categories, including the more challenging interper-
sonal ones. The best performance was reached
with XLNet-large, but performance gains from us-
ing large versions of models were minimal.

Direct comparison to previous SVM-based work
(Alharbi, 2016; dos Santos Correia, 2018) is diffi-
cult as different MD categorization schemes were
used, and F1-scores were only reported per cate-
gory. Broadly, dos Santos Correia (2018) reports
F1-scores below 0.6 in 9 of 10 categories, while
XLNet only goes below 0.6 in 5 of 21 categories.
Alharbi (2016) reports 3 of 19 categories with F1-
scores over 0.8, while XLNet-Large achieves this
for 13 of our 21 categories. As a challenging ex-
ample, the Anticipating the audience’s response
(AAR) category got a Fl-score of 0.3 in Alharbi’s
(2016) work, while XLNet gets 0.5.

Improved LLM-based metadiscourse classifica-
tion has promising applications. First, we can use
this method to expand our annotated corpus, which
is still under development, to overcome the re-
search limitations imposed by the small amount
of available data. Moreover, automatic MD classifi-
cation is beneficial to language acquisition research,
particularly for second language acquisition. It can
help with tasks related to (automated) language
assessment and language teaching. It also has po-
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tential to be used in text analysis tools to provide
language learners with concrete feedback on lan-
guage coherence and interactionality. MD classifi-
cation also provides an indication of the viability
of the annotation of similar pragmatic and discur-
sive properties of texts, in other words, linguistic
items that are highly context-dependent and po-
tentially challenging even to state-of-the-art NLP
methods. Explicit MD representation may have
other downstream potential for natural language
processing tasks, such as in dialogue systems. It
may also provide informative input features for re-
lated tasks such as stance detection, where stance
can be expressed through metadiscourse, or dia-
logue act segmentation and classification, where
some dialogue acts may be metadiscourse acts.

The practical applicability of our results is lim-
ited by poor performance on certain low-frequency
classes. In future work, targeted supplemental an-
notation for the more challenging MD categories
is the most promising next step. Another future
research direction is improving generative decoder
LLM performance on this task, such as through in-
struction tuning, prompt engineering or an agentive
approach with domain-expert agents.

6 Conclusions

The model discussed in this paper achieved an
accuracy and Fl-score of 0.91 and 0.93 respec-
tively on the task of metadiscourse identification
and annotation, representing an improvement over
related work, the SpaCy baseline and generative
decoder LLM performance. Obtaining this perfor-
mance with a fairly small annotated dataset shows
that LL.Ms have potential to help speed up the an-
notation process even for fairly uncommon NLP
tasks such as ours. The main open issue with this
task is class imbalance. Annotating more conversa-
tions where these categories are present is the most
promising approach to improve this.

7 Limitations

The main limitation of this project is the insufficient
number of instances for the majority of categories.
Annotating more conversations to make sure all
categories have a significant number of instances is
the most promising next step, as mentioned earlier.
However, low frequency is inherent to some MD
categories in natural language and small datasets
with imbalanced category distributions are com-
mon in linguistic research. Alternative methods



should also be considered, for example, targeted
annotating of only low-categories which would be
more efficient.

A further limitation is that the study is based
on a single dataset. Therefore, we cannot make
claims about generalization to other learner popula-
tions or other discourse types. No other annotated
MD datasets exist and it is costly to annotate them,
though our results suggests that semi-automatic
annotation can be performed after tuning on a rela-
tively small dataset for future annotation of other
corpora for MD.

The applicability of the method is limited by the
fact that it requires tuning on MD annotation, a
type of annotation that is not commonly available,
especially in under-resourced languages. This lim-
its the extent to which our method can be applied
in diverse linguistic contexts and domain contexts.
We were only able to demonstrate it for English.
With our findings, semi-automatic annotation of
more data can be explored, but only for languages
where usable MD annotation already exists. Few-
shot performance through in-context learning by a
large generative LLM was insufficient to provide a
viable alternative.

While MD spans can be embedded inside each
other, the token classification approach adopted
in this study can only assign one label per token.
These cases are therefore not fully handled. The
classifier can put a smaller span of category B in-
side a larger span of category A, but without the
ability to assign multiple labels to one token, it is
unspecified whether the category A span encom-
passes the category B span, or is actually two dif-
ferent category A spans, one before the category B
span and one after.

We investigated the effect of span variation on
classification performance, but our approach has
some limitations. For example, if two instances
of spans use the same words but in different order,
or the same sequence of words but with one word
omitted, they would count as different unique spans.
Some sort of overlap or semantic similarity-based
metric might give a better view of uniqueness of
spans.

We discuss the application of our method to
(semi)-automatic metadiscourse annotation. How-
ever, if it were to be used for this purpose, the anno-
tations would be biased based on the mistakes that
the classifier makes - categories that the classifier
struggles with more, would be more poorly anno-
tated. Annotators should pay particular attention to
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these underperforming categories.

References

Annelie Adel. 2006. Metadiscourse in L1 and L2 En-
glish. John Benjamins.

Annelie Adel. 2010. Just to give you kind of a map of
where we are going: A taxonomy of metadiscourse
in spoken and written academic English. Nordic
Journal of English Studies, 9(2):69-97.

Ghada Alharbi. 2016. Metadiscourse tagging in aca-
demic lectures. Ph.D. thesis, University of Sheffield.

Martin Juan José Bucher and Marco Martini. 2024.
Fine-tuned ’small’ 1lms (still) significantly outper-
form zero-shot generative ai models in text classifica-
tion. arXiv preprint arXiv:2406.08660.

Sathena Chan, Manoranjan Sathyamurthy, Chihiro
Inoue, Michael Bax, Johnathan Jones, and John
Oyekan. 2024. Integrating metadiscourse analysis
with transformer-based models for enhancing con-
struct representation and discourse competence as-
sessment in L2 writing: A systemic multidisciplinary
approach. Journal of Measurement and Evaluation
in Education and Psychology, 15(Special Issue):318-
347.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
Preprint, arXiv:2003.10555.

Avon Crismore, Raija Markkanen, and Margrat S. Stef-
fensen. 1993. Metadiscourse in persuasive writing: A
study of texts written by american and finnish univer-
sity students. Written Communication, 10(1):39-71.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Rui Pedro dos Santos Correia. 2018. Automatic Clas-
sification of Metadiscourse. Ph.D. thesis, Language
Technologies Institute, School of Computer Science,
Carnegie Mellon University.

Masaki Eguchi and Kristopher Kyle. 2023. Span identi-
fication of epistemic stance-taking in academic writ-
ten English. In The 61st Annual Meeting Of The
Association For Computational Linguistics.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The Llama 3 herd of
models. arXiv preprint arXiv:2407.21783.


https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2003.10555
https://doi.org/10.1177/0741088393010001002
https://doi.org/10.1177/0741088393010001002
https://doi.org/10.1177/0741088393010001002
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

M.A K. Halliday. 1994. An Introduction to Functional
Grammar. Hodder Arnold.

Matthew Honnibal, Ines Montani, et al. 2024. Prodigy:
An annotation tool for Al, Machine Learning & NLP.
https://prodi.gy.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. GPT-40 system card. arXiv preprint
arXiv:2410.21276.

Ken Hyland. 2005. Metadiscourse: Exploring interac-
tion in writing. Continuum.

Shin’ichiro Ishikawa. 2023. The ICNALE guide: An
introduction to a learner corpus study on Asian learn-
ers’ L2 English. Routledge.

Mandar Joshi, Dangi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving pre-training by representing and
predicting spans. Transactions of the association for
computational linguistics, 8:64-77.

Imed Keraghel, Stanislas Morbieu, and Mohamed Nadif.
2024. A survey on recent advances in named entity
recognition. arXiv preprint arXiv:2401.10825.

William Vande Kopple. 1985. Some exploratory dis-
course on metadiscourse. College Composition &
Communication, 36(1):82-93.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Andrea Martinenghi, Gregor Donabauer, Simona
Amenta, Sathya Bursic, Mathyas Giudici, Udo Kr-
uschwitz, Franca Garzotto, Dimitri Ognibene, et al.
2024. LLMs of Catan: Exploring pragmatic capabil-
ities of generative chatbots through prediction and
classification of dialogue acts in boardgames’” multi-
party dialogues. In Proceedings of the 10th Work-
shop on Games and Natural Language Processing @
LREC-COLING 2024, pages 107-118. ELRA and
ICCL.

Anna Mauranen. 1993. Cultural differences in academic
discourse—problems of a linguistic and cultural mi-
nority. AFinLAn vuosikirja, pages 157-174.

ED Milne. 2003. Metadiscourse revisited: a contrastive
study of persuasive writing in professional discourse.
regreso al metadiscurso: estudio contrastivo de la per-
suasion en el discurso profesional. Estudios ingleses
de la Universidad Complutense, 11:29-52.

Ayesha Qamar, Jonathan Tong, and Ruihong Huang.
2025. Do LLMs understand dialogues? a case study
on dialogue acts. In Proceedings of the 63rd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 26219—
26237.

37

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 2383-2392.

Damien Sileo, Tim Van de Cruys, Camille Pradel, and
Philippe Muller. 2019. Mining discourse markers
for unsupervised sentence representation learning. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3477-3486.

spaCy. 2024. Span categorizer: Pipeline component.
https://spacy.io/api/spancategorizer. Ac-
cessed: 2024-10-14.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. ERNIE 2.0:
A continual pre-training framework for language un-
derstanding. In Proceedings of the AAAI conference

on artificial intelligence, volume 34, pages 8968—
8975.

Darinka Verdonik. 2023. Annotating dialogue acts in
speech data: Problematic issues and basic dialogue
act categories. International Journal of Corpus Lin-
guistics, 28(2):144-171.

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang,
Fei Wu, Tianwei Zhang, Jiwei Li, Guoyin Wang, and
Chen Guo. 2025. GPT-NER: Named entity recogni-
tion via large language models. In Findings of the
Association for Computational Linguistics: NAACL
2025, pages 4257-4275.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié,
Orion Weller, Oskar Hallstrom, Said Taghadouini,
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom
Aarsen, Griffin Thomas Adams, Jeremy Howard, and
Iacopo Poli. 2025. Smarter, better, faster, longer:
A modern bidirectional encoder for fast, memory
efficient, and long context finetuning and inference.
In Proceedings of the 63rd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2526-2547, Vienna, Austria.
Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
XLNet: Generalized autoregressive pretraining for
language understanding. Advances in neural infor-
mation processing systems, 32.

Frances Yung, Mansoor Ahmad, Merel Scholman, and
Vera Demberg. 2024. Prompting implicit discourse
relation annotation. In Proceedings of The 18th
Linguistic Annotation Workshop (LAW-XVIII), pages
150-165.


https://books.google.nl/books?id=a88lnQEACAAJ
https://books.google.nl/books?id=a88lnQEACAAJ
https://prodi.gy
https://spacy.io/api/spancategorizer
https://doi.org/10.18653/v1/2025.acl-long.127
https://doi.org/10.18653/v1/2025.acl-long.127
https://doi.org/10.18653/v1/2025.acl-long.127

A SpaCy baseline

Label Precision | Recall | F1-score
RPR 0.00 0.00 0.00
RFL 0.00 0.00 0.00
CMT 0.00 0.00 0.00
CLF 0.00 0.00 0.00
EXP 0.00 0.00 0.00
MNT 0.00 0.00 0.00
ORS 0.89 0.88 0.88
PED 0.00 0.00 0.00
ENM 0.96 0.44 0.60
EDP 0.00 0.00 0.00
PRV 0.00 0.00 0.00
RVW 0.00 0.00 0.00
EPA 0.91 0.90 0.90
HDG 0.87 0.73 0.79
BST 0.88 0.70 0.78
SAL 0.00 0.00 0.00
MNC 0.00 0.00 0.00
MCD 0.00 0.00 0.00
AAR 0.00 0.00 0.00
MNM 0.00 0.00 0.00
IMS 0.00 0.00 0.00
Acc. 0.81
Macro 0.79
(Non-zero)

Table 8: Classification accuracy of the SpaCy baseline

B Decoder LLM baseline

For the Llama-3.3-70B-Instruct baseline, we
adapted the popular GPT-NER (Wang et al., 2025)
prompting approach from the Named Entity Recog-
nition (NER) task to our task. The model is
prompted to apply labels in this format: No, @ @[
don’t think#EPA## so. In this example, EPA is the
label, @ @ the span start token and ## the span end
token. We prompt for the label to be generated at
the end of the span due to the unidirectional nature
of generative decoder LLMs. In our prompt, we
added a definition of metadiscourse, the persona
phrase “You are an excellent linguist.” from Wang
et al. (2025), and short descriptions of all the cat-
egories with one example per category, which are
the same as in Table 1. We used a three-shot set-
ting, adding three randomly chosen full annotated
documents from our training set (which was oth-
erwise not used in the decoder LLM experiments).
We also tried a zero-shot setting without the full
annotated documents, but performance was very
limited in these trials. The full three-shot prompt
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template can be seen in Appendix F.

In Table 9, we show results per class for Llama-
3.3-70B-Instruct. The overall metrics are notably
lower than those for the tuned encoder models.
Four categories are never labeled correctly. As
might be expected in a setting without fine-tuning,
per class performance does not correlate as clearly
with the class’s frequency in our corpus — the
rather frequent class of Managing topics (MNT)
is never predicted by the model. The best classifi-
cation performance is shown for classes that often
consist of one or two words, such as Enumerating
(ENM - first, at last), Organizing statements (ORS
- and, but) and Boosters (BST - definitely, should).
This is despite the fact that evaluation metrics are
computed per token, and it suggesting difficulties
in accurately marking boundaries of longer spans
or in structure prediction more broadly.

As this result may be surprising to some readers,
we performed an additional small-scale experiment
with GPT-40 for verification. With a test set of
20 random documents (different from the exam-
ple shots) and in the three-shot setting, GPT-40
achieved a weighted F1 score of 0.554 and a macro
F1 score of 0.259, outperforming Llama-3.3-70B-
Instruct but still underperforming compared to the
tuned encoder models.

There are a few possible reasons for this poor
performance. Firstly, our task is far less common
than the NER task, so it is less likely to occur in
training or instruction tuning data for these models.
Secondly, our task has more categories than the
NER task and the categories are domain-specific.
They require specialized knowledge to interpret
and are not frequently discussed outside of spe-
cialized literature. Even with the description and
examples, the model does not seem to have an ac-
curate representation of the categories.

Specifically, the model seems to experience inter-
ference from the more common tasks of discourse
act labeling and discourse/conversation analysis.
Even with the prompt stating that it’s a metadis-
course task, the model often tries to perform a dis-
course analysis task and interprets our categories as
if they are part of such a task. For example, it marks
disfluencies as RPR (Repairing), while only dis-
course about disfluencies (metadiscourse) should
be marked as such. An example of this from our
GPT-40 evaluation is: “In university, most — most
@ @students#RPR## first goal is to study*. This la-
beling is likely triggered by the repetition of most,
but it is a repetition, not a repair (if we are do-



Label P R| F1 N
RPR 0.07 | 0.50 | 0.13 213
RFL 0.16 | 0.44 | 0.24 35
CMT 0.01 | 0.04 | 0.02 486
CLF 0.15 | 0.06 | 0.08 266
EXP 0.34 | 0.55 | 0.42 358
MNT 0 0 0] 1,265
ORS 0.58 | 0.45 | 0.51 | 5,613
PED 01]0.02]0.01 623
ENM 0.70 | 0.58 | 0.63 696
EDP 0 0 0 15
PRV 0.04 | 0.05 | 0.04 234
RVW 0.19 | 0.30 | 0.23 289
EPA 0.30 | 0.40 | 0.34 | 17,130
HDG 0.46 | 0.20 | 0.28 | 4,358
BST 0.74 | 0.27 | 0.40 | 3,760
SAL 0.06 | 0.13 | 0.08 306
MNC 0.04 | 0.04 | 0.04 376
MCD 0.40 | 0.02 | 0.03 366
AAR 0.04 | 0.06 | 0.05 224
MNM 0 0 0 55
IMS 0 0 0 10
Acc. 0.26 | 36,678
Macro 0.20 | 0.20 | 0.17 | 36,678
Weighted | 0.46 | 0.37 | 0.41 | 36,678

Table 9: Results per class for Llama-3.3-70B-Instruct

ing discourse analysis), and it is not metadiscourse
about a repair. We also observe another issue in this
example, which is that the label is applied to the
word after the actual repair (most). This is likely
due to the unidirectional nature of the model.

C Label frequency distribution

Lael

Figure 4: The distribution of MD labels in the gold-
standard dataset
D Software specifications

Python: 3.11.4
numpy: 2.2.2
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torch: 2.6.0+cul24

transformers: 4.48.2

All models apart from GPT-40 are available on
HuggingFace:
google-bert/bert-base-cased
google-bert/bert-large-cased
SpanBERT/spanbert-base-cased
SpanBERT/spanbert-large-cased
answerdotai/ModernBERT-base
answerdotai/ModernBERT-large
FacebookAl/roberta-base
FacebookAl/roberta-large
google/electra-small-discriminator
google/electra-large-discriminator
nghuyong/ernie-2.0-base-en
nghuyong/ernie-2.0-large-en
xInet/xInet-base-cased
xInet/xInet-large-cased
meta-llama/Llama-3.3-70B-Instruct

The code can be found on this paper’s associated
GitHub page: https://github.com/W-Guan/
Automatic-MD-annotation-with-XLNet. The
dataset is available upon request, as it was collected
for another study that has not been published yet.
Interested parties may contact the author directly
to obtain access.

E Hardware specifications

GPU: NVidia L4

GPU Memory: 24GB

CPU: AMD 9445p

Total Number of Cores: 64

Memory: 384 GB

One model tuning run of 25 epochs takes about
30 minutes (ModernBERT-base) to 1 hour (XLnet-
base) on this hardware.


https://github.com/W-Guan/Automatic-MD-annotation-with-XLNet
https://github.com/W-Guan/Automatic-MD-annotation-with-XLNet

F Prompt template

You are an excellent linguist. The task is to label metadiscourse spans -
spans of words that guide the addressee through the discourse. Here are
the possible categories that you can label spans as:

RPR: Repairing - Example: "I'm sorry..."

RFL: Reformulating - Example: "to put it differently...”
CMT: Commenting - Example: "... is a difficult question”
CLF: Clarifying - Example: "I don't mean to say”
EXP: Exemplifying - Example: "for example”

ORS: Organizing statements - Example: "and"”, "but"”,
PED: Providing evidentials - Example: "according to”
ENM: Enumerating - Example: "first”, "at last”

EDP: Endophoric marking - Example: "As we can see in Chapter III, ..."
PRV: Previewing - Example: "We will discuss...”
RVW: Reviewing - Example: "As I said last time,
EPA: Epistemic attitudes - Example: "I agree that..."

HDG: Hedges - Example: "perhaps”, "might”

BST: Boosters - Example: "definitely”, "should”

SAL: Speech act labels - Example: "I argue that..."

MNC: Managing comprehension - Example: "You know what I mean.”

MCD: Managing channel/audience discipline - Example: "Can you hear me?”
AAR: Anticipating the audience's response - Example: "You may ask..."
MNM: Managing the message - Example: "What I want to emphasize is..."
IMS: Imagining scenarios - Example: "Suppose you are giving a speech...”

n n

SO

n

If a span should be labeled, you will annotate in the format:
@@span#LABEL##

Do not output any other text apart from the annotated input text.

Document-level examples:
{examplel}
{example2}
{example3}

Figure 5: Prompt template for decoder LLM baseline experiment
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G Hyperparameters

Model Epochs | Batch Alpha | Decay Warmup steps
BERT 25 6 3.46893934104582e-05 456 | 0.06331306513883898
SpanBERT 25 9 | 1.1235689536407466e-05 583 | 0.03328240000998865
ModernBERT 25 4 4.27605191279545e-05 352 | 0.07325555301079804
RoBERTa 25 17 | 4.1627214448844214e-05 419 | 0.03135747617843722
Electra 25 4 | 3.8988959827328105e-05 566 | 0.09975738929202359
ERNIE 25 14 | 2.7576890378412467¢e-05 204 | 0.016803254034765108
XLNet 25 4 | 3.784413058653172¢-05 550 | 0.026749712474382164

Table 10: Best hyperparameters settings for base models.
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