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Preface

Welcome to the 6th Workshop on Computational Approaches to Discourse, Context and Document-Level
Inferences (CODI-2025), co-organized with the 8th Workshop on Computational Models of Reference,
Anaphora and Coreference (CRAC) and co-located with EMNLP 2025 in Suzhou, China!

CODI provides a venue to bring together researchers working on all aspects of discourse in Computatio-
nal Linguistics, NLP and AI. Our aim is to foster an active and collaborative community around discourse
processing by offering a platform to present and exchange theories, algorithms, software, datasets, and
tools, as well as to discuss emerging challenges, new ideas, and future directions in the field.

The workshop consists of invited talks, contributed papers, extended abstracts, and EMNLP Findings
presentations. We received paper submissions that span a wide range of topics, addressing issues related
to discourse representation and parsing, connectives, entity tracking, discourse benchmarks, ambigui-
ty, computational discourse and stance analysis, dialogue, applications, and more. As the workshop is
hybrid this year, papers are presented live either in person or remotely and discussed during live Q&A
sessions. We received 28 submissions, and accepted 14 regular long papers, 5 regular short papers, as
well as 3 non-archival communications (Findings and extended abstracts). We accepted a total of 22
articles among the 28 regular submissions, 15 of which were presented in person and 6 are presented
orally. We also organized two poster sessions this year, in order to encourage discussions.

This year the workshop hosted the fourth edition of the DISRPT shared task on Discourse Relation
Parsing and Treebanking (DISRPT 2025), whose five submissions form part of a separate shared task
proceedings volume. The workshop also included a discussion on future shared tasks, and sessions on
coreference and anaphora resolution organized by CRAC, for which papers are also published in a sepa-
rate proceedings volume.

We thank our invited speakers, Nancy Chen (Multimodal Generative Al Group Leader at the Institute
for Infocomm Research and Al for Education Head at A*STAR) and Tanya Goyal (Assistant Professor
in the Department of Computer Science at Cornell University). They helped us to prepare an excellent
and well-rounded workshop program. We would also like to thank the EMNLP 2025 workshop chairs,
Sunipa Dev, Maja Popovi¢ and Eleftherios Avramidis, who organized the workshops program.

Finally, we thank our sponsor HITS, Heidelberg Institute for Theoretical Studies ht tps://www.h-1its.
org.

The CODI Organizers,

Chloé Braud, Christian Hardmeier, Chuyuan Li, Junyi Jessy Li, Sharid Lodiciga, Michael Strube and
Amir Zeldes
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Long Context Benchmark for the Russian Language
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Abstract

Recent progress in Natural Language Process-
ing (NLP) has driven the creation of Large Lan-
guage Models (LLMs) capable of tackling a
vast range of tasks. A critical property of these
models is their ability to handle large docu-
ments and process long token sequences, which
has fostered the need for a robust evaluation
methodology for long-text scenarios. To meet
this requirement in the context of the Russian
language, we present our benchmark consisting
of 18 datasets designed to assess LLM perfor-
mance in tasks such as information retrieval,
knowledge extraction, machine reading, ques-
tion answering, and reasoning. These datasets
are categorized into four levels of complex-
ity, enabling model evaluation across context
lengths up to 128k tokens. To facilitate further
research, we provide open-source datasets, a
codebase, and a public leaderboard associated
with the benchmark.

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive abilities in many NLP applica-
tions. Interacting with people through free-form
text instructions, they serve as versatile tools for
multiple scenarios, transforming the landscape of
Al systems. One direction where LLM usage is de-
veloping rapidly includes tasks requiring long text
processing, such as information retrieval (IR) and
summarization, where their applications alleviate
the handling of long texts for humans.

However, until recently, most LLMs had difficul-
ties handling long sequences of tokens and were
only able to work with a limited context length
of several thousand tokens. In recent years, new
methods have enabled the models to increase their
context significantly, empowering them to solve a
new variety of tasks. This, in turn, and the com-
munity’s demand for automatic systems solving
such tasks at a good level has created a need for a

1

Group Il
Matreshka
YesNo

LIBRA:
Long Input
Benchmark for
Russian Analysis

18 Tasks 4 complexity
groups

6 subsets with various context
length up to 128k for each task

Figure 1: The LIBRA benchmark is a set of 18 long-
context tasks ranging in length from 4k to 128k tokens,
grouped into four categories based on the complexity of
required skills.
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thorough evaluation of LLM long context under-
standing.

To address this demand in English, several long
context understanding benchmarks have been cre-
ated recently with LongBench (Bai et al., 2023)’
and L-Eval (An et al., 2023)> heading the list. How-
ever, the Russian language, at this point, lacks a
fair instrument for transparent evaluation of long
context understanding.

Our work addresses this problem and presents
a new benchmark, which we call Long Input
Benchmark for Russian Analysis, or LIBRA, for
the evaluation of LLM long context understanding
abilities in Russian (see Figure 1) including such
aspects as IR, machine reading, question answering
(QA), and reasoning. The contribution of our work
can be summarized as follows:

* we present a methodology for the evaluation
of long-context abilities of LLMs for the Rus-
sian language;

* we publicly release a set of 18 datasets of var-
ious skills and complexities in Russian, which
form the LIBRA benchmark;

"https://huggingface.co/datasetss THUDM/LongBench
Zhttps://huggingface.co/datasets/L4NLP/LEval
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» we release a codebase 3, a public leaderboard *
and a set of baseline solutions.

2 Related Work

Long Context Large Language Models. One
of the crucial tasks in the development of LLMs
is to increase the length of the context that the
model can understand. This problem has two key
points: the complexity of calculations for long se-
quences and the ability of the model to extract
important data in a long context. The solution of
the first problem can be attributed to research on
the effective processing of the self-attention as in
Longformer (Beltagy et al., 2020), LongNet (Ding
et al., 2023) and FlashAttention (Dao et al., 2022;
Dao, 2023), using caches for previously calcu-
lated outputs such as Transformer-XL (Dai et al.,
2019), Unlimiformer (Bertsch et al., 2024) and
LongLLaMA (Tworkowski et al., 2024) or replac-
ing it with another mechanism with more effec-
tive inference as in RetNet (Sun et al., 2023) and
Mamba (Gu and Dao, 2023). The solution to the
second problem is to improve positional encoding
techniques such as ALiBi (Press et al., 2021) and
RoPE-based approaches (Sun et al., 2022; Peng
et al., 2023).

Long Context Benchmarks. Until recently, most
LMs had relatively small context lengths limited by
a few thousand tokens. Thus, standard Natural Lan-
guage Understanding (NLU) benchmarks (Wang
et al., 2018, 2019; Shavrina et al., 2020) contained
tasks within this size. Even today, benchmarks
created recently, such as HELM (Bommasani
et al., 2023), MT-Bench (Zheng et al., 2023), and
Russian-oriented benchmark MERA (Fenogenova
et al., 2024) follow this pattern, limiting their tasks
by relatively small context window size to simplify
the evaluation procedure and reducing its cost.
The pioneers of long context processing bench-
marks have been ZeroSCROLLS (Shaham et al.,
2023)°, designed to test zero-shot model capa-
bilities for NLU over long texts; L-eval (An
et al., 2023)°, focused on a standardized evaluation
methodology for long context LMs addressing two
key aspects: dataset construction and evaluation
metrics; Loong (Wang et al., 2024b), which aligns

3https://github.com/ai-forever/LIBRA
*https://huggingface.co/spaces/ai-forever/LIBRA-
Leaderboard
Shttps://www.zero.scrolls-benchmark.com/
®https://huggingface.co/papers/2307.11088

with realistic scenarios through extended multi-
document QA; and LongBench (Bai et al., 2023),
the bilingual multi-task benchmark for long con-
text understanding, comprising 21 tasks in English
and Chinese. Finally, Goldman et al. (2024) cate-
gorizes the existing long-context datasets and po-
sitions them with respect to their difficulty, which
they define by the dispersion and the scope.

The concept of the needle-in-a-haystack (Kam-
radt, 2023) is frequently employed in long-context
benchmarks, involving the insertion of sentence-
level information at varying depths within a doc-
ument to create tasks of differing complexity. In
addition to categorizing tasks by type, many bench-
marks classify tasks based on their complexity us-
ing various criteria. For instance, tasks may be
grouped by the number of facts required for reason-
ing (Kuratov et al., 2024), the type of reasoning QA
(e.g., single-hop vs. multi-hop, as shown by Wang
et al. (2024a)), or the complexity and depth of the
needle. In the latter case, deeper or more abstract
needles challenge models more significantly, test-
ing their ability to locate and reason over critical
details in long documents (Karpinska et al., 2024).

However, the limitation of the benchmarks men-
tioned above is that they are mainly English-
oriented (or Chinese). As for the Russian language,
there is an urgent need for a reliable system able
to evaluate LLLM long context understanding abili-
ties. To address this problem, we propose LIBRA,
which brings a methodology and 18 tasks for a long
context understanding evaluation in Russian.

3 LIBRA

3.1 Benchmark Overview

In this section, we introduce LIBRA (Long Input
Benchmark for Russian Analysis), a new bench-
mark for long context understanding, which in-
cludes 18 tasks for LLM evaluation created specifi-
cally for Russian. LIBRA aims to evaluate a large
scope of LLMs, including pretrain models and mod-
els with supervised finetuning (SFT) with any sys-
tem prompt that can be picked up.

The main purpose of the benchmark is to create a
reliable instrument for the long context understand-
ing evaluation, enabling the study of the model’s
ability to solve various tasks of different complex-
ity with respect to the input context length. For
this purpose, all tasks in the LIBRA benchmark are
divided into 4 complexity groups, and the datasets
have several subsets of various context lengths rang-
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Task Name Data Origin Skills Metric Dataset Size
_ Passkey New Reasoning EM 1200
PasskeyWithLibrusec New Reasoning EM 1200
MatreshkaNames New Dialogue Context, Reasoning EM 900
MatreshkaYesNo New Dialogue Context, Reasoning EM 1799
LibrusecHistory New Reasoning EM 128
— ruSciAbstractRetrieval New Reasoning EM 1240
= ruQuALITY Translated Reasoning EM 202
LongContextMultiQ New Reasoning EM 1200
LibrusecMHQA New Reasoning EM 384
ru2WikiMultihopQA Translated Reasoning EM 300
= ruBABILongQA1 New Reasoning EM 600
- ruBABILongQA?2 New Reasoning EM 600
ruBABILongQA3 New Reasoning EM 600
ruBABILongQA4 New Reasoning EM 600
ruBABILongQAS New Reasoning EM 600
ruSciPassageCount New Reasoning EM 600
Z ruQasper Translated Reasoning F1 203
ruGSM100 Translated Math, Logic EM 100

Table 1: The LIBRA tasks outline. The numbers I, I, ITI, and IV in the left column indicate the complexity group
of the tasks described in Subsection 3.2. The Skills column defines the skills to be tested on a specific task. Data
Origin discloses the source of the dataset. The Dataset Size column shows the number of items in the whole

dataset.

ing from 4k up to 128k tokens’. The latter makes
it possible to explore the influence of the context
length on the model results.

3.2 Complexity group description

We describe each complexity group of tasks using
criteria inspired by other benchmarks that classify
tasks by complexity. Specifically, we considered
the depth of the needle, the complexity of reason-
ing, and the difficulty of the domain.

The first complexity group (I) consists of tasks
that require finding a short text fragment in long tex-
tual paragraphs containing irrelevant information.
This group includes Passkey and PasskeyWithLi-
brusec datasets.

The second complexity group (II) includes
tasks that require answering the question based
on a relevant context. The following types of
tasks are related to this group: QA such as Ma-
treshkaNames, MatreshkaYesNo, LibrusecHistory,
ruSciAbstractRetrieval and multiple choice QA,
such as ruQuALITY.

The natural development of tasks from the sec-
ond class of complexity are tasks with questions,
the answers to which are not explicitly contained in
the text but require the analysis of fragments of in-
put data and the generation of an answer based on it.
Such tasks in our classification belong to the third
complexity group (III) and represent a multi-hop

’See explanation on token length calculation in Section 3.3

QA (MHQA) type. This group includes the follow-
ing tasks: ruBABILongQA1, ruBABILongQA?2,
ruBABILongQA3, ruBABILongQA4, ruBABI-
LongQAS, LongContextMultiQ, LibrusecMHQA
and ru2WikiMultihopQA.

Finally, to the fourth complexity group (IV)
belongs to the tasks that require understanding
the whole context, solving mathematical problems,
and QA tasks within complex domains. This
group includes ruSciPassageCount, ruGSM100 and
ruQasper datasets.

We do not include code generation and analysis
tasks in LIBRA as most of the software code in the
world is written in languages based on English.

3.3 Context Length Estimation

We divide all datasets into subsets of various con-
text lengths. The latter, however, may vary across
different models and tokenizers. In our work, we
used the fertility of tokenizer to distribute samples
across different context lengths, which indicates
the average number of tokens in which one word
is tokenized. Thus, the average length in tokens
for the text can be approximated by the number of
words multiplied by the fertility number.

For the fertility approximation, we calculate the
average fertility of the classic LLM tokenizers,
which are further evaluated as baselines (see Ap-
pendix C for model description) on a complete list
of datasets, by computing it as the total number of
tokens divided by the total number of words. The



Model Name Fertility
GLM4-9B-Chat 2.15
T-lite-instruct-0.1 2.34
Saiga-LLaMA-3-8B 2.40
LLaMA-3-8B 2.40
LLaMA-3-8B-Instruct 2.40
LLaMA-3.1-8B-Instruct 2.40
LLaMA-3.1-8B 2.40
Phi-3-mini-128k-instruct 2.74
LLaMA-2-7B-32K 2.83
LongAlpaca-7B 2.83
LongChat-7B-v1.5-32k 2.83
Mistral-7B-vO0.1 3.08
Mistral-7B-v0.3 3.08
Mistral-7B-Instruct-v0.3 3.08
Mistral-Nemo-Instruct-2407 3.08
ChatGLM2-6B-32k 3.50

Table 2: The average fertility of tokenizers, where fertil-
ity is defined as the average number of tokens per word.

fertility of each model is shown in Table 2. The
average fertility is 2.7. However, we decided to
choose it with a margin so that the multilingual
model with the highest fertility can be tested on the
entire benchmark. As a result, we set the standard
fertility to 3.

Finally, using the selected fertility value, we di-
vided all datasets into subsets of various context
lengths ranging from 4k to 128k tokens. Table 3
gives the resulting dataset sizes and average sample
context lengths.

3.4 Datasets

This section describes the datasets and data collec-
tion process in detail. The benchmark datasets orig-
inate from the following sources: 1) entirely new
datasets based on open data in Russian (14 datasets
out of 18) and 2) translation of English datasets
using Google translator API® followed by manual
verification and correction. We do not generate
samples with LLMs and use annotators markup.
This helps reduce bias from using models like GPT-
4, which are also part of the assessment. However,
it has some drawbacks, as full annotation can be
costly and time-consuming in certain cases. The
exact dataset format can be found in Appendix B.

Passkey The Passkey is a synthetic QA dataset
based on the idea of the original passkey dataset
from LongLLaMA’s GitHub repository®. The main
idea of the task is to extract a relevant piece of code
number from a long text fragment that was created
by repeating short sentence template containing

8https://pypi.org/project/googletrans/
*https://github.com/CStanKonrad/long_llama/blob/main/
examples/passkey.py

noise. The model must find this code among the
irrelevant information.

PasskeyWithLibrusec The PasskeyWithLibrusec
is a more complicated version of Passkey QA
dataset, in which we use randomly selected texts
from the Librusec dataset!® as noise to make this
dataset more difficult for LLMs.

MatreshkaNames This dataset is based on Russian
names'!' and Matreshka'? . The Matreshka dataset
comprises brief interactions involving “user” and
“bot” roles, along with a brief description of the
topic being discussed by each participant. To form
longer contextual samples, we combined multiple
interactions and replaced the names “user” and
“bot” with the pull of names taken from the dataset
of Russian names. Subsequently, we randomly
selected a topic from the combined interactions and
the name of the person discussing that topic. The
dataset requires the model to identify the individual
who discussed the selected topic.

MatreshkaYesNo The MatreshkaYesNo is a bi-
nary classification dataset based on Matreshka
and Russian names sets. It is similar to the Ma-
treshkaNames dataset but instead of predicting
names, the model is supposed to indicate whether
this topic was mentioned in the dialog. The dataset
is balanced across Yes/No answers.

LibrusecHistory This dataset was created in QA
format using Librusec. Each sample comprises a
text paragraph and a corresponding question. To
create tasks with different input lengths, we se-
lected large texts from books in different domains
and styles, divided them into fragments of sev-
eral thousand tokens, and created the annotation
(see Appendix A). These fragments became the
dataset’s samples. Longer samples, with lengths up
to 64,000 tokens, were created by supplementing
these fragments with neighboring paragraphs from
the original large text on both sides.

ruSciAbstractRetrieval The ruSciAbstractRe-
trieval is a QA dataset ideologically similiar to the
PassageRetrieval (Bai et al., 2023)!3 dataset from
LongBench, that aims to evaluate model’s reason-
ing skills. Each element of the dataset consists of a
summary description of the topic and a set text para-

https://huggingface.co/datasets/IlyaGusev/librusec

Uhttps://www.kaggle.com/datasets/rai220/russian-cyrillic-
names-and-sex/data

Phttps://huggingface.co/datasets/zjkarina/matreshka

Bhttps://huggingface.co/datasets/THUDM/LongBench/
viewer/passage_retrieval_en
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Dataset Name 4k 8k 16k 32k 64k 128k
size / avg len size / avg len size / avg len size / avg len size / avg len size / avg len
_ Passkey 200/ 2790 200/ 5450 200/ 10996 200/21730 200/ 43391 200/ 87974
PasskeyWithLibrusec 200 /2705 200/ 5563 200/ 10835 200 /22215 200/ 44682 200/ 88189
MatreshkaNames 15073190 150/ 6314 150712128 150724168 150748184 150/96135
MatreshkaYesNo 299 /3200 300/6317 300/ 12134 300/24173 300/48189 300/96142
LibrusecHistory - 3274515 32/9003 32717976 32735924 -
— ruSciAbstractRetrieval 210/ 3264 210/ 7260 210/ 15245 210/31231 200/ 63594 200/ 127777
= ruQuALITY - 41 /6380 161 /12387 - - -
LongContextMultiQ 200/ 2940 200/ 6360 200/ 12240 200726572 200/ 37482 200/ 68239
LibrusecMHQA - 384 /4574 - - - -
ru2WikiMultihopQA - 49 /6378 128 /11633 123725523 - -
= ruBABILongQA1 100/ 4002 100 / 8001 100/ 16002 100 /32001 100 / 64002 100/ 128001
- ruBABILongQA?2 100 /4002 100/ 8001 100/ 16002 100/ 32001 100/ 64002 100/ 128001
ruBABILongQA3 10074011 100/ 8010 100/ 16011 100/ 32010 100/ 64011 100/ 128010
ruBABILongQA4 10074014 100/ 8013 100/ 16014 100732013 100/ 64014 100/ 128013
ruBABILongQAS5 100 / 4006 100/ 8005 100/ 16006 100/ 32005 100 / 64006 100/ 128005
ruSciPassageCount 100/ 3528 100/7128 100/ 13616 100727160 100753108 100/ 105949
[ ruQasper - 48 /5768 134711071 21/25185 - -
ruGSM100 - - 100 /9083 - - -

Table 3: Sizes and average sample lengths for the task subsets of various context lengths. Dataset Name shows the
name of the dataset. The columns 4k, 8k, 16k, 32k, 64k, 128k show the number of samples and average sample

lengths in tokens for the corresponding context length.

graphs created from abstracts of scientific articles
from ruSciBench!. The goal is to identify the para-
graph where the specified topic is discussed. To
create this dataset, we randomly choose some ab-
stracts from ruSciBench and generate descriptions
of their topics using human annotators to acquire
targets.

ruQuALITY The ruQuALITY dataset was created
as a translation of the original QUALITY" from
L-Eval, which consists of selected samples with a
long context from the original multiple choice QA
dataset called QUALITY (Pang et al., 2021). The
model must find relevant information in the text
and answer by choosing one of the four suggested
options.

LongContextMultiQ The LongContextMultiQ is
a multi-hop QA long context dataset for Russian
that is based on data used for the MultiQ (Takta-
sheva et al., 2022)'6 dataset creation. The original
MultiQ dataset is created by multi-hop dataset gen-
eration based on Wikidata!” and Wikipedia, and
consists of samples with different length. We se-
lected 200 samples from these generated sources
with a long context for each context length.

LibrusecMHQA This dataset was created in

“https://huggingface.co/datasets/mlsa-iai-msu-
lab/ru_sci_bench
Bhttps://huggingface.co/datasets/LANLP/LEval/
viewer/quality
https://huggingface.co/datasets/ai-forever/MERA/
viewer/multiq
https://www.wikidata.org/wiki/Wikidata:Introduction

MHQA format, also using Librusec as a Li-
brusecHistory. The main difference between these
datasets is that in the LibrusecMHQA dataset, the
necessary information for the answer is distributed
in several parts of the context, making the task more
difficult and allowing us to evaluate the model’s
reasoning skills better. The generation procedure
for samples of different lengths remains the same.

ru2WikiMultihopQA The ru2WikiMultihopQA
was created by translating the dataset 2WikiMulti-
hopQA'® from LongBench, which consists of se-
lected samples with a long context from the origi-
nal multi-hop QA dataset 2WikiMultihopQA (Ho
et al., 2020). This Wikipedia-based dataset tests
reasoning skills by requiring a model to combine
information from multiple texts to answer a ques-
tion. The format of this dataset, which consists of
up to 5-hop questions, makes it difficult for LLMs.

ruBABILong We created a new methodology
based on the idea from Kuratov et al. (2024) to
create the Russian Benchmark for Artificial Intelli-
gence for Long (ruBABILong)-context evaluation.
It contains five long-context QA reasoning tasks
using facts hidden among distractor facts and long
books. The ruBABILongQA1 task requires an-
swering a question about a person’s location using a
single supporting fact. The ruBABILongQA2 and
ruBABILongQA3 tasks introduce the challenge
of differentiating subjects and objects, utilizing

Bhttps://huggingface.co/datasets/THUDM/LongBench/
viewer/2wikimqa_e
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two and three supporting facts, respectively. The
ruBABILongQAA4 task tackles spatial reasoning
through two-argument relations, while the ruBABI-
LongQAS task involves tracking multiple objects
to solve the three-argument relation problem. Each
task contains 100 samples, scaled to six sequence
lengths from 4k to 128k. We constructed the task
facts for Russian according to the methodology of
the original data from the bAbI dataset (Weston
et al., 2016); no translation was performed, and
facts were created directly in Russian. The back-
ground texts were sampled from Russian Librusec
books.

ruSciPassageCount The dataset ruSciPassage-
Count uses the basic idea of the original Passage-
Count!® dataset. This QA dataset requires the
model to use the full context to solve the problem.
To generate the data, we randomly select abstracts
from ruSciBench, choose a number of repeats and
an ID for the paragraph to repeat. Next, we add the
remaining non-repeated paragraphs to the repeated
paragraph until up to the desired context length.
The resulting sequence of paragraphs is randomly
shuffled. The ground truth for each sample is the
number of unique paragraphs.

ruQasper The ruQasper was created by translating
the Qasper?’ dataset from LongBench, which con-
sists of selected samples with a long context from
the original QA dataset over academic research pa-
pers (Dasigi et al., 2021). The goal of the task is to
find the answer to the question in one of the parts
of the article. The context for samples is drawn
from scientific articles.

ruGSM100 The ruGSM100 dataset is a translation
of gsm100?! one from L-Eval. It contains 100 math
problems to be solved using Chain-of-Thought in
a few-shot mode. This dataset aims to evaluate the
model’s reasoning and logical skills in maths. The
context for all tasks is a prompt of 16 examples
with problem descriptions and answers.

Datasets BABILong, MHQA, and Passkey serve
as examples of needle-in-a-haystack tasks.

3.5 Submission

To make a submission to the leaderboard, users
first create a configuration file by adapting con-

Yhttps://huggingface.co/datasets/ THUDM/LongBench/
viewer/passage_count

Phttps://huggingface.co/datasetss THUDM/LongBench/
viewer/qasper_e

Zhttps://huggingface.co/datasets/LANLP/LEval/
viewer/gsm100

figs/template.ini (e.g., llama_3.1.ini) from the
project’s repo to specify the model parameters.
Once the config is ready, they generate predictions
and run the evaluation script from the repository.
Both predictions and evaluation results are saved
locally. Finally, users submit their results by creat-
ing a pull request to the repository. Upon approval,
the model name and its evaluation are integrated
into the system, with results made available on the
leaderboard.

4 Experimental setup

We evaluate 17 popular LLMs that feature long
context capability, including GPT-40?? (see Ap-
pendix C for the baseline details).

In order not to go beyond the context window
we use zero-shot evaluation for all tasks, except
for ruGSM100 in which the few-shot examples
provided as a part of long context input. When
the input length of the sample surpasses the max-
imum model context length, we truncate the in-
put sequence from the right. For reproducibility,
the baselines were evaluated with greedy decoding
(temperature = 1.0, num_beams = 1, do_sample =
False). We select the best result for each model
from the two supported formats: with/without the
chat template.

In addition, for each task, we fixed a natural
language prompt unified for all the models (see Ap-
pendix B for the exact prompt formulation). The
prompts were estimated from an empirical analysis
of the tasks through a series of experiments. How-
ever, it should be noted that the benchmark method-
ology does not rigidly fix the prompts. Users can
use their own prompts for evaluation. The choice
of effective prompts requires additional research,
which we leave for future work. We run all the
experiments on two NVIDIA A100 GPU.

5 Results

The baseline results with respect to context length
are given in Table 7 and with respect to tasks are in
Tables 4, 5, and 6. Model-wise detailed results are
provided in the benchmark repository. Analyzing
baseline performance, we can draw the following
conclusions.

Group I The tasks from this group are relatively
simple, and most models pass them well within

22GPT-40 was included via API access as the state-of-the-
art model representing the upper bound for long-context capa-
bilities.
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Model Name Passkey MatreshkaYesNo MatreshkaNames PasskeyWithLibrusec LibrusecHistory ruGSM100 ruSciPassageCount ru2WikiMultihopQA

Complexity group I 11 i I 11 v v it
GPT-40 100.0 79.9 58.7 100.0 99.2 84.0 37.2 58.5
GLM4-9B-Chat 100.0 68.0 47.3 100.0 82.0 8.0 7.5 48.8
LLaMA-3.1-8B-Instruct 100.0 69.5 39.8 100.0 64.8 23.0 5.6 27.8
LLaMA-3.1-8B 100.0 39.9 22.4 100.0 953 20.0 4.1 33.4
Mistral-Nemo-Instruct-2407 ~ 97.8 532 322 99.4 53.1 0.0 12.8 27.9
Mistral-7B-Instruct-v0.3 66.7 353 16.3 66.6 50.8 11.0 8.2 432
Phi-3-mini-128k-instruct 84.7 70.7 18.8 85.5 41.4 24.0 6.2 18.9
Mistral-7B-v0.3 66.7 320 10.0 66.7 68.0 9.0 0.0 41.0
LLaMA-2-7B-32K 66.7 334 34 65.5 40.6 7.0 4.7 372
LongChat-7B-v1.5-32k 66.5 334 5.9 66.0 26.6 5.0 4.8 352
LLaMA-3-8B-Instruct 333 273 16.6 333 22.7 0.0 6.5 17.7
T-lite-instruct-0.1 333 25.7 14.0 333 227 0.0 5.1 12.9
Saiga-LLaMA-3-8B 333 28.0 15.6 332 242 0.0 3.8 17.7
LLaMA-3-8B 333 20.2 10.0 333 22.7 0.0 33 18.4
Mistral-7B-v0.1 35.0 16.8 8.1 383 234 13.0 1.3 23.0
ChatGLM2-6B-32k 63.7 334 1.3 65.0 8.6 5.0 3.7 17.5
LongAlpaca 424 30.5 0.4 40.6 133 2.0 38 30.3

Table 4: The table presents the evaluation results. Model Name shows the name of the model. Complexity group
indicates the complexity groups into which the tasks were divided in Table 1. The score for each task is averaged by
the context length. The best score is put in bold, the second best is underlined.

Model Name LongContextMultiQ ruSciAbstractRetrieval LibrusecMHQA ruBABILongQA1 ruBABILongQA2 ruBABILongQA3
Complexity group I II III III I I
GPT-40 7.8 78.0 52.9 71.3 53.3 27.2
GLM4-9B-Chat 7.8 718 445 54.1 29.8 22.3
LLaMA-3.1-8B-Instruct 79 77.4 31.8 558 24.0 239
LLaMA-3.1-8B 6.0 73.6 453 53.9 254 29.6
Mistral-Nemo-Instruct-2407 52 65.3 29.9 54.7 17.3 16.0
Mistral-7B-Instruct-v0.3 4.8 43.6 33.6 14.3 2.8 6.0
Phi-3-mini-128k-instruct 52 29.3 13.8 30.5 8.8 9.0
Mistral-7B-v0.3 52 30.5 39.1 373 16.7 15.7
LLaMA-2-7B-32K 79 39.1 27.6 40.3 16.6 16.3
LongChat-7B-v1.5-32k 32 41.1 24.7 17.5 72 4.0
LLaMA-3-8B-Instruct 49 31.4 46.1 23.7 4.1 4.5
T-lite-instruct-0.1 52 31.2 484 21.7 14.5 8.2
Saiga-LLaMA-3-8B 4.8 31.7 45.1 254 44 6.1
LLaMA-3-8B 7.0 30.9 414 20.8 7.7 9.1
Mistral-7B-v0.1 44 28.5 34.1 21.0 7.7 9.0
ChatGLM2-6B-32k 1.2 13.6 6.8 12.2 1.5 2.5
LongAlpaca 0.8 235 7.8 3.8 0.3 35

Table 5: The table presents the evaluation results. Model Name shows the name of the model. Complexity group
indicates the complexity groups into which the tasks were divided in Table 1. The score for each task is averaged by
the context length. The best score is bold, the second best is underlined.

Model Name ruBABILongQA4 ruBABILongQAS ruQuALITY ruQasper Overall
Complexity group I I I v Overall
GPT-40 66.0 84.7 89.5 23.0 65.4
GLM4-9B-Chat 52.8 70.3 74.1 5.0 50.0
LLaMA-3.1-8B-Instruct 14.0 59.2 42.1 6.5 43.0
LLaMA-3.1-8B 52.1 67.9 12.0 43 43.6
Mistral-Nemo-Instruct-2407 124 459 67.0 24.5 39.7
Mistral-7B-Instruct-v0.3 27.6 37.6 30.6 54 28.0
Phi-3-mini-128k-instruct 1.0 44.1 38.8 3.5 29.7
Mistral-7B-v0.3 23.6 47.1 15.2 5.8 29.4
LLaMA-2-7B-32K 16.7 43.0 15.5 4.7 27.0
LongChat-7B-v1.5-32k 12.7 333 23.1 5.0 23.1
LLaMA-3-8B-Instruct 19.6 253 34.6 22 19.6
T-lite-instruct-0.1 223 24.4 11.0 2.7 18.7
Saiga-LLaMA-3-8B 20.3 252 17.9 2.5 18.8
LLaMA-3-8B 19.1 22.6 8.5 22 17.3
Mistral-7B-v0.1 124 232 17.3 2.5 17.7
ChatGLM2-6B-32k 0.6 8.8 49.2 2.6 16.5
LongAlpaca 0.2 29.4 44.0 2.0 15.5

Table 6: The table presents the evaluation results. Model Name shows the name of the model. Complexity group
indicates the complexity groups into which the tasks were divided in Table 1. The score for each task is averaged by
the context length. The Overall score is obtained by averaging the results over each task. The best score is put in
bold, the second best is underlined.



Model Name 4k 8k 16k 32k 64k 128k
GPT-40 76.0 70.6 67.6 61.2 555 53.6
GLM4-9B-Chat 619 576  s21 496 490 438
LLaMA-3.1-8B-Instruct 56.1 48.5 44.7 43.8 44.5 39.1
LLaMA-3.1-8B 56.6 51.1 454 45.2 48.2 34.1
Mistral-Nemo-Instruct-2407 56.1 49.8 432 39.5 343 26.3
Mistral-7B-Instruct-v0.3 47.6 43.8 37.1 323 - -
Phi-3-mini-128k-instruct 18.5 36.2 345 33.1 343 28.6
Mistral-7B-v0.3 50.5 452 39.8 36.6 - -
LLaMA-2-7B-32K 47.0 44.6 37.3 34.7
LongChat-7B-v1.5-32k 41.5 37.3 31.7 26.9
LLaMA-3-8B-Instruct 58.0 56.1 - -

T-lite-instruct-0.1 61.4 53.2

Saiga-LLaMA-3-8B 59.3 539

LLaMA-3-8B 56.1 49.5

Mistral-7B-v0.1 51.0 449 - -

ChatGLM2-6B-32k 30.5 259 23.6 16.2

LongAlpaca 28.1 24.4 19.9 15.5

Table 7: The evaluation scores of various models across
different context lengths. The columns 4k, 8k, 16k, 32k,
64k, 128k present evaluation scores averaged over all
tasks. The best score is put in bold, the second best is
underlined.

their maximum input length.

Group II MatreshkaYesNo, turns out to be the
most straightforward task in the group, which all
models cope with naturally. The ruQuALITY task
is of medium complexity; several models achieved
good scores on them. The classic QA task Li-
brusecHistory is effectively handled by modern
models. The most complex task in this group
is MatreshkaNames. For it several models (e.g.,
ChatGLM2-6B-32k, LLaMA-2-7B-32K) show low
results for any input length.

Group III For tasks from ruBABILong, an in-
crease in context leads to worse results. ruBABI-
LongQA?2 and ruBABILongQA3 turn out to be
significantly more complex than others, which co-
incides with BABILong results from Kuratov et al.
(2024). The length of the context plays a significant
role; as it grows, the quality immediately begins to
decline for all but the strongest models.

LibrusecMHQA turns out to be a complex
dataset; the maximum quality of the models for
solving this problem is only 52.9.

Group IV ruSciPassageCount is the most dif-
ficult task created from scratch, which all models
except GPT-40 handle poorly; the result’s sensitiv-
ity to the context’s size is high. Most models fail to
cope with ruQasper for complex tasks and domains
and with mathematical problems from ruGSM100.

Overall, GPT-40 stands out among others, sig-
nificantly exceeding its closest competitor GLM4-
9B-Chat. SFT models generally perform better
than the pretrained onces. In most cases, an in-
crease in the input length negatively affects the
model results on the task. In general, the results
indicate that our prior division of tasks into groups

is highly correlated with their complexity.

We also compared model results in English and
Russian for the 4 translated datasets. The analysis
and the detailed comparison can be found in our
repository due to the page limit.

6 Conclusion

The rapid development of LLM has posed new
challenges in evaluating their ability to process
long texts. To address this problem, we have in-
troduced LIBRA. This benchmark evaluates LLM
long context understanding abilities through 18
long-context textual tasks and enables model eval-
uation across various context lengths ranging from
4k to 128k.

Our contribution encompasses a benchmark
methodology with open-sourced datasets of differ-
ent lengths and domains, a codebase for model eval-
uation, and baseline solution scoring. The datasets
are published under the MIT license, and the leader-
board is available on HuggingFace >>.

Limitations

Data Representation. The texts included in the
benchmark are gathered from specific domains,
which might not cover the full range of Russian
language usage. As a result, models may excel
in benchmark tasks but struggle with texts outside
these domains, limiting their generalization abil-
ity. Several datasets were created using automatic
translation followed by manual adaptation. This
approach was mainly chosen due to the high cost
of manual data creation.

Methodology limitations. When creating the
datasets, we hypothesized that synthetic augmenta-
tion of the context length of the datasets, such as
LibrusecHistory, would not affect the results. Our
experiments show that these tasks are pretty chal-
lenging for many models. We made this method-
ological assumption due to the limitations of hu-
man data annotation; it is difficult for people to
read large texts and concentrate enough to create
questions and search for information within them.
This data creation method may result in task er-
rors, particularly when a newly extended text frag-
ment contains conflicting information that could
impact the answer. However, we found this ap-
proach acceptable due to the increased speed and
cost-effectiveness.

Bhttps://huggingface.co/spaces/ai-forever/LIBRA-
Leaderboard
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Long context. The benchmark focuses on eval-
uating long contexts, but the definition of “long
context” can differ based on the application and
the model. The chosen context lengths may not
be ideal for all usage scenarios, and models could
exhibit varying performance. In this paper, we have
measured the average fertility of baseline model
tokenizers on a full list of datasets from our bench-
mark to sample different contexts and analyzed the
models’ results on our datasets across various con-
text lengths. LMs with more parameters may inher-
ently perform better, but this does not necessarily
reflect improvements in long context understand-
ing.

Additionally, in the present work we focused ex-
clusively on evaluating performance with respect to
context length, without considering the relative po-
sition of important information within the context.
Future work should include performance evalua-
tion on needle-in-a-haystack tasks with respect to
the position of the needle along with an in-depth
error analysis.

Data leakage is a critical concern for modern
benchmarks because current models are trained on
a significant amount of text from the Internet. Long
context benchmarks are particularly risky, as their
texts are based on web sources and books. This
could potentially lead to data leakage. However,
creating original long texts from scratch not found
on the web is exceptionally costly. As a result, we
use open sources to develop the benchmark, ac-
knowledging the potential risks. Nevertheless, we
firmly believe this will make a valuable contribu-
tion to the Russian community, as no long context
datasets are currently available.

Ethical Considerations. The data used in the
benchmark was created from open data sources.
When annotating the data, we obtained transparent
permission from all users and made efforts to main-
tain the confidentiality and anonymity of partici-
pants. As the benchmark develops, ongoing efforts
are required to identify and minimize biases in the
benchmark datasets and evaluation metrics. The
benchmark does not currently contain the datasets
covering the ethical or Al safety skill evaluation,
but this is a space for future work.
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A Data Annotation Details

The datasets LibrusecHistory, LibrusecMHQA, and
ruSciAbstractRetrieval were created via the crowd-
sourced platform.


https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
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In the LibrusecHistory, annotators were in-
structed to read a lengthy text and generate four
questions based on the text and answer them.
Guidelines were provided regarding the type of
questions to ask: 1) questions should be answerable
using information present in the text 2) the ques-
tions must not be about widely known information
but should be related to the text 3) questions can
cover various aspects such as character actions, ap-
pearance, thoughts, events, and scene descriptions
4) logical deductions are not required to answer the
questions 5) Each question should have a single,
clear, unambiguous answer from the text.

The design of the dataset LibrusecMHQA
project follows a similar structure to LibrusecHis-
tory, but the question criteria were more complex.
In this dataset, the questions were answered by
expert editors rather than through crowd-sourcing.
The main distinction in the criteria for annotators
is the multi-hop questions, where simply reading
the sentence containing the answer is insufficient.
Instead, reading at least a paragraph of 2-5 sen-
tences, or the entire relevant fragment, is necessary
to gather information and generate a complete an-
SWer.

The ruSciAbstractRetrieval was collected by
crowd-sourced annotators. These annotators were
asked to read a long text annotation and briefly
describe the contents. The criteria for the descrip-
tion were as follows: 1) The description must start
with the word “Describes”. 2) It must be a single
sentence, which can be complex. 3) The descrip-
tion should not exceed 30 words, including con-
junctions, particles, and prepositions. 4) It should
include the main general ideas identified in the ab-
stract but should not include details.

Training examples were available for all projects.
The contributions of human annotators are amassed
and stored in a manner that ensures anonymity.
The average hourly compensation exceeds the min-
imum wage per hour in Russia. Each annotator is
informed about topics that may be sensitive in the
data, such as politics, societal minorities, and reli-
gion. Table 8 summarizes general details concern-
ing the creation of the datasets via crowd-source
on ABC?* data labeling platform.

B Dataset Examples

This section provides examples of the task format
for the benchmark datasets. The exact prompts for

**https://elementary.activebc.ru
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the benchmark are not fixed. Here, we provide
prompts used in our experiments?>.

Passkey: You are provided with a long text that contains the
access key. Just remember the access key.

Context: {context}

You only need to specify the access key in the response.
Question: {input}

Answer:

PasskeyWithLibrusec: You are provided with a long text that
contains the access key. Just remember the access key.
Context: {context}

You only need to specify the access key in the response.
Question: {input}

Answer:

MatreshkaNames: You are provided with several dialogues.
Remember the names of the people and the topics they talked
about.

Context: {context}

In the answer, specify only the name of the interlocutor who
spoke on the topic from the next question.

Question: {input}

Answer:

MatreshkaYesNo: You are provided with several dialogues.
Remember the names of the topics that the interlocutors talked
about.

Context: {context}

In the answer; you only need to specify 'Yes’ if there was such
a topic and No’ if there was no such topic in the dialogues.
Question: {input}

Answer:

LibrusecHistory: You are given a long text in which you need
to find the answer to the question.

Context: {context}

Find the answer in the text to the following question.
Question: {input}

Answer:

ruSciAbstractRetrieval: Below are a few paragraphs. Deter-
mine which paragraph the short description corresponds to.
Context: {context}

Determine which paragraph the short description corresponds
to. The response must contain the paragraph number.
Question: {input}

Answer:

ruQuALITY: You are given a long text in which you need to
find the answer to the question.

Context: {context}

You will be given several answers to the question in the text;
choose only one correct one.

Question: {input}

Answer:

LongContextMultiQ: You are given a long text where you
need to find the answer to the question.

Context: {context}

Find the answer in the text to the following question.
Question: {input}

Answer:

LibrusecMHQA: You are given a long text where you need
to find the answer.

Context: {context}

Find the answer in the text to the following question.

2 All examples are presented in English for transparency
and are given for illustrative purposes only to clarify the idea
of a given task. The examples are not necessarily a direct
translation of specific examples from the dataset. The exact
prompts in their original formulation in Russian can be found
in our repository https://github.com/ai-forever/LIBRA.


https://elementary.activebc.ru
https://github.com/ai-forever/LIBRA

Task Name Total Pay Rate Example Number Overlap
LibrusecHistory 84$ 6.25%/hr 32 1
LibrusecMHQA 458% 6.25%/hr 40 3
ruSciAbstractRetrieval 290% 6.25%/hr 100 3

Table 8: The details of datasets collection. Total is the budget spent to annotate the tasks employed for metric
evaluation. Pay Rate is the hourly rate computed as a simple average of pay rates based on time spent annotating
one row and the reward for this row. Example Number refers to the total number of samples processed while
collecting or verifying the dataset. Overlap is the median number of votes per dataset sample averaged across all
annotation tasks for the same dataset (if more than 1 task is provided).

Model Name Model Type Parameters Max Length Model HuggingFace link
GPT-40 SFT - 128k -

GLM4-9B-Chat SFT 9B 128k THUDM/glm-4-9b-chat
LLaMA-3.1-8B-Instruct SFT 8B 128k meta-llama/Meta-Llama-3.1-8B-Instruct
LLaMA-3.1-8B Pretrain 8B 128k meta-llama/Meta-Llama-3.1-8B
Mistral-Nemo-Instruct-2407 SFT 12B 128k mistralai/Mistral-Nemo-Instruct-2407
Phi-3-mini-128k-instruct SFT 3.8B 128k microsoft/Phi-3-mini-128k-instruct
Mistral-7B-Instruct-v0.3 SFT 7B 32k mistralai/Mistral-7B-Instruct-v0.3
Mistral-7B-v0.3 Pretrain 7B 32k mistralai/Mistral-7B-v0.3
LLaMA-2-7B-32K Pretrain 7B 32k togethercomputer/LLaMA-2-7B-32K
LongChat-7B-v1.5-32k SFT 7B 32k Imsys/longchat-7b-v1.5-32k
ChatGLM2-6B-32k SFT 6B 32k THUDM/chatglm2-6b-32k
LongAlpaca-7B Pretrain B 32k Yukang/LongAlpaca-7B
LLaMA-3-8B-Instruct SFT 8B 8k meta-llama/Meta-Llama-3-8B-Instruct
T-lite-instruct-0.1 SFT 8B 8k AnatoliiPotapov/T-lite-instruct-0.1
Saiga-LLaMA-3-8B SFT 8B 8k IlyaGusev/saiga_llama3_8b
LLaMA-3-8B Pretrain 8B 8k meta-llama/Meta-Llama-3-8B
Mistral-7B-v0.1 Pretrain 7B 8k mistralai/Mistral-7B-v0.1

Table 9: The models evaluated as baselines. Model Type shows whether the model is a pretrain or an SFT.
Parameters indicate the number of model parameters in Billions. Max Context Length shows maximal context
lengths in tokens. Model HuggingFace Link provides the model link on HuggingFace Hub for the open-source

models.

Question: {input}
Answer:

ru2WikiMultihopQA: The answer to the question is
based on the above excerpts.

Context: {context}

Answer the question briefly, based on the above excerpts.
Question: {input}

Answer:

ruBABILongQA1: I'm giving you a context with facts about
the location of different people. You need to answer the ques-
tion based only on information obtained from the facts. If the
person was in different places, use the last location to answer
the question.

Context: {context}

Answer the question as briefly as possible.

Question: {input}

Answer:

ruBABILongQA2: I'm giving you a context with facts about
the location and actions of different people. You need to
answer the question based only on factual information. If a
person took an item in one place and went to another, that
item is also in the second place. If a person leaves an item in
the first place and moves to the second place, the item remains
in the first place.

Context: {context}

Answer the question as briefly as possible.

Question: {input}

Answer:

ruBABILongQA3: I'm giving you a context with facts about
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the location and actions of different people. You need to
answer the question based only on factual information. If a
person took an item in one place and went to another, that
item is also in the second place. If a person leaves an item in
the first place and moves to the second place, the item remains
in the first place.

Context: {context}

Answer the question as briefly as possible.

Question: {input}

Answer:

ruBABILongQA4: I'm giving you a context with facts about
the location and actions of different people. You need to
answer the question based only on factual information.
Context: {context}

Answer the question as briefly as possible.

Question: {input}

Answer:

ruBABILongQAS: I'm giving you a context with facts about
the location and actions of different people. You need to
answer the question based only on factual information.
Context: {context}

Answer the question as briefly as possible.

Question: {input}

Answer:

ruSciPassageCount: Below are a few paragraphs. Read them
and determine the number of unique paragraphs.

Context: {context}

Determine the number of unique paragraphs. The answer
must contain only one number.

Question: {input}


https://huggingface.co/THUDM/glm-4-9b-chat
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407
https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/togethercomputer/LLaMA-2-7B-32K
https://huggingface.co/lmsys/longchat-7b-v1.5-32k
https://huggingface.co/THUDM/chatglm2-6b-32k
https://huggingface.co/Yukang/LongAlpaca-7B
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/AnatoliiPotapov/T-lite-instruct-0.1
https://huggingface.co/IlyaGusev/saiga_llama3_8b
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/mistralai/Mistral-7B-v0.1

Answer:

ruQasper: You are provided with a scientific article and a
question.

Context: {context}

Answer the question as briefly as possible, using a single
phrase or sentence if possible. Don’t give any explanations.
Question: {input}

Answer:

ruGSM100: Examples of mathematical problems are given
below. Think step by step and answer the question.

Context: {context}

Think step by step and answer the question.

Question: {input}

Answer:

C Detailed Model Information

We evaluate 17 popular LLMs, including GPT-40%.

All models except for GPT-40 are open-source. The
baseline models and their specifics are presented in
Table 9.

Zhttps://chatgpt.com/

13


https://chatgpt.com/

Unpacking Ambiguity: The Interaction of Polysemous Discourse Markers
and Non-DM Signals

Jingni Wu
Georgetown University
jw2175@georgetown.edu

Abstract

Discourse markers (DMs) like ‘but’ or ‘then’
are crucial for creating coherence in discourse,
yet they are often replaced by or co-occur with
non-DMs (‘in the morning’ can mean the same
as ‘then’), and both can be ambiguous (‘since’
can refer to time or cause). The interaction
mechanism between such signals remains un-
clear but pivotal for their disambiguation. In
this paper we investigate the relationship be-
tween DM polysemy and co-occurrence of non-
DM signals in English, as well as the influence
of genre on these patterns. Using the frame-
work of eRST, we propose a graded definition
of DM polysemy, and conduct correlation and
regression analyses to examine whether polyse-
mous DMs are accompanied by more numerous
and diverse non-DM signals. Our findings re-
veal that while polysemous DMs do co-occur
with more diverse non-DMs, the total number
of co-occurring signals does not necessarily in-
crease. Moreover, genre plays a significant role
in shaping DM-signal interactions.

1 Introduction

Identifying and understanding discourse relations
is fundamental to discourse comprehension. Dis-
course markers (DM) such as ‘and’, ‘because’, and
‘however’ have been widely recognized as the most
typical indicator of coherence relations and are also
referred to as discourse connectives or cue phrases
(Forbes-Riley et al., 2006). Early research focused
on DMs as the sole device indicating relations, and
their presence is often used to distinguish explicit
and implicit relations (Webber and Joshi, 1998;
Robaldo et al., 2008). In applied Natural Language
Processing (NLP) they also remain the focus of re-
search on automatic detection of discourse relation
signaling, as evidenced by the series of DISRPT
(Discourse Relation Parsing and Treebanking, see
Braud et al. 2024) shared tasks including DM de-
tection as a track. Since such markers come from a
closed list, systems can target only these words or
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phrases (Yu et al., 2019), then focus on disambigua-
tion, with recent system scores achieving over 93%
F1-scores for English (Liu et al., 2023).

However, more recent studies have shown that
DMs account for only a small fraction of discourse
relations, which can be signaled by reference
(e.g. anaphora to indicate ELABORATION'), seman-
tic (antonymy to indicate CONTRAST), lexical (‘the
next day’ can indicate temporal SEQUENCE like
the DM ‘then’), morphological (past followed by
present tense can also indicate SEQUENCE) and
graphical cues (e.g. a question mark signaling a
QUESTION relation). In this paper we follow the
taxonomy of non-DM signal types proposed by
Zeldes et al. (2025), which distinguishes eight ma-
jor classes with a total of 45 subtypes, illustrated
in Table 1. Such non-DM signals can be crucial for
disambiguating otherwise ambiguous DMs, such as
‘since’, which can signal both CAUSE and temporal
CIRCUMSTANCE relations. Taken together, DMs
and such similar non-DM devices are referred to
collectively as discourse relation signals (Das and
Taboada, 2018a,b; Zeldes et al., 2025).

Despite extensive research on DMs and other
signals individually, far less attention has been
given to their interaction. Prior studies have exam-
ined the distribution of DM-signal co-occurrence
and explored potential motivations from corpus-
based (Das and Taboada, 2019; Crible, 2020) and
experimental perspectives (Crible and Demberg,
2020; Grisot and Blochowiak, 2017). These stud-
ies have revealed that DM-signal co-occurrence is
influenced by cognitive constraints and informa-
tion density, and that several factors, such as the
ambiguity of DMs (Crible, 2020), the semantics of
discourse relations (Das and Taboada, 2019; Crible
and Demberg, 2020), and genres (Crible, 2020), af-

'Here and below we will assume discourse relation la-
bels commonly used in Rhetorical Structure Theory (Mann
and Thompson, 1988). Our definition of what constitutes
anaphoric reference aligns with (Zeldes, 2022).

Proceedings of the 6th Workshop on Computational Approaches to Discourse, Context and Document-Level Inferences (CODI 2025), pages 14-26
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signal type ‘ subtypes

example

dm ‘ but, then, on the other hand... ‘ [They wanted t0] [but couldn’t] < qversative—contrast>
graphical colon, dash, semicolon [Let me tell you a story :|<organization—preparation™
13}’011t [Introduction] <organization—heading>
items in sequence 1. wash [2. cut] < joint—tist>
parentheses, quotation marks | it rained [(and snowed a bit)) < ciaboration—additional>
question mark [Did you?) <topic—question> No.
lexical alternate expression He agreed. [That is he said yes) <restatement—repetition>
indicative word/phrase They planned a party! [That’s nice/Can’t wait!| < cyaiuation—comment>
morphological | mood Go with them [I think you should] < czpianation—motivation>
tense I started an hour ago, [now I'm resting) < joint—sequence>
numerical same count ‘ [Two reasons.|<organization—preparation> First. ..
reference comparative [I don’t want if] < ggversative—antithesis> 1 want another one.
demonstrative / personal They met Kim. [This person / she was. . . | <ciaboration—additional>
propositional They met Kim. [This encouner was. . . | <elaboration—additional>
semantic antonymy Beer is cheap, [wine is expensive| < qdversative—contrast>
attribution source [Kim said) < attrivution—positive> they would
lexical chain it was funny [so they laughed)| < cqusai—result>
meronymy The house was big, [the door two meters tall] < ciaboration—additional>
negation Kim danced, [Yun didn’t dance] < qdversative—contrast>
repetition/synonymy They met Dr. Kim. [Dr. Kim/The surgeon was. .. | <elaboration—additional>
syntactic infinitival/relative clause a plan [to Win] <purpose—attribute>
interrupted matrix clause (I meant =) < orgnization—phatic> 1 mean,
modified head aplan [t() Win] <purpose—attribute>
nominal modifier articles [explaining chess| <ciaboration—attribute>
parallel syntactic construction | it’s all tasty [it’s all pretty] < joint—iist>
past/present participial clause | Kim appeared [dressed in black|< ciaboration—attribute>
reported speech [Kim said) <attribution—positive> that they would
subject auxiliary inversion I'would have [had I known) < contingency—condition>

Table 1: Signal types and subtypes, with examples highlighting in red the signal tokens which indicate the relation

of the unit in square brackets.

fect the likelihood of co-occurrence. However, the
specific mechanisms governing DM-signal interac-
tions remain unclear. In particular, little is known
about which conditions favor such co-occurrences,
how different signals contribute to disambiguation
and the resulting effect, what happens when con-
flicting signals appear, and how these patterns vary
across discourse relations and genres.

While previous studies have confirmed that pol-
ysemous DMs co-occur with additional signals,
there has been little systematic analysis of how
different types and combinations of non-DM sig-
nals help resolve ambiguity. This study seeks to
bridge this gap by analyzing the distribution, num-
ber, type, and co-occurrence patterns of signals
with polysemous DMs across genres. We focus on
the following research questions:

1. Are polysemous DMs accompanied by more
numerous or more diverse non-DMs?

2. What are the typical combination strategies
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for DM and non-DM signals?

3. Are strategies and distributions general, or are
they genre-specific?

Because of their lower information content, we
hypothesize that polysemous DMs will exhibit a
stronger connection with non-DM prevalence. We
also anticipate that different genres will exhibit dis-
tinct preferences for specific types of signals for
polysemous DMs when resolving DM ambiguity,
in part because they involve different prior likeli-
hoods of certain relations. We therefore expect the
relationship between DM polysemy and the num-
ber and diversity of co-occurring non-DMs to vary
by genre.

2 Related Work

Previous studies have demonstrated that discourse
relations are frequently signaled not just by DMs,
with over 80% of signaled relations exhibiting
some other textual cues, both with and without the



presence of accompanying DMs (Taboada and Das,
2013; Das and Taboada, 2018a,b). Moreover, it
has been found in many cases that multiple signals
indicate discourse relations simultaneously (Das
and Taboada, 2018b; Webber et al., 2019). Among
these, the combined use of DMs and non-DM sig-
nals is particularly common and serves to signal a
wide variety of relations (Das and Taboada, 2019).
For instance, in the following example from the
GUM corpus (Zeldes, 2017), ‘while’ functions as
a typical DM for the CONCESSION relation, which
is further reinforced by a lexical chain connecting
existing ‘studies of the psychology of art” with ‘no
work’, creating a contrast between previous work
that exists and a gap in academic literature:

) [While studies of the psychology of art
have focused on ... no work has been ...]
[Relation: ADVERSATIVE-CONCESSION;
DM: ‘While’; Signal: semantic (lexical

chain)] (File: GUM_academic_art)

Although this pattern is very common in academic
writing, little attention has been paid to the ways
in which ambiguous DMs such as ‘while’ (which
can also mean during a time that...) resolve to a
unique intepretation thanks to co-occurring signals
in this manner, and the joint use of DMs and signals
remains a complex question.

Non-DM signals can 1) overlap with DMs in
meaning, potentially leading to redundancy, 2) co-
occur with DMs but function independently (poten-
tially signaling multiple distinct relations), and 3)
may complement DMs in specific types of relations
and environments (Hoek et al., 2018). Recent stud-
ies have begun to explore the underlying triggers
of the DM + other signals phenomenon. Das and
Taboada (2019) suggested that such combinations
may arise from the inherent ambiguity of certain
DMs which can signal various relations. For ex-
ample, the DM and can mark additive LIST and
temporal SEQUENCE relations, among other op-
tions, as illustrated in the following examples from
GUM:

) [[ came home Ilast night and told
you.] [Relation: JOINT-SEQUENCE] (File:
GUM_conversation_grounded)

3) [... borders of our moral and ethical un-

derstanding.] [Relation: JOINT-LIST] (File:
GUM_essay_ghost)

Building on this, researchers have introduced the
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concept of marking strength or signaling strength
of DMs, which can be assessed by the number and
frequency of discourse relations they can signal
(Asr and Demberg, 2012). Zeldes and Liu (2020)
proposed the delta-softmax metric, which quanti-
fies prediction accuracy degradation for a trained
neural model when a word is removed to estimate
its signaling strength for a relation, providing em-
pirical validation of an intuitive graded signaly-
ness phenomenon. For instance, ‘but’ could be
significantly less ambiguous than ‘and’ as a DM, in
that removing ‘but” would make the relation much
harder to predict than removing ‘and’.

This strength directly influences how DMs in-
teract with non-DM signals: it has been suggested
that DMs tend to co-occur more frequently with
other signals when indicating a wide range of dis-
course relations (Das and Taboada, 2019). In such
cases, non-DM signals can play a disambiguation
role, helping to clarify the intended relation (Crible
and Demberg, 2020). However, although patterns
might be typical of specific genres, for example
if formal texts prefer stronger and less ambiguous
DMs, the association between DMs and other sig-
nals has not been found to vary significantly across
genres in previous work (Crible, 2020).

In addition, combinations of DMs and non-DM
signals vary across relation types, but they are not
necessarily driven by inherent semantics (Das and
Taboada, 2019). That is to say, certain relations
tend to prefer either DM-only or DM-plus-signal
combinations. This is partly influenced by the in-
herent semantics of the discourse relations them-
selves (e.g., weakly connected sentences), but also
appears to reflect an independent pragmatic strat-
egy for ensuring clarity of the writer’s intention.

While prior research has qualitatively identified
some factors influencing the co-occurrences of DM
and non-DM signals, a systematic analysis of how
specific non-DM signals interact with ambiguous
DMs across relation types and genres remains un-
derexplored. In particular, the co-occurrence pat-
terns between ambiguous DMs and accompanying
signals have not been quantitatively mapped. Using
the largest sample of annotated discourse relation
signals to date, this study addresses this gap by
investigating 1) the types and frequencies of non-
DM signals that co-occur with ambiguous DMs, 2)
how these combinations vary across genres, and 3)
whether certain signal combinations contribute to
disambiguating the intended discourse relation.



3 Data

This study uses the Georgetown University Mul-
tilayer (GUM) Corpus which consists of 16 spo-
ken and written, informal and formal style English
text types (Zeldes, 2017) (see corpus details in Ap-
pendix A). The corpus originally contained Rhetor-
ical Structure Theory (RST) annotations, which
were recently extended based on Enhanced Rhetor-
ical Structure Theory (eRST, Zeldes et al. 2025),
adding annotated DMs and seven types of non-DM
signals based on the taxonomy proposed by Das
and Taboada (2018a), as well as adding multiple
concurrent and tree breaking relations edges to the
initial RST trees. With over 250,000 tokens, this
is currently the largest dataset annotated for DMs
and non-DM signals of discourse relations.

Since this study relies on accurate discourse an-
notations, we also report how quality was assured.
Inter-annotator agreement studies on GUM showed
F1 scores of 92.3 for DM identification and 90 for
relation association (36 docs, 32K tokens). For
non-DM signals, many types were automatically
derived from gold syntax and coreference annota-
tions, with others manually corrected or added. On
a subset of documents, human—human agreement
yielded an F1 of about 0.80.

4 Polysemy of DMs

The ambiguous nature of DMs arises from their
one-to-many relationship with discourse relations.
DMs that can signal multiple relations, such as
‘and’, are often described as weak signals (Asr and
Demberg, 2012; Das and Taboada, 2019; Crible,
2020), as they do not map consistently to a single
meaning, in contrast to unambiguous DMs such as
‘despite’, which always marks a CONCESSION.

Going beyond previous categorical approaches
to such polysemy, we adopt a graded, quantifiable
definition of DM polysemy by calculating the Shan-
non Entropy (Shannon, 1951) of DM meanings,
which measures how evenly a DM is distributed
across multiple discourse relations. A high entropy
score indicates that a DM appears equally in multi-
ple relations, while a lower score means that a DM
is used in only one or very few types of discourse
relations, or with a strong predominant sense. We
expect a high entropy score here for the most poly-
semous DMs, for example, a high value for DMs
like ‘and’ or even ‘but’, and the lowest value for
DMs like ‘despite’.

Shannon Entropy is calculated by measuring the
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probability of the DM appearing in each discourse
relation. The polysemy score is computed as fol-
lows:

H(X) = =3 Pla)logy Pz;) (1)
i=1

x; is the possible discourse relation signaled by
a DM, n is the number of distinct relations signaled
by the DM, and P(x;) is the probability of the DM
signaling the relation z;.

S DM-Signal Co-occurrences

5.1 General Distribution

Across 16 genres, 21,435 discourse relations are
annotated in our data, of which 1,372 (6.4%) are
indicated by both DMs and non-DM signals. This
result aligns fairly closely with Das and Taboada
(2018a)’s finding for Wall Street Journal news
(7.55%, see also Liu and Zeldes 2019). How-
ever as suspected, we observe substantial variation
across genres (see Figure 1): essay (8.7%), bio
(8.6%), and whow (how-to guides form Wikihow,
8.5%) show a higher proportion of DM-signal co-
occurrence, whereas conversation has the lowest
proportion (3.9%).

Among the 1,372 instances of DM-signal co-
occurrence, 96% are marked by DM + 1 signal or
DM + 2 signals, while just 3% are marked by three
to four signals. Only a handful of cases include
more than five signals (see Table 2).

The most commonly used DM in co-occurrence
with other signals across genres is the connective
‘and’ (36.6%), which is generally the most fre-
quently used DM as well. Almost all genres in our
corpus employ ‘and’ in DM-signal co-occurrences,
except for academic where the conjunction ‘by’
is the most common DM favoring non-DM signal
accompaniment, as in example (4), where the DM
signaling the MEANS relation is accompanied by
the lexical signal ‘using’:

“4)

by using a second order Rao and Scott
(1981) ... correction

The top three most frequently used signal types
in co-occurrences are semantic, syntactic, and lex-
ical across genres, though different genres favor
different types of signals, in part due to the format
of texts. In spoken genres such as vilog, conversa-
tion, and court, there is a large amount of reference
signals used along with DMs to indicate relations
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Figure 1: Proportion of DM-Signal co-occurrence across genres

DM + 1 Signal | DM + 2 Signals | DM + 3 Signals | DM + 4 Signals | DM + 5 Signals | DM + 6 Signals | DM + 8 Signals

Total counts 1092 229 42

6 1 1 1

Proportion 79.55% 16.7% 3.1%

0.44% 0.07% 0.07% 0.07%

Table 2: Pattern of DM + signal combinations in co-occurrences

such as ELABORATION (see Figure 2). Trivially,
graphical signals such as quotation marks to signal
ATTRIBUTION cannot occur in spoken language
and are restricted to written data.

5.2 Polysemous DMs and Signal Patterns

The DM ‘so’ has the highest polysemy score across
all genres in our dataset, while the DM ‘for’ ex-
hibits the most diverse range of accompanying sig-
nals (see Table 3). Here, diversity > refers to the
number of distinct non-DM signal types that co-
occur with a given DM, including individual signal
types (e.g. semantic) and combinations of multiple
types (e.g. semantic + lexical).

DM ‘ non-DM signal diversity

for 29.50
and 26.64
if 25.00
by 20.80
when 19.00

Table 3: Top 5 DMs with the highest signal diversity

2Since DM frequency varies across genres, we normalized
diversity by dividing the number of unique co-occurring sig-
nal types by the square root of total DM occurrences. This
accounts for diminishing returns and prevents frequent DMs
from being unfairly penalized.
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This raises the question of whether more poly-
semous DMs tend to co-occur with a greater num-
ber of non-DM signals and exhibit more diverse
signal patterns, on account of the less consistent
mapping of their form to a specific meaning. To an-
swer these questions, we employed fitted regression
models to examine the relationship between DM
polysemy (independent variable) and two depen-
dent variables: (1) the total number of co-occurring
non-DM signals and (2) the diversity of signal types
associated with each DM.

Our results, based on both Pearson correlation
and regression analyses (see details in Appendix C),
suggest that polysemous DMs are more strongly
associated with the diversity, rather than the quan-
tity, of accompanying non-DM signals. While we
observe a weak but statistically significant correla-
tion between entropy and the total number of co-
occurring signals (r = 0.248, p < 0.05), this asso-
ciation does not hold in a multiple regression model
where both entropy score and total co-occurring sig-
nals are included as predictors of normalized signal
diversity. In contrast, entropy remains a signifi-
cant predictor of normalized diversity, even after
controlling for signal quantity (p < 0.001). This
supports the view that more polysemous DMs re-
quire more diverse signal patterns rather than just
more signals to clarify their discourse functions.
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Figure 2: Proportion of most frequently co-occurring signals by genre

However, the overall explanatory power of en-
tropy score alone is modest (adjusted R? = 0.071),
suggesting that other factors may influence the re-
lationship between DM polysemy and signal diver-
sity. To further explore this, we considered genre
as a variable. The regression model (see details in
Appendix C) that includes genre and its interaction
with entropy score significantly improved model fit
(p < 0.000001, adjusted R? = 0.090), suggesting
that the effect of DM polysemy on co-occurring
signal patterns varies across genres. Notably, gen-
res such as viogs exhibited a significantly stronger
positive relationship between DM polysemy and
signal diversity, while others like letter showed
a weaker or even negative trend. This variation
highlights that the need for signal diversity in dis-
ambiguating polysemous DMs is not uniform, but
shaped by genre-specific discourse norms. These
genre-specific effects raise the question of what
kinds of non-DM signal patterns are employed in
each genre, which we address in the next section.

Looking at patterns rather than counts of signals
in more detail, certain signal types consistently co-
occur with highly polysemous DMs, suggesting
that these signals play a crucial role in disambiguat-
ing them. For example, lexical and syntactic sig-
nals frequently appear across multiple cases and are
more likely to be combined with other signal types,
reinforcing their role in guiding interpretation (see
Table 4).

In summary, our hypothesis is partially sup-
ported: polysemous DMs are more likely to exhibit
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diverse combinations of non-DM signal, possibly
due to their less stable mapping of form to meaning,
but they do not consistently co-occur with a greater
number of signals. Given prior evidence that sig-
nal co-occurrences vary in quantity across genres
(Figure 1), we now turn to investigate the impact of
genre variation, and examine the hypotheses within
individual genres in the following section.

5.3 Signal Combinations and Genre Effects

According to the entropy scores, the most poly-
semous DMs within each genre are presented in
Table 5°. Notably, the most ambiguous DMs within
each genre differs from those identified as globally
most ambiguous. The DM ‘and’ is the most poly-
semous in six genres, and DM ‘so’ and ‘as’ are the
second most ambiguous DMs in eight genres. By
contrast, ‘also’ is the most polysemous DM in only
one genre.

The non-DM signals that co-occur with polyse-
mous DMs exhibit diverse combination patterns,
which vary across genres. A single DM may be
more likely to be paired with entirely different sig-
nals depending on the genre. For example, the DM
‘and’ is most frequently used with lexical_chain sig-
nals (a subtype of semantic) signals, see example
(5)) in nearly all genres, except for viog, bio, whow,
conversation, and podcast (see Appendix Table 7).
Here the lexical relation between the related items

3When comparing the polysemy across genres, we normal-
ized the entropy score by dividing the raw entropy score by
the maximum possible entropy for each DM in each genre.



DM Top 3 co-occurring Types

Top 3 most frequent combinations

so | morphological, lexical, syntactic

(lexical +

reference), (syntactic + reference + graphical)

syntactic, lexical

(syntactic + syntactic), (lexical + syntactic + syntactic)

with | semantic, graphical, syntactic

(reference + semantic), (syntactic + syntactic), (numerical + semantic + semantic)

as | syntactic, lexical, morphological

(lexical + semantic)

and reference, lexical, semantic

(reference + graphical), (semantic + semantic), (lexical + syntactic)

Table 4: Top 5 Polysemous Discourse Markers and Co-occurring Signal Patterns

| Genre | DM | Raw entropy | Normalized entropy |
Court and 2.85 0.61
Reddit SO 2.59 0.60
Conversation | and 2.63 0.58
News as 2.55 0.57
Fiction ) 2.35 0.53
Voyage as 2.33 0.53
Interview and 2.34 0.52
Vlog and 2.27 0.52
Speech S0 2.20 0.51
Wikihow SO 2.25 0.50
Textbook SO 2.16 0.48
Podcast and 2.15 0.48
Biography also 1.90 0.44
Academic as 1.92 0.44
Letter as 1.84 0.42
Essay and 1.64 0.40

Table 5: Entropy score of DMs per genre

‘information’ and ‘content’ forms a semantic signal
next to ‘and’ to indicate that the two clauses are

part of a list.

&)

[The Penn State wiki was never proposed

as a source of official information, and
the university already hosts non-official

content ...]

[Relation: JOINT-LIST; DM:

‘and’; signal: semantic (lexical chain)](File:

GUM _letter_wiki)

To further assess whether genre systematically

affects the distribution of non-DM signals for pol-
ysemous DMs, we conducted Chi-Squared Good-
ness of Fit. For each genre, we compared the signal-
type distribution to the global (genre-agnostic) dis-
tribution for the same set of DMs. After applying
False Discovery Rate (FDR) correction, we found
that all 16 genres show statistically significant de-
viations (Peorrected < 0.05), confirming that genre
has a strong effect on the signaling strategies used
to support polysemous discourse markers. Genres
such as vlog and conversation exhibited the largest
deviations, suggesting that signal use in these gen-
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res is especially distinct from the overall norm.

This variation can be attributed to the nature
of spoken genres such as viogs and conversations,
which emphasize audience interaction and shared
common ground. In these contexts, indicative
words and personal references are more commonly
used to enhance engagement and coherence. Sim-
ilarly, other spoken genres tend to favor refer-
ence signals, particularly personal references, us-
ing chains of pronouns to help the audience recall
previously mentioned content. Semantic signals in
the genre podcast show a particularly strong use
of meronymy, using words in a part-whole relation-
ship alongside the polysemous ‘and’ to indicate
elaborations on complex information.

In addition, ‘and’ tends to use combined signals
more frequently than other polysemous DMs, dove-
tailing with our initial hypothesis about non-DMs
compensating for ambiguous DMs. Notably, in al-
most all genres where ‘and’ is the most polysemous
DM, it co-occurs with multiple signals, except for
the genre essay, where it primarily appears by it-
self or with a single signal type. Among all signal



combinations, the most frequent combined signal
set for ‘and’ is reference + semantic, i.e. anaphora
and lexical relations between words in the units
joined by ‘and’. Interestingly, letter is the only
genre where the most polysemous DM is ‘as’, yet
it does not co-occur with any additional non-DM
signals. Looking at its instances, nearly 65% are
used to indicate MODE relations (manner/means),
as opposed to only 32.2% in the rest of the cor-
pus, suggesting that this usage may simply be more
predictable as a default in letters — the most com-
mon sense in the remaining genres is indicating a
temporal CIRCUMSTANCE, similarly to ‘when’.

Many DMs exhibit reduced polysemy within in-
dividual genres compared to their global scores,
suggesting that their meaning is more specialized
and thus less ambiguous in certain contexts. How-
ever, some DMs show substantial variation across
genres, potentially requiring a greater variety or
higher number of non-DM signals to aid interpreta-
tion in specific genres (see Figure 3).

To identify DMs whose polysemy varies the
most across genres, we compared their normalized
within-genre polysemy scores with their global pol-
ysemy scores. The top five discourse markers with
the largest shifts are ‘so’, ‘in’, ‘with’, ‘given’, and
‘indeed’, which align with the overall polysemy
ranking observed earlier. Highly polysemous DMs
exhibit greater variance across genres, likely be-
cause their multiple meanings make them more
adaptable to different discourse needs, which can
be disambiguated either by non-DM signals, or
simply by their use in a genre with strong priors
on expected senses. In contrast to DMs with lower
polysemy, which may serve more stable functions,
highly polysemous DMs can shift more dramati-
cally depending on genre-specific discourse struc-
tures, discourse relation compatibility, communica-
tive conventions, and signaling strategies.

Among the genres, academic, reddit, and court
seem to have larger variance, indicating that DMs
used in these genres experience the most sizable
shifts in polysemy compared to their global usage.
These genres may have DMs that behave very dif-
ferently in terms of polysemy compared to their
global usage. In contrast, DMs in fiction, podcast,
and letter appear to behave similarly locally and
globally.

In addition, we examined the relationship be-
tween the number of co-occurring non-DM sig-
nals, the diversity of those signals, and the DM
polysemy within each genre. Our global analysis
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confirms that polysemous DMs tend to co-occur
with more diverse signal patterns, however, since
the frequency and variety of co-occurring signals
differ across genres, we extended this investiga-
tion within individual genres to determine whether
genre influences this phenomenon. The results indi-
cate that spoken genres such as court, podcast, and
vlog, DM polysemy strongly correlates with both
the number and diversity of co-occurring non-DM
signals, while other genres’ results almost align
with our findings across genres, that the higher a
DM’s polysemy score, the more diverse these sig-
nal combinations tend to be. This supports our
hypothesis that specific genres, particularly spoken
contexts and formal or unusual settings (e.g. court-
room transcripts or academic writing), adopt dis-
tinct non-DM signaling strategies which help in the
disambiguation of polysemous DMs.

6 Conclusion

This study investigates the relationship between
DM polysemy, the number and diversity of co-
occurring non-DM signals, and the role of genre in
these interactions. Our findings partially support
the hypothesis that polysemous DMs exhibit more
diverse non-DM signal patterns but do not neces-
sarily co-occur with a greater number of non-DM
signals. Moreover, genre greatly shapes DM pol-
ysemy, with significant variations in DM entropy
and signal usage. Spoken genres (e.g. court, pod-
cast, vlog) show a stronger dependence on non-DM
signals to disambiguate polysemous DMs, while
some written genres exhibit little or no correlation.
This pattern likely reflects cognitive and interac-
tional pressures in speech, where speakers must
maintain fluency under real-time constraints (Clark,
2002) and often deploy additional cues to support
coherence. Moreover, DMs in spoken discourse
frequently serve interactive functions, such as man-
aging turn-taking or structuring talk (Clark and
Tree, 2002), which may further increase their co-
occurrence with diverse signals.

These findings challenge theoretical views of
DMs in frameworks that assume that DM marking
means we do not need to consider other types of
signals, such as in the Penn Discourse Treebank
framework, where alternative lexicalizations mark-
ing a relation are generally only considered if a DM
is absent (Prasad et al., 2018). They also suggest a
consequence for treating DMs and other types of
markers as categorically consistent across different
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Figure 3: Entropy shift across genres

types of text: in practice, we find great variation in
the extent and types of signaling present based on
genre.

On the other hand, some genres exhibit little to
no significant correlation among DM polysemy,
the number and the diversity of non-DM signals,
suggesting that different discourse contexts may
impose different constraints on how DMs interact
with non-DM signals. Additionally, we identified
DMs whose polysemy scores are highly shifted
across genres, such as, ‘so’, ‘in’, ‘with’, ‘given’,
‘indeed’, and ‘while’. This finding suggests that
certain polysemous DMs are more sensitive to con-
textual variation, whereas others maintain stable
meanings across different discourse settings. Fur-
ther research is needed to understand the extent to
which the picture of genre variation presented here
is comprehensive, which could be carried out with
new eRST data on unusual genres that has recently
become available (for example in the GENTLE
corpus, Aoyama et al. 2023, which includes anno-
tations for poetry, legal writing, and more).

7 Discussion

This study does not fully account for the distribu-
tion of different discourse relations, which can fur-
ther shape the observed patterns of polysemy and
signal co-occurrence. Prior research has demon-
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strated that certain non-DMs are more commonly
used to disambiguate DMs in specific relations,
such as contrast and consequence (Crible and Dem-
berg, 2020), and different relations may vary in
their sensitivity to signals, with some relations be-
ing more reliant on co-occurring non-DM cues for
disambiguation. Moreover, the compatibility be-
tween DMs and specific signals may play a greater
role in guiding interpretation than sheer signal fre-
quency. Future work should therefore examine
how relation type conditions the use of non-DM
signals with polysemous DMs, and expand analy-
sis to larger silver-standard multilayer corpora such
as AMALGUM (A Machine Annotated Lookalike
of GUM, Gessler et al. 2020), enriched with auto-
matic annotation of discourse relations and signals,
which would be less accurate, but mitigate the prob-
lem of data sparseness.

Beyond theoretical implications, these findings
also have practical relevance for NLP. Current dis-
course parsers often treat explicit relations with
DMs as straightforward, yet our results show
that polysemous markers frequently rely on co-
occurring signals. Incorporating such cues could
improve discourse relation classification and do-
main adaptation, while also enhancing explainabil-
ity in downstream tasks such as summarization or
dialogue systems.



References

Tatsuya Aoyama, Shabnam Behzad, Luke Gessler, Lau-
ren Levine, Jessica Lin, Yang Janet Liu, Siyao Peng,
Yilun Zhu, and Amir Zeldes. 2023. GENTLE: A
genre-diverse multilayer challenge set for English
NLP and linguistic evaluation. In Proceedings of the
17th Linguistic Annotation Workshop (LAW-XVII),
pages 166—178, Toronto, Canada. Association for
Computational Linguistics.

Fatemeh Torabi Asr and Vera Demberg. 2012. Mea-
suring the strength of linguistic cues for discourse
relations. Proceedings of the Workshop on Advances

in Discourse Analysis and Its Computational Aspects,
pages 33-42.

Chloé Braud, Amir Zeldes, Laura Riviere, Yang Janet
Liu, Philippe Muller, Damien Sileo, and Tatsuya
Aoyama. 2024. DISRPT: A multilingual, multi-
domain, cross-framework benchmark for discourse
processing. In Proceedings of the 2024 Joint In-
ternational Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 4990-5005, Torino, Italia.
ELRA and ICCL.

Herbert H Clark. 2002. Speaking in time. Speech Com-
munication, 36(1-2):5-13.

Herbert H Clark and Jean E Fox Tree. 2002. Using
uh and um in spontaneous speaking. Cognition,
84(1):73-111.

Ludivine Crible. 2020. Weak and strong discourse mark-
ers in speech, chat, and writing: Do signals compen-
sate for ambiguity in explicit relations? Discourse
Processes, 57(9):793-807.

Ludivine Crible and Vera Demberg. 2020. The role
of non-connective discourse cues and their interac-
tion with connectives. Pragmatics & Cognition,
27(2):313-338.

Debopam Das and Maite Taboada. 2018a. RST Sig-
nalling Corpus: A corpus of signals of coherence rela-
tions. Language Resources and Evaluation, 52:149—
184.

Debopam Das and Maite Taboada. 2018b. Signalling of
coherence relations in discourse, beyond discourse
markers. Discourse Processes, 55(8):743-770.

Debopam Das and Maite Taboada. 2019. Multiple sig-
nals of coherence relations. Discours, (24).

Katherine Forbes-Riley, Bonnie Webber, and Aravind
Joshi. 2006. Computing discourse semantics: The
predicate-argument semantics of discourse connec-
tives in D-LTAG. Journal of Semantics, 23(1):55—
106.

Luke Gessler, Siyao Peng, Yang Liu, Yilun Zhu, Shab-
nam Behzad, and Amir Zeldes. 2020. AMALGUM —
a free, balanced, multilayer English web corpus. In
Proceedings of the Twelfth Language Resources and
Evaluation Conference, pages 5267-5275, Marseille,
France. European Language Resources Association.

23

Cristina Grisot and Joanna Blochowiak. 2017. Tem-
poral connectives and verbal tenses as processing
instructions: Evidence from French. Pragmatics &
Cognition, 24:404—-440.

Jet Hoek, Sandrine Zufferey, Jacqueline Evers-Vermeul,
and Ted JM Sanders. 2018. The linguistic marking
of coherence relations: Interactions between connec-
tives and segment-internal elements. Pragmatics &
Cognition, 25(2):276-309.

Wei Liu, Yi Fan, and Michael Strube. 2023. HITS at
DISRPT 2023: Discourse segmentation, connective
detection, and relation classification. In Proceedings
of the 3rd Shared Task on Discourse Relation Pars-
ing and Treebanking (DISRPT 2023), pages 4349,
Toronto, Canada. The Association for Computational
Linguistics.

Yang Liu and Amir Zeldes. 2019. Discourse relations
and signaling information: Anchoring discourse sig-
nals in RST-DT. In Proceedings of the Society for
Computation in Linguistics (SCiL) 2019, volume 2,
pages 314-317.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical Structure Theory: Toward a functional
theory of text organization. Text, 8(3):243-281.

Rashmi Prasad, Bonnie Webber, and Alan Lee. 2018.
Discourse annotation in the PDTB: The next genera-
tion. In Proceedings of the 14th Joint ACL-ISO Work-
shop on Interoperable Semantic Annotation, pages
87-97, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Alan Robaldo, Eleni Miltsakaki, Alan Lee, Rashmi
Prasad, Nikhil Dinesh, Bonnie Webber, and Aravind
Joshi. 2008. The Penn Discourse Treebank 2.0. In
Proceedings of the Sixth International Conference
on Language Resources and Evaluation (LREC’08),
Marrakech, Morocco. ELRA.

Claude E Shannon. 1951. Prediction and entropy of
printed English. Bell System Technical Journal,
30(1):50-64.

Maite Taboada and Debopam Das. 2013. Annotation
upon annotation: Adding signalling information to a
corpus of discourse relations. Dialogue & Discourse,
4(2):249-281.

Bonnie Webber, Rashmi Prasad, Alan Lee, and Aravind
Joshi. 2019. The Penn Discourse Treebank 3.0 anno-
tation manual. University of Pennsylvania, 35:108.

Bonnie Lynn Webber and Aravind K Joshi. 1998. An-
choring a lexicalized tree-adjoining grammar for dis-
course. arXiv preprint cmp-1g/9806017.

Yue Yu, Yilun Zhu, Yang Liu, Yan Liu, Siyao Peng,
Mackenzie Gong, and Amir Zeldes. 2019. GumDrop
at the DISRPT2019 shared task: A model stacking
approach to discourse unit segmentation and connec-
tive detection. In Proceedings of the Workshop on
Discourse Relation Parsing and Treebanking 2019,


https://doi.org/10.18653/v1/2023.law-1.17
https://doi.org/10.18653/v1/2023.law-1.17
https://doi.org/10.18653/v1/2023.law-1.17
https://aclanthology.org/2024.lrec-main.447/
https://aclanthology.org/2024.lrec-main.447/
https://aclanthology.org/2024.lrec-main.447/
https://aclanthology.org/2020.lrec-1.648/
https://aclanthology.org/2020.lrec-1.648/
https://doi.org/10.1075/pc.17009.gri
https://doi.org/10.1075/pc.17009.gri
https://doi.org/10.1075/pc.17009.gri
https://doi.org/10.18653/v1/2023.disrpt-1.4
https://doi.org/10.18653/v1/2023.disrpt-1.4
https://doi.org/10.18653/v1/2023.disrpt-1.4
https://doi.org/10.7275/vh3w-4240
https://doi.org/10.7275/vh3w-4240
https://doi.org/10.7275/vh3w-4240
https://aclanthology.org/W18-4710/
https://aclanthology.org/W18-4710/
https://doi.org/10.18653/v1/W19-2717
https://doi.org/10.18653/v1/W19-2717
https://doi.org/10.18653/v1/W19-2717
https://doi.org/10.18653/v1/W19-2717

pages 133—-143, Minneapolis, MN. Association for
Computational Linguistics.

Amir Zeldes. 2017. The GUM corpus: Creating mul-
tilayer resources in the classroom. Language Re-
sources and Evaluation, 51(3):581-612.

Amir Zeldes. 2022. Can we fix the scope for corefer-
ence? problems and solutions for benchmarks be-
yond OntoNotes. Dialogue & Discourse, 13(1):41—
62.

Amir Zeldes, Tatsuya Aoyama, Yang Janet Liu, Siyao
Peng, Debopam Das, and Luke Gessler. 2025. eRST:
A signaled graph theory of discourse relations and
organization. Computational Linguistics, 51(1):23—
72.

Amir Zeldes and Yang Janet Liu. 2020. A neural ap-
proach to discourse relation signal detection. Dia-
logue and Discourse, 11(2):74-99.

24

Text type Source Docs Tokens
Academic writing Various 18 17,169
Biographies Wikipedia 20 18,213
CC Vlogs YouTube 15 16,864
Conversations UCSB Corpus 15 17,932
Courtroom transcripts ~ Various 9 11,148
Essays Various 9 10,842
Fiction Various 19 17,511
Forum reddit 18 16,364
How-to guides wikiHow 19 17,081
Interviews Wikinews 19 18,196
Letters Various 12 9,989
News stories Wikinews 24 17,186
Podcasts Various 10 11,986
Political speeches Various 15 16,720
Textbooks OpenStax 15 16,693
Travel guides Wikivoyage 18 16,515
Total GUM 255 250,409

Table 6: Overview of GUM corpus by text type.

A GUM Information
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C Regression Results
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Table 7: Signal Patterns for "and" by Genre

Genre Top 3 "and" + 1 signal Top 3 "and" + multiple signals
Signal Type Signal Subtype Signal Type Signal Subtype
lexical indicative_word reference + semantic personal_reference + lexical_chain
vlog semantic lexical_chain reference + reference oral_reference + propositional_reference
reference personal_reference reference + semantic personal_reference + synonymy
semantic lexical_chain graphical + graphical items_in_sequence + semicolon
textbook semantic meronymy graphical + reference parentheses + personal_reference
graphical semicolon semantic + semantic + semantic + semantic  lexical_chain + lexical_chain + lexical_chain + lexical_chain
semantic lexical_chain semantic + semantic lexical_chain + meronymy
reddit lexical indicative_word reference + reference + semantic personal_reference + propositional_reference + synonymy
reference personal_reference reference + semantic + semantic personal_reference + lexical_chain + repetition
semantic lexical_chain reference + semantic personal_reference + meronymy
academic lexical indicative_word lexical + lexical indicative_word + indicative_word
semantic meronymy graphical + graphical + semantic items_in_sequence + semicolon + meronymy
semantic lexical_chain semantic + semantic lexical_chain + lexical_chain
voyage semantic meronymy lexical + lexical indicative_phrase + indicative_word
lexical indicative_word semantic + semantic lexical_chain + meronymy
lexical indicative_word lexical + lexical indicative_word + indicative_word
bio semantic lexical_chain lexical + lexical indicative_phrase + indicative_word
lexical indicative_phrase semantic + semantic lexical_chain + meronymy
graphical items_in_sequence semantic + semantic lexical_chain + meronymy
whow semantic lexical_chain graphical + semantic items_in_sequence + lexical_chain
reference personal_reference semantic + semantic lexical_chain + lexical_chain
reference personal_reference reference + reference personal_reference + personal_reference
conversation | morphological tense reference + semantic personal_reference + synonymy
semantic lexical_chain reference + semantic personal_reference + lexical_chain
semantic lexical_chain semantic + semantic lexical_chain + meronymy
fiction semantic meronymy graphical + lexical semicolon + indicative_word
lexical indicative_word semantic + semantic lexical_chain + lexical_chain
semantic lexical_chain semantic + semantic lexical_chain + meronymy
news semantic meronymy lexical + morphological indicative_word + tense
lexical indicative_phrase semantic + semantic lexical_chain + lexical_chain
semantic lexical_chain lexical + lexical +lexical indicative_word + indicative_word + indicative_word
interview reference personal_reference semantic + smeantic + semantic lexical_chain + lexical_chain + meronymy
graphical semicolon semantic + semantic lexical_chain + synonymy
essay semantic lexical_chain lexical + lexical + lexical indicative_word + indicative_word + indicative_word
semantic meronymy
lexical alternate_expression
semantic meronymy reference + reference + semantic demonstrative_reference + personal_reference + meronymy
podcast reference personal_reference semantic + semantic lexical_chain + synonymy
lexical indicative_word lexical + lexical indicative_word + indicative_word
semantic lexical_chain lexical + lexical indicative_word + indicative_word
speech syntactic parallel_synatactic_construction reference + reference personal_reference + personal_reference
semantic meronymy
semantic lexical_chain reference + semantic demonstrative_reference + synonymy
court reference personal_reference reference + reference + semantic personal_reference + personal_reference + synonymy
semantic negation reference + semantic personal_reference + lexical_chain
semantic lexical_chain reference + reference personal_reference + personal_reference
letter reference personal_reference
semantic meronymy

Table 8: Pearson Correlation: Entropy Score and Total Co-occurred Signals

Variable Pair

Correlation (r) p-value

Entropy Score - Total Co-occurred Signals

0.248

0.0137

Table 9: Model 1: Regression of Entropy Score on Normalized Signal Diversity

Coefficient

Std. Error

p-value

Intercept

Entropy Score

0.850
0.112

0.040
0.039

<0.001
0.005

RQ
Adjusted R?
F-statistic

0.081
0.071
8.44

(p = 0.0046)
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Table 10: Model 2: Regression of Entropy Score and Total Signals on Normalized Signal Diversity

Coefficient Std. Error p-value

Intercept 0.851 0.040 <0.001
Entropy Score 0.123 0.040 0.003

Total Co-occurred Signals -0.0005 0.0005 0.302

R? 0.091

Adjusted R? 0.072

F-statistic 476 (p =0.0107)

Table 11: Model 3: Regression of Within-Genre Entropy and Genre Interaction on Normalized Signal Diversity

Coefficient Coef. Std. Error p-value
Intercept 0.866 0.034 <0.001
Within-Genre Entropy 0.055 0.033 0.098
Entropy x Genre[T.vlog] 0.132 0.050 0.009
Entropy x Genre[T.letter] -0.119 0.061 0.053
Entropy x Genre[T.conversation]  0.075 0.047 0.116
Entropy x Genre[T.reddit] 0.073 0.047 0.123
Entropy x Genre|[T.fiction] 0.077 0.055 0.162
Entropy x Genre[T.speech] -0.066 0.049 0.178
R? 0.121

Adjusted R? 0.090

F-statistic 3.97 (p < 0.000001)
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Abstract

This study aims to enhance the automatic
identification and classification of metadis-
course markers in English texts, evaluating var-
ious large language models for the purpose.
Metadiscourse is a commonly used rhetorical
strategy in both written and spoken language
to guide addressees through discourse. Due
to its linguistic complexity and dependency on
the context, automated metadiscourse classifi-
cation is challenging. With a hypothesis that
LLMs may handle complicated tasks more ef-
fectively than supervised machine learning ap-
proaches, we tune and evaluate seven encoder
language models on the task using a dataset
totalling 575,541 tokens and annotated with 24
labels. The results show a clear improvement
over supervised machine learning approaches
as well as an untuned Llama3.3-70B-Instruct
baseline, with XL Net-large achieving an accu-
racy and F1-score of 0.91 and 0.93, respectively.
However, four less frequent categories record
F-scores below 0.5, highlighting the need for
more balanced data representation.

1 Introduction

Metadiscourse (MD) is an essential rhetorical strat-
egy in both speaking and writing that realizes two
of the metafunctions of language proposed by Hall-
iday (1994): the textual and interpersonal functions.
MD that mainly has a textual function is used to
form a cohesive and coherent text (Kopple, 1985).
The textual dimension comprises transitions (e.g.,
but, and, because), frame markers (firstly, in con-
clusion, the next point is ...), code glosses (e.g.,
in other words, namely, for example), and so on.
Textual MD markers often have fixed forms and
consistent meanings, hence they pose relatively few
challenges in automatic classification. Conversely,
MD that is primarily interpersonal shows differ-
ent features. Addressers use interpersonal MD to
comment on the propositions and to involve the
addressees in their discourse. Examples include
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but are not limited to hedges (e.g., may, probably,
I’'m not sure ...), boosters (e.g., certainly, must, 1
believe), and addressing the addressees (e.g., You
may end up thinking that ..., You may ask..., Can
you hear me?). This dimension is linguistically
more complex as it involves multiple syntactic
classes and has fuzzy span boundaries. The com-
plexity undoubtedly leads to difficulty in automatic
classification. Previous research using supervised
methods reveals the performance gap between the
two broad dimensions (dos Santos Correia, 2018;
Alharbi, 2016). Classification of textual MD has
yielded satisfactory accuracy but classification of
interpersonal MD is lacking.

Automatic MD classification has barely been
studied. We are only aware of the two afore-
mentioned SVM-based studies, where transformer-
based Large Language Models (LLMs) have not
been used. As LLMs encode a broader range of
semantic, syntactic and contextual information due
to the more complex architecture that is pretrained
on various linguistic resources, this study aims to
improve the state of the art in automatic MD classi-
fication with a transformer-based method. !

The raw data used in this paper were sampled
from the International Corpus Network of Asian
Learners of English (ICNALE; Ishikawa, 2023).
They effectively represent the diversity of natural
language by containing both spoken and written
English, as well as data from native speakers and
learners with moderate proficiency in English. In
linguistics, MD is often observed in non-native
speakers’ language. It has been found that learners
may use more MD markers compared to native
speakers because they intentionally put more effort
into linguistic and meta-linguistic matters (Adel,
2006). However, the majority of existing work
about MD has focused on proficient speakers. This

1https://github.com/W—Guan/
Automatic-MD-annotation-with-XLNet
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study will pioneer research on MD used by learners
with less advanced English proficiency.

Given that MD markers are captured in spans
of varied lengths and are sensitive to context, we
include a range of models in our study that are
partly motivated by having a span-related training
objective (SpanBERT: Joshi et al., 2020; ERNIE
2.0: Sun et al., 2020; XLNet: Yang et al., 2019),
being state-of-the-art (ModernBERT: Warner et al.,
2025), being a baseline for comparison (BERT:
Devlin et al., 2019) and being common alternative
choices (RoBERTa: Liu et al., 2019; ELECTRA:
Clark et al., 2020). We also include Llama 3.3
70B-Instruct (Grattafiori et al., 2024) as an untuned
decoder LLM baseline.

We find that the tuned encoder models show
good performance for this task, with XLNet having
the overall best accuracy and weighted F1-score,
and ERNIE achieving a higher macro-F1 score,
meaning better performance on low-frequency cat-
egories. Llama 3.3 70B-Instruct did not achieve
adequate performance, even in a few-shot setting
with per-category examples. Our models also out-
perform previous work, though this work used dif-
ferent MD categorization schemes and different
kinds of text corpora.

2 Background

This section extends the concept of MD to its clas-
sification. Classification first refers to a theoretical
taxonomy, which can be used when labelling the
raw data. Two challenges have been identified in
the theoretical classification and are anticipated to
lead to difficulties in automatic classification.

2.1 Metadiscourse taxonomies

We introduced two main broad categories of MD.
In linguistic practice, MD is classified into many
categories but there is no uniform taxonomy. Along
with the development of relevant research, scholars
in the field came up with taxonomies from varied
perspectives (Kopple, 1985; Crismore et al., 1993;
Mauranen, 1993; Milne, 2003; Hyland, 2005; Adel,
2006, 2010). Among them, Hyland’s (2005) taxon-
omy is the most commonly used one. It provides
a list of discovered MD markers for English based
on corpus data. However, we had concerns about
adopting the taxonomy in this study. Above all, it
might not be sufficient because it is built on the
observations of formal written language, including
textbooks, students’ writing, research articles, etc.
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Thus, it may not include MD markers typical of
spoken language, nor incorporate mistakes such as
grammatical errors and misspellings often found in
learners’ casual communication.

Adel’s (2010) taxonomy is representative of MD
in spoken language. More importantly, the identi-
fication of the categories in this taxonomy relies
primarily on the functions of MD in the discourse.
For example, how the topic is introduced, devel-
oped, and concluded. Nevertheless, this taxonomy
also has a limitation that does not fully meet the
research purposes of this study. Adel’s (2010) tax-
onomy requires high explicitness of MD markers.
If a text span does not contain deictic words that
refer to the discourse or interlocutors, it will not be
counted as MD in this taxonomy but may still be
MD in other taxonomies. Therefore, we use Adel’s
(2010) taxonomy as the basis of our annotation
scheme but some categories from Hyland’s (2005)
taxonomy are added and adjusted. The final taxon-
omy we use is shown in Table 1. The dimensions
of “Metalinguistic comments” and “Discourse or-
ganization” correspond to the textual MD, while
the dimension “Writer-reader/speaker-listener in-
teraction” aligns with the interpersonal MD.

The task of metadiscourse classification should
not be confused with some related tasks that have
been addressed in NLP. The task of dialogue act
classification aims to label all of a dialogue ac-
cording to their communicative function, such as
‘request’. This can also include metadiscourse acts,
but standard dialogue act classification schemes
have been criticized for their unsystematic annota-
tion of metadiscourse acts (Verdonik, 2023). Dia-
logue act classification is a NLP task where tuned
encoder models outperform autoregressive decoder
LLMs, which sometimes fail to beat rule-based
baselines (Qamar et al., 2025), though one study
shows limited success using ChatGPT in multi-
party boardgame dialogue with a four-class scheme
(Martinenghi et al., 2024).

Our task is also related to epistemic stance de-
tection, which identifies statements that mark the
writer’s attitude towards the factuality of reliabil-
ity of propositions (e.g. I think that...). Epistemic
stance can be expressed through MD, but not all
expressions of epistemic stance are MD markers.
Epistemic stance detection also concerns propo-
sitions about others’ stances, which fall outside
the scope of MD. Several categories from our tax-
omony pertain to epistemic stances, specifically
Epistemic attitudes (EPA), Hedges (HDG), Boost-



ers (BST) and Speech act labels (SAL). Eguchi
and Kyle (2023) perform stance detection on an an-
notated corpus of student-written assignments as a
span classification task, using the spaCy SpanCate-
gorizer as a baseline and achieving best results with
a RoBERTa-LSTM model, with results comparable
to human inter-annotator agreement.

2.2 Challenges in MD classification

Two features of MD pose challenges in MD classi-
fication by human annotators and predictably also
in automatic classification. Firstly, MD is highly
context-sensitive. For instance, “so’ functions as
a MD marker when it indicates a causal relation
between two clauses (Example 1.1). However, it
is not a MD marker when it refers to a way some-
thing was described (Example 1.2). The ambiguity
makes the identification of MD from propositional
contents challenging.

Example 1.

e [: All people in the restaurant would be af-
fected by smoking so it should be banned.

e 2: Idon’t think so.

Secondly, a MD candidate may belong to more
than one category. In Example 2, ‘I fully agree
that” is a MD marker to show the speaker’s attitude.
Within it, the MD marker ‘fully’ is a booster.

Example 2.
I fully agree that smoking should be banned in
restaurants.

To date, the annotation of MD still heavily relies
on manual annotation. Research on automatic clas-
sification remains highly limited. Two relatively
in-depth studies have been conducted, focusing
on MD classification in academic lectures (Alharbi,
2016) and TED talk transcripts (dos Santos Correia,
2018), respectively. dos Santos Correia (2018) used
Support Vector Machines (SVMs) and Conditional
Random Fields (CRFs). His study classified 10 cat-
egories and F1-scores for nine categories are below
0.6. Alharbi (2016) also used SVMs for primary
exploration and then improved MD classification
using Continuous Bag-of-Words (CBOW) and Con-
volutional Neural Networks (CNNs). In his study,
three out of 19 categories got F1-scores higher
than 0.8. Nonetheless, the model’s predictions
would not be reliable enough for further linguis-
tic research. The biggest challenge of automatic
classification lies in interpersonal MD because its
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syntactic and semantic features are more inexplicit
and flexible compared to textual MD. For exam-
ple, the Exemplifying (EXP) category achieved an
accuracy of over 0.8 in both studies, while Antic-
ipating the audience’s response (AAR) got only
0.3 in Alharbi’s (2016) work and even lower in dos
Santos Correia’s (2018) findings. We hypothesize
that LLMs outperform these supervised methods.

Chan et al. (2024) also address metadiscourse
using transformer models in the context of auto-
mated essay scoring. While they use a modified
version of Hyland’s (2005) classification scheme
for manual annotation, they only perform a token-
level identification task with a binary classification
scheme. They find little difference between the
performance of BERT, DistilBERT and RoBERTa
on the task, and focus on under/oversampling tech-
niques and different classification algorithms such
as multi-layered perceptrons and AdaBoost. While
useful for automated essay scoring, this identifica-
tion task has limited utility for linguists who wish
to construct a metadiscourse-annotated corpus.

2.3 Selected LLMs

BERT (Bidirectional Encoder Representations
from Transformers, Devlin et al., 2019) introduced
bidirectional encoding by masked language mod-
eling (MLM) and next sentence prediction (NSP).
BERT and its variants, including ModernBERT
(Warner et al., 2025), SpanBERT (Joshi et al.,
2020), and RoBERTa (Liu et al., 2019), consist of
stacked encoders that are trained on unlabeled data
to encode contextualized language representations.
With a token classification head, they have been
used for a wide range of token and span labeling
tasks, such as named entity recognition and part-
of-speech tagging. Metadiscourse classification is
part of the same family of tasks.

SpanBERT is trained with a span-boundary train-
ing objective. This encourages the model to repre-
sent the relationships between tokens within a span.
It predicts the entire span of tokens instead of indi-
vidual tokens. This is useful for tasks that require
representations of text chunks, such as our task
of MD identification and classification. Although
RoBERTa and ModernBERT are not pretrained
with span-specific boundaries, the optimization of
model architecture and training such as dynamic
masking and larger datasets makes them outper-
form the traditional BERT model. It remains un-
known if this general optimization would lead to a
better performance than span-specific pretraining.



Dimension Category Label | Examples
Repairing RPR | I'm sorry...

.. . | Reformulating RFL | fo put it differently...
Metalinguistic Commenting CMT | ... is a difficult question.
comments Clarifying CLF | Idon’t mean to say

Exemplifying EXP | for example
Managing topics MNT | I will focus on...
Organizing statements ORS | and; but; so
. Providing evidentials PED | according to
Discourse .

.. Enumerating ENM | first; at last

organization . . .
Endophoric marking EDP | As we can see in Chapter 111, ...
Previewing PRV | We will discuss...
Reviewing RVW | As I said last time, ...
Epistemic attitudes EPA | I agree that...
Hedges HDG | perhaps; might
. Boosters BST | definitely; should
Writer-reader Speech act labels SAL | I argue that...
/Speaker— Managing comprehension MNC | You know what I mean.
yStener, Managing channel/audience discipline | MCD | Can you hear me?
Interaction Anticipating the audience’s response AAR | You may ask...
Managing the message MNM | What I want to emphasize is...
Imagining scenarios IMS | Suppose you're giving a speech...

Table 1: List of MD categories, labels, and examples

We selected two other models with pretraining
objectives that have particular relevance to our
task. ERNIE’s continual multi-task learning com-
ponent includes two objectives relevant for our task.
Firstly, there is a knowledge masking task, which
requires the model to learn to predict masked spans
and masked named entities rather than just tokens.
Secondly, there is a discourse relation task, which
relies on Sileo et al.’s (2019) discourse marker
dataset to have the model predict the rhetorical re-
lation between sentences during pretraining. This
is related to metadiscourse, as discourse markers
are mostly textual metadiscourse markers.

XLNet (Yang et al., 2019) is an autoregressive
pretraining method of which the objectives include
span-based prediction, where consecutive spans of
up to five tokens are predicted rather than just single
tokens. As textual MD markers are often spans, this
may facilitate MD classification. However, MD
spans go beyond the length of five tokens as well.

Lastly, ELECTRA (Clark et al., 2020) provides
another alternative to masked language modelling
pretraining by basing pretraining on a replaced to-
ken detection task. This approach is shown to out-
perform SpanBERT and perform similarly to XL-
Net on the somewhat related SQuAD benchmark
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(Rajpurkar et al., 2016), where models select spans
that answer questions. Therefore, we also expect
good performance on our MD classification task.
In recent years, autoregressive decoder-only gen-
erative LLMs have shown impressive generaliza-
tion performance on a range of NLP tasks with
few-shot prompting, even to novel tasks and do-
mains without fine-tuning. However, they show
poor results in these settings on text classification
tasks (Bucher and Martini, 2024), span labeling
tasks such as named entity recognition (Keraghel
et al., 2024) and other tasks related to ours such as
dialogue act classification (Qamar et al., 2025) and
implicit discourse relation annotation (Yung et al.,
2024). Nevertheless, we include Llama-3.3-70B-
Instruct (Grattafiori et al., 2024) as a decoder LLM
baseline. We also include a SpaCy baseline.

3 Methods and data

Our data are English learners’ speaking and writing
extracted from the ICNALE corpus. The selection
of this corpus was initially motivated by an interest
in its potential for subsequent qualitative analysis,
specifically in examining learners’ use of MD. The
corpus has four modules, namely spoken mono-
logues (SM), spoken dialogues (SD), writing (WR),



Module ‘ Texts ‘ Tokens | Avg. Tokens

SM 999 | 128,989 129.12
SD 748 | 162,759 217.59
WR 1,100 | 254,064 230.97
EE 130 | 29,729 228.68

Table 2: The descriptive statistics of the dataset

and edited writing (EE). The extracted data con-
cern the four modules and the groups whose first
language is Chinese (Mandarin or Cantonese) and
English, which includes CHN (Chinese mainland),
HKG (Hong Kong), TWN (Taiwan), SIN (Singa-
pore), and ENS (English native speakers). Random
sampling was used to select half of the data for man-
ual annotation. After sampling, the data comprises
2,977 texts totaling 575,541 tokens excluding punc-
tuation. Table 2 shows detailed statistics.

3.1 Annotation

The annotation scheme consists of the 21 MD la-
bels from the taxonomy in Table 1. Three addi-
tional labels pertaining to linguistic errors made by
the writers and ambiguities, including Grammati-
cal errors (ERR), Misuse (MIS), and Uncertainty
(UCT), were also annotated but have been fully ad-
dressed in the gold standard corpus. Thus, they are
excluded from the present experiments. Manual
annotation was conducted using Prodigy (Honni-
bal et al., 2024), an annotation tool for creating
training and evaluation data for machine learning
models. There are two annotators who have de-
grees in linguistics-related subjects. They were
trained in the definition and classification of MD,
difficult examples, and the use of Prodigy. Their
annotation quality was evaluated by inter-annotator
agreement (IAA) using the Cohen’s kappa coef-
ficient (x). This metric for pairwise agreement,
which accounts for chance agreement, was com-
puted per token rather than per span in order to
allow for partial matching. Table 3 reports the IAA
of the overall dataset, along with the label distribu-
tion which is visualized in Appendix 4. We observe
strongly imbalanced class frequencies, which is a
consequence of annotating natural language corpus
data.

The macro average x coefficient for all the MD
categories is 0.79. This suggests that the major-
ity of MD markers can be properly identified and
classified. The disagreement is mainly attributed
to the context-sensitive nature and fuzzy bound-
aries of MD. Taking ‘I think’ as an example, it is a
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Label k| N-Al | N-A2
RPR 0.81 37 35
RFL 0.78 107 157
CMT 0.86 | 1,067 827
CLF 0.92 793 867
EXP 0.74 | 1,080 | 1,750
MNT 091 | 2,829 | 3,202
ORS 0.93 | 23,230 | 23,890
PED 0.88 | 2,077 | 2,488
ENM 095 | 4,887 | 5,076
EDP 0.79 152 173
PRV 0.94 788 801
RVW 0.89 783 866
EPA 0.88 | 15,039 | 14,791
HDG 0.85 | 9,330 | 9,547
BST 0.78 | 8,263 | 10,314
SAL 0.82 921 1,084
MNC 0.84 | 1,300 | 1,089
MCD 0.86 | 1,523 | 1,877
AAR 0.91 456 449
MNM 0.74 249 302
IMS 0.90 131 159
Macro Avg. | 0.79

Table 3: Pairwise Cohen’s x coefficients of inter-
annotator agreement (IAA). N refers to the number of
annotated tokens in spans of the specific label, whereas
A1l and A2 are annotators.

Hedge (HDG) marker when it appears at the end of
a clause, but it is marked with Epistemic attitudes
(EPA) when it starts a clause due to its neutral tone.
Furthermore, fuzzy boundaries are found among
EPA markers, such as ‘I agree (with)” and ‘I agree
(that)’. In this case, ‘with’ and ‘that’ should be
included in the span. Label disagreements and in-
consistent boundaries were resolved by discussion
and the involvement of a third linguist.

We split the dataset into a 70/15/15 division for
training, testing, and validation. We use splits with
fixed random seeds for reproducibility and to en-
sure that every MD category is present in the vali-
dation and test set by re-splitting with a different
fixed seed until this is the case.

3.2 Models

For the classification task, we use the base and
large version of the aforementioned models: BERT,
SpanBERT, ModernBERT, RoBERTa, ELECTRA,
ERNIE and XLNet. We used cased models to facil-
itate the identification of sentence boundaries. We
then tune these models on the task of MD classifi-



cation using the training portion of our corpus.

Specifically, we use these models to jointly per-
form the identification and classification tasks us-
ing token classifier heads tuned on the task. Pre-
dicting a span where no span was annotated is con-
sidered an incorrect prediction. In tuning, every
token that is not covered by an annotated MD span
in the training data, is considered an unlabeled (cat-
egory ‘-’) span. For our evaluation metrics we con-
sider both weighted F1 (also called micro F1) and
macro F1, due to strong class imbalance. Macro F1
weighs all metadiscourse categories equally, includ-
ing those with only a few instances. With our imbal-
anced dataset, this metric emphasizes performance
on small categories. Weighted F1 is weighted by
the frequency of the category, emphasizing perfor-
mance on larger categories.

For hyperparameter tuning, we use Bayesian op-
timization with HyperOpt, and an Asynchronous
Successive Halving scheduler to increase the ef-
ficiency of the process. We tune the learning
rate ~ log-uniform(107%,5075), weight decay
~ U(1073,1071), training batch size ~ U{4, 32}
and warmup steps ~ U{4,32}. We perform the
tuning with 60 sample trials, 20 initial points and
using the weighted F1-score as a metric. We run
the models for 25 epochs. For evaluation, we use
a batch size of 16. Best obtained hyperparameter
combinations can be found in Appendix G.

For the Llama-3.3-70B-Instruct baseline, we
adapted the widely used GPT-NER (Wang et al.,
2025) sequence generation approach for named
entity recognition to the task of metadiscourse clas-
sification. Details on our few-shot prompting ap-
proach with class label explanations are described
in Appendix B. We use the default temperature
hyperparameter of 0.6.

For the SpaCy baseline, included to represent
supervised classifiers as used in previous work,
we experimented with the SpanCategorizer (spaCy,
2024) pipeline. Integrated in Prodigy, it is conve-
nient for corpus linguists who are not proficient
in programming to perform automatic annotation.
The span categorizer uses Tok2Vec embeddings as
features with a vocabulary of 5000 (1000 prefix,
2500 suffix), going into a Maxout Window Encoder.
We used a hidden layer size of 128, four encoding
layers and a max span size of 22. It was trained
with a 70-30 split of data for 20 epochs with the
Adam optimizer, a learning rate of 0.001 with 0.01
weight decay and 10% dropout.
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4 Results

For the SpaCy baseline, we observed the effects of
the class imbalance inherent in our task. Only the
five most frequent labels (ORS, ENM, EPA, HDG,
BST) showed non-zero performance, while other
labels were not predicted. The baseline’s accu-
racy based solely on the non-zero values achieved
0.81 (computed per span), but drops to 0.19 when
all categories are considered. This indicates that
SpanCategorizer fails to generalize across all MD
categories, and this result is inadequate for assist-
ing linguists in semi-automatic MD classification.
The complete results are presented in Appendix A.

The Llama-3.3-70B-Instruct baseline also per-
formed poorly with an accuracy of 0.26, weighted
F1-score of 0.41 and macro F1-score of 0.17 (Ta-
ble 4). To confirm this result, we performed a
follow-up experiment with the potentially more
powerful GPT-40 model (Hurst et al., 2024) on 20
test documents and observed a weighted F1-score
of 0.56 and a macro F1-score of 0.26, outperform-
ing Llama-3.3-70B-Instruct but still trailing behind
the fine-tuned encoder models. Further details on
our decoder model baseline experiments can be
found in Appendix B.

4.1 Model comparison

Table 4 shows the results of the base models on
the metadiscourse classification task. In terms of
accuracy and weighted F1-score, XLLNet with its
span-based prediction pretraining objective clearly
outperforms the other models. However, its macro
F1-score lags behind that of the other models, indi-
cating that the model is relatively good at predict-
ing common MD categories and relatively bad at
predicting uncommon ones. In terms of macro F1,
ERNIE-v2 shows the best performance.

In Table 5, results for the large versions of these
models are shown. Results pattern similarly, with
either no or very minor performance gains for most
models. This indicates that the bottleneck for MD
classification is in the classification head rather
than in the base model, due to the relatively small
amount of labeled data available.

Next, we examine the per-class performance for
the best-performing XLNet-large model in Table 6.
Unlike the spaCy and Llama-3.3 baselines, XLNet
is able to classify all of the MD categories to some
extent, even those with less than 50 labeled tokens
in the test set. Nevertheless, we can observe perfor-
mance issues due to class imbalance — some low



Model-base \ Acc. \ F1 \ MacroF1
BERT 0.871 | 0.901 0.751
SpanBERT 0.856 | 0.893 0.738
ModernBERT | 0.858 | 0.897 0.752
RoBERTa 0.868 | 0.900 0.724
ELECTRA 0.863 | 0.898 0.739
ERNIE 0.870 | 0.904 0.766
XLNet 0.905 | 0.922 0.707
Llama-3.3-70B | 0.257 | 0.409 0.168

Table 4: Evaluation results for different base models

Model-large \ Acc. \ F1 \ MacroF1
BERT 0.868 | 0.900 0.742
SpanBERT 0.857 | 0.894 0.743
ModernBERT | 0.860 | 0.898 0.748
RoBERTa 0.869 | 0.901 0.741
Electra 0.846 | 0.890 0.754
ERNIE 0.866 | 0.900 0.769
XLNet 0.915 | 0.930 0.714

Table 5: Evaluation results for different large models

and mid-frequency categories exhibit F1-scores be-
low 0.5. Figure 2 plots the relationship between the
amount of instances in a category (frequency) ver-
sus the F1-score to visualize this pattern. We can
observe a clear correlation between the two vari-
ables. All low-performing categories (F1< 0.88)
have 1000 tokens or less of support in the test set,
reflecting the distribution in the training set.

This raises the question as to what causes these
differences in performance in the lower frequency
bracket. One potential explanation is lexical vari-
ability — categories that can be expressed by a larger
range of words should be more difficult to classify.

4.2 Unique spans per category

An interesting property of MD categories is that
some categories have far less variation than others.
Textual MD markers are often grammaticalized
and fixed in form, while interpersonal MD can be
expressed in many ways, as discussed in the intro-
duction. Therefore, we also examine the effect of
MD variation on performance per category. Fig-
ure 3 plots each category in terms of their ratio of
unique spans (variation), controlled for frequency,
against the F1-score. Frequency is controlled by
dividing the number of unique spans by the total
amount of spans of that category, similar to how
type/token ratio is computed. So, for example, the
Anticipating the audience’s response (AAR) cate-
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Label P R| F1 N
RPR 0.70 | 0.03 | 0.06 213
RFL 0.97 | 0.83 | 0.89 35
CMT 0.99 | 0.98 | 0.98 486
CLF 0.87 | 0.29 | 0.43 266
EXP 0.99 | 0.96 | 0.98 358
MNT 0.77 | 0.51 | 0.61 | 1,265
ORS 1.00 | 0.92 | 096 | 5,613
PED 0.98 | 0.86 | 0.92 623
ENM 092 | 092 | 0.92 696
EDP 1.00 | 0.67 | 0.80 15
PRV 0.68 | 0.33 | 0.44 234
RVW 0.98 | 0.97 | 0.97 289
EPA 0.99 | 0.99 | 0.99 | 17,130
HDG 099 | 093 | 096 | 4,358
BST 092 | 0.85 | 0.88 | 3,760
SAL 0.90 | 0.87 | 0.89 306
MNC 0.30 | 0.18 | 0.22 376
MCD 0.96 | 0.93 | 0.94 366
AAR 0.99 | 0.33 | 0.50 224
MNM 0.84 | 0.65 | 0.73 55
IMS 0.60 | 0.60 | 0.60 10
Acc. 0.91 | 36,678
Macro 0.83 | 0.67 | 0.71 | 36,678
Weighted | 0.96 | 0.91 | 0.93 | 36,678

Table 6: Results per class for XLNet-large

gory has a ratio of 1, meaning that every instance
of it uses a unique sequence of tokens.

We expect that the more varied categories are
more difficult to classify, but in the top left corner
we see that some of the most diverse categories also
have high F1-scores, even when controlled for fre-
quency. The Reviewing (RVW) and Commenting
(CMT) categories show that even a highly variable
categories can still get a high Fl-score, while a
category with somewhat lower variation, Manag-
ing comprehension (MNC) gets a lower F1-score
while being similar in frequency to the aforemen-
tioned two categories. This indicates that the model
has good generalization capabilities and does more
than just remembering some common words for
each category. We also note a pattern of more fre-
quent categories, e.g., Epistemic attitudes (EPA)
and Boosters (BST), having a lower variation ratio
— this is tied to the frequency factor, as among more
spans there are more likely to be repeated ones.
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Figure 1: Confusion matrix for XLNet-large
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score

4.3 Class ambiguity

Table 7 contains an overview of the most common
misclassifications, highlighting elements from Fig-
ure 1. Such classification mixups indicate ambi-
guity between the categories, possibly because of
similar MD spans. The overview includes misiden-
tifications, where an annotated span is identified as
not being MD — this is indicated with ‘-’. For each
class, we show its frequency (N), the most common
misclassification (Errl), what percentage of tokens
of this class was misclassified in this way, and the
second most common misclassification (Err2).
The first six categories are the relatively most
commonly misclassified categories, and the corre-
lation with category frequency is visible. For the
least frequent class, Repairing (RPR), we see that
almost all instances are misidentified. The bottom
three categories are the three biggest categories.
We can see that the most misclassified categories
are misclassified as other uncommon categories,
except Clarifying (CLF) which gets confused for
Epistemic attitudes (EPA), the most common cat-
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Figure 3: Relationship between the number of unique
spans per category divided by frequency, and F1-score

egory. So, these confusions are more than a fre-
quency effect.

Observed ambiguity instead appears to be caused
by frequent overlapping of the two labels. They
may co-occur in the same span a lot, as in our Ex-
ample 2, where a Boosters (BST) occurs inside an
Epistemic attitudes (EPA) indication. XLNet-large
misclassifies a BST as EPA 11 times while clas-
sifying EPA as BST 6 times. Another situation
caused by overlapped labels is the confusion be-
tween Managing comprehension (MNC) and BST.
The misclassification particularly happens to the
phrase ‘As we all know’, which is marked as both
MNC and BST by human annotators.

Another potential cause of confusion is semantic
ambiguity and similarity. For the ORS-BST confu-
sion (Organizing Statements-Boosters), we observe
that ORS spans that get misclassified as BST of-
ten contain words such as ‘especially’ and ‘even’,
which are also used as boosters. To cite examples
from the training data, the true label for ‘even still’
is BST, whereas that for ‘even if” or ‘even though’
is ORS. The misclassification of Anticipating the
audience’s response (AAR) as MNC is due to the
same reason. Looking at some of the AAR mark-
ers (e.g., you may say, if you ask me, you might
say that) and the MNC markers (e.g., as you know,
as you can see, you mean), we could find all the
occurrences of the personal pronoun ‘you’ refer to
the readers/listeners and functions as the subject in
the sentence. This semantic similarity and use of
‘you’ by both categories leads to confusion. Simi-
larly, the confusion between Clarifying (CLF) and
Epistemic attitudes is caused by the common use
of ‘I". These confusions are not observed in human
annotators’ performance.



Cat N Err %0 Err2
RPR 213 - 95.31% | MCD
MNC 376 BST | 74.73% | -
AAR 224 | MNC | 59.82% | -
PRV 234 - 44.44% | MNT
MNT | 1,265 | - 43.64% | ENM
CLF 266 EPA | 41.35% | -
HDG | 4,358 | - 2.91% | MNT
ORS 5,613 | BST 3.60% | -
EPA | 17,130 | - 0.99% | HDG

Table 7: Two most common misclassifications and
misidentifications of categories for the 6 most misclassi-
fied categories and the 3 largest ones, by XLNet-large.

5 Discussion

Overall, we observed that tuned encoder LLM-
based approaches are able to perform metadis-
course identification and classification well, clearly
outperforming the spaCy baseline (weighted F1-
score of 0.93 vs 0.81 only for the most frequent cat-
egories) and the Llama-3.3-70B-Instruct decoder
LLM baseline (weighted F1-score of 0.93 vs 0.41).
Only the encoder models are able to classify all MD
categories, including the more challenging interper-
sonal ones. The best performance was reached
with XLNet-large, but performance gains from us-
ing large versions of models were minimal.

Direct comparison to previous SVM-based work
(Alharbi, 2016; dos Santos Correia, 2018) is diffi-
cult as different MD categorization schemes were
used, and F1-scores were only reported per cate-
gory. Broadly, dos Santos Correia (2018) reports
F1-scores below 0.6 in 9 of 10 categories, while
XLNet only goes below 0.6 in 5 of 21 categories.
Alharbi (2016) reports 3 of 19 categories with F1-
scores over 0.8, while XLNet-Large achieves this
for 13 of our 21 categories. As a challenging ex-
ample, the Anticipating the audience’s response
(AAR) category got a Fl-score of 0.3 in Alharbi’s
(2016) work, while XLNet gets 0.5.

Improved LLM-based metadiscourse classifica-
tion has promising applications. First, we can use
this method to expand our annotated corpus, which
is still under development, to overcome the re-
search limitations imposed by the small amount
of available data. Moreover, automatic MD classifi-
cation is beneficial to language acquisition research,
particularly for second language acquisition. It can
help with tasks related to (automated) language
assessment and language teaching. It also has po-
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tential to be used in text analysis tools to provide
language learners with concrete feedback on lan-
guage coherence and interactionality. MD classifi-
cation also provides an indication of the viability
of the annotation of similar pragmatic and discur-
sive properties of texts, in other words, linguistic
items that are highly context-dependent and po-
tentially challenging even to state-of-the-art NLP
methods. Explicit MD representation may have
other downstream potential for natural language
processing tasks, such as in dialogue systems. It
may also provide informative input features for re-
lated tasks such as stance detection, where stance
can be expressed through metadiscourse, or dia-
logue act segmentation and classification, where
some dialogue acts may be metadiscourse acts.

The practical applicability of our results is lim-
ited by poor performance on certain low-frequency
classes. In future work, targeted supplemental an-
notation for the more challenging MD categories
is the most promising next step. Another future
research direction is improving generative decoder
LLM performance on this task, such as through in-
struction tuning, prompt engineering or an agentive
approach with domain-expert agents.

6 Conclusions

The model discussed in this paper achieved an
accuracy and Fl-score of 0.91 and 0.93 respec-
tively on the task of metadiscourse identification
and annotation, representing an improvement over
related work, the SpaCy baseline and generative
decoder LLM performance. Obtaining this perfor-
mance with a fairly small annotated dataset shows
that LL.Ms have potential to help speed up the an-
notation process even for fairly uncommon NLP
tasks such as ours. The main open issue with this
task is class imbalance. Annotating more conversa-
tions where these categories are present is the most
promising approach to improve this.

7 Limitations

The main limitation of this project is the insufficient
number of instances for the majority of categories.
Annotating more conversations to make sure all
categories have a significant number of instances is
the most promising next step, as mentioned earlier.
However, low frequency is inherent to some MD
categories in natural language and small datasets
with imbalanced category distributions are com-
mon in linguistic research. Alternative methods



should also be considered, for example, targeted
annotating of only low-categories which would be
more efficient.

A further limitation is that the study is based
on a single dataset. Therefore, we cannot make
claims about generalization to other learner popula-
tions or other discourse types. No other annotated
MD datasets exist and it is costly to annotate them,
though our results suggests that semi-automatic
annotation can be performed after tuning on a rela-
tively small dataset for future annotation of other
corpora for MD.

The applicability of the method is limited by the
fact that it requires tuning on MD annotation, a
type of annotation that is not commonly available,
especially in under-resourced languages. This lim-
its the extent to which our method can be applied
in diverse linguistic contexts and domain contexts.
We were only able to demonstrate it for English.
With our findings, semi-automatic annotation of
more data can be explored, but only for languages
where usable MD annotation already exists. Few-
shot performance through in-context learning by a
large generative LLM was insufficient to provide a
viable alternative.

While MD spans can be embedded inside each
other, the token classification approach adopted
in this study can only assign one label per token.
These cases are therefore not fully handled. The
classifier can put a smaller span of category B in-
side a larger span of category A, but without the
ability to assign multiple labels to one token, it is
unspecified whether the category A span encom-
passes the category B span, or is actually two dif-
ferent category A spans, one before the category B
span and one after.

We investigated the effect of span variation on
classification performance, but our approach has
some limitations. For example, if two instances
of spans use the same words but in different order,
or the same sequence of words but with one word
omitted, they would count as different unique spans.
Some sort of overlap or semantic similarity-based
metric might give a better view of uniqueness of
spans.

We discuss the application of our method to
(semi)-automatic metadiscourse annotation. How-
ever, if it were to be used for this purpose, the anno-
tations would be biased based on the mistakes that
the classifier makes - categories that the classifier
struggles with more, would be more poorly anno-
tated. Annotators should pay particular attention to
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these underperforming categories.
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A SpaCy baseline

Label Precision | Recall | F1-score
RPR 0.00 0.00 0.00
RFL 0.00 0.00 0.00
CMT 0.00 0.00 0.00
CLF 0.00 0.00 0.00
EXP 0.00 0.00 0.00
MNT 0.00 0.00 0.00
ORS 0.89 0.88 0.88
PED 0.00 0.00 0.00
ENM 0.96 0.44 0.60
EDP 0.00 0.00 0.00
PRV 0.00 0.00 0.00
RVW 0.00 0.00 0.00
EPA 0.91 0.90 0.90
HDG 0.87 0.73 0.79
BST 0.88 0.70 0.78
SAL 0.00 0.00 0.00
MNC 0.00 0.00 0.00
MCD 0.00 0.00 0.00
AAR 0.00 0.00 0.00
MNM 0.00 0.00 0.00
IMS 0.00 0.00 0.00
Acc. 0.81
Macro 0.79
(Non-zero)

Table 8: Classification accuracy of the SpaCy baseline

B Decoder LLM baseline

For the Llama-3.3-70B-Instruct baseline, we
adapted the popular GPT-NER (Wang et al., 2025)
prompting approach from the Named Entity Recog-
nition (NER) task to our task. The model is
prompted to apply labels in this format: No, @ @[
don’t think#EPA## so. In this example, EPA is the
label, @ @ the span start token and ## the span end
token. We prompt for the label to be generated at
the end of the span due to the unidirectional nature
of generative decoder LLMs. In our prompt, we
added a definition of metadiscourse, the persona
phrase “You are an excellent linguist.” from Wang
et al. (2025), and short descriptions of all the cat-
egories with one example per category, which are
the same as in Table 1. We used a three-shot set-
ting, adding three randomly chosen full annotated
documents from our training set (which was oth-
erwise not used in the decoder LLM experiments).
We also tried a zero-shot setting without the full
annotated documents, but performance was very
limited in these trials. The full three-shot prompt
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template can be seen in Appendix F.

In Table 9, we show results per class for Llama-
3.3-70B-Instruct. The overall metrics are notably
lower than those for the tuned encoder models.
Four categories are never labeled correctly. As
might be expected in a setting without fine-tuning,
per class performance does not correlate as clearly
with the class’s frequency in our corpus — the
rather frequent class of Managing topics (MNT)
is never predicted by the model. The best classifi-
cation performance is shown for classes that often
consist of one or two words, such as Enumerating
(ENM - first, at last), Organizing statements (ORS
- and, but) and Boosters (BST - definitely, should).
This is despite the fact that evaluation metrics are
computed per token, and it suggesting difficulties
in accurately marking boundaries of longer spans
or in structure prediction more broadly.

As this result may be surprising to some readers,
we performed an additional small-scale experiment
with GPT-40 for verification. With a test set of
20 random documents (different from the exam-
ple shots) and in the three-shot setting, GPT-40
achieved a weighted F1 score of 0.554 and a macro
F1 score of 0.259, outperforming Llama-3.3-70B-
Instruct but still underperforming compared to the
tuned encoder models.

There are a few possible reasons for this poor
performance. Firstly, our task is far less common
than the NER task, so it is less likely to occur in
training or instruction tuning data for these models.
Secondly, our task has more categories than the
NER task and the categories are domain-specific.
They require specialized knowledge to interpret
and are not frequently discussed outside of spe-
cialized literature. Even with the description and
examples, the model does not seem to have an ac-
curate representation of the categories.

Specifically, the model seems to experience inter-
ference from the more common tasks of discourse
act labeling and discourse/conversation analysis.
Even with the prompt stating that it’s a metadis-
course task, the model often tries to perform a dis-
course analysis task and interprets our categories as
if they are part of such a task. For example, it marks
disfluencies as RPR (Repairing), while only dis-
course about disfluencies (metadiscourse) should
be marked as such. An example of this from our
GPT-40 evaluation is: “In university, most — most
@ @students#RPR## first goal is to study*. This la-
beling is likely triggered by the repetition of most,
but it is a repetition, not a repair (if we are do-



Label P R| F1 N
RPR 0.07 | 0.50 | 0.13 213
RFL 0.16 | 0.44 | 0.24 35
CMT 0.01 | 0.04 | 0.02 486
CLF 0.15 | 0.06 | 0.08 266
EXP 0.34 | 0.55 | 0.42 358
MNT 0 0 0] 1,265
ORS 0.58 | 0.45 | 0.51 | 5,613
PED 01]0.02]0.01 623
ENM 0.70 | 0.58 | 0.63 696
EDP 0 0 0 15
PRV 0.04 | 0.05 | 0.04 234
RVW 0.19 | 0.30 | 0.23 289
EPA 0.30 | 0.40 | 0.34 | 17,130
HDG 0.46 | 0.20 | 0.28 | 4,358
BST 0.74 | 0.27 | 0.40 | 3,760
SAL 0.06 | 0.13 | 0.08 306
MNC 0.04 | 0.04 | 0.04 376
MCD 0.40 | 0.02 | 0.03 366
AAR 0.04 | 0.06 | 0.05 224
MNM 0 0 0 55
IMS 0 0 0 10
Acc. 0.26 | 36,678
Macro 0.20 | 0.20 | 0.17 | 36,678
Weighted | 0.46 | 0.37 | 0.41 | 36,678

Table 9: Results per class for Llama-3.3-70B-Instruct

ing discourse analysis), and it is not metadiscourse
about a repair. We also observe another issue in this
example, which is that the label is applied to the
word after the actual repair (most). This is likely
due to the unidirectional nature of the model.

C Label frequency distribution

Lael

Figure 4: The distribution of MD labels in the gold-
standard dataset
D Software specifications

Python: 3.11.4
numpy: 2.2.2
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torch: 2.6.0+cul24

transformers: 4.48.2

All models apart from GPT-40 are available on
HuggingFace:
google-bert/bert-base-cased
google-bert/bert-large-cased
SpanBERT/spanbert-base-cased
SpanBERT/spanbert-large-cased
answerdotai/ModernBERT-base
answerdotai/ModernBERT-large
FacebookAl/roberta-base
FacebookAl/roberta-large
google/electra-small-discriminator
google/electra-large-discriminator
nghuyong/ernie-2.0-base-en
nghuyong/ernie-2.0-large-en
xInet/xInet-base-cased
xInet/xInet-large-cased
meta-llama/Llama-3.3-70B-Instruct

The code can be found on this paper’s associated
GitHub page: https://github.com/W-Guan/
Automatic-MD-annotation-with-XLNet. The
dataset is available upon request, as it was collected
for another study that has not been published yet.
Interested parties may contact the author directly
to obtain access.

E Hardware specifications

GPU: NVidia L4

GPU Memory: 24GB

CPU: AMD 9445p

Total Number of Cores: 64

Memory: 384 GB

One model tuning run of 25 epochs takes about
30 minutes (ModernBERT-base) to 1 hour (XLnet-
base) on this hardware.
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F Prompt template

You are an excellent linguist. The task is to label metadiscourse spans -
spans of words that guide the addressee through the discourse. Here are
the possible categories that you can label spans as:

RPR: Repairing - Example: "I'm sorry..."

RFL: Reformulating - Example: "to put it differently...”
CMT: Commenting - Example: "... is a difficult question”
CLF: Clarifying - Example: "I don't mean to say”
EXP: Exemplifying - Example: "for example”

ORS: Organizing statements - Example: "and"”, "but"”,
PED: Providing evidentials - Example: "according to”
ENM: Enumerating - Example: "first”, "at last”

EDP: Endophoric marking - Example: "As we can see in Chapter III, ..."
PRV: Previewing - Example: "We will discuss...”
RVW: Reviewing - Example: "As I said last time,
EPA: Epistemic attitudes - Example: "I agree that..."

HDG: Hedges - Example: "perhaps”, "might”

BST: Boosters - Example: "definitely”, "should”

SAL: Speech act labels - Example: "I argue that..."

MNC: Managing comprehension - Example: "You know what I mean.”

MCD: Managing channel/audience discipline - Example: "Can you hear me?”
AAR: Anticipating the audience's response - Example: "You may ask..."
MNM: Managing the message - Example: "What I want to emphasize is..."
IMS: Imagining scenarios - Example: "Suppose you are giving a speech...”

n n

SO

n

If a span should be labeled, you will annotate in the format:
@@span#LABEL##

Do not output any other text apart from the annotated input text.

Document-level examples:
{examplel}
{example2}
{example3}

Figure 5: Prompt template for decoder LLM baseline experiment
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G Hyperparameters

Model Epochs | Batch Alpha | Decay Warmup steps
BERT 25 6 3.46893934104582e-05 456 | 0.06331306513883898
SpanBERT 25 9 | 1.1235689536407466e-05 583 | 0.03328240000998865
ModernBERT 25 4 4.27605191279545e-05 352 | 0.07325555301079804
RoBERTa 25 17 | 4.1627214448844214e-05 419 | 0.03135747617843722
Electra 25 4 | 3.8988959827328105e-05 566 | 0.09975738929202359
ERNIE 25 14 | 2.7576890378412467¢e-05 204 | 0.016803254034765108
XLNet 25 4 | 3.784413058653172¢-05 550 | 0.026749712474382164

Table 10: Best hyperparameters settings for base models.
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Abstract

The ability to track entities is fundamental
for language understanding, yet the internal
mechanisms governing this capability in Small
Language Models (SLMs) are poorly under-
stood. Previous studies often rely on indirect
probing or complex interpretability methods,
leaving a gap for lightweight diagnostics that
connect model behavior to performance. To
bridge this gap, we introduce a framework to
analyze entity tracking by measuring the atten-
tion flow between entity and non-entity tokens
within SLMs. We apply this to analyze models
both before and after Parameter-Efficient Fine-
Tuning (PEFT). Our analysis reveals two key
findings. First, SLMs’ attentional strategies
vary significantly with text type, but entities
consistently receive a high degree of focus. Sec-
ond, we show that PEFT — specifically QLoRA
— dramatically improves classification perfor-
mance on entity-centric tasks by increasing the
model’s attentional focus on entity-related to-
kens. Our work provides direct evidence for
how PEFT can refine a model’s internal mech-
anisms and establishes attention analysis as a
valuable, lightweight diagnostic tool for inter-
preting and improving SLMs'.

1 Introduction

A fundamental aspect of natural language under-
standing is the ability to track entities as a dis-
course unfolds (Grosz et al., 1995). This ability is
a prerequisite for maintaining coherence, perform-
ing complex reasoning, and succeeding in a wide
array of downstream natural language processing
(NLP) tasks. For language models to generate co-
herent text or answer questions accurately, they
must implicitly recognize entities and update their
states based on new information (Grosz and Sidner,
1986).

“This work was conducted while Sungho Jeon was at Hei-
delberg Institute of Theoretical Studies.

'Our code is available at https://github.com/
sdeval4/codi25_entity_attn_tracking_slm

Michael Strube

Heidelberg Institute of Theoretical Studies
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michael.strube@h-its.org

Despite the remarkable capabilities demon-
strated by modern Large and Small Language Mod-
els (LLMs and SLMs) (Brown et al., 2020), the
internal mechanisms by which these models man-
age and track entities remain largely unexplained
(Li et al., 2024), especially in SLMs, which are of-
ten deployed for efficiency and on-device Al These
models are often treated as “black boxes”. While
SLMs may replicate human-like output behavior,
it is not clear whether they rely on linguistically
grounded cues—such as noun phrases—or whether
their performance stems from spurious correlations
learned during pretraining.

Efforts to interpret model behavior typically fall
into one of three categories: (i) evaluating input-
output behaviors on benchmark tasks (Schuster and
Linzen, 2022; Kim and Schuster, 2023), (ii) prob-
ing hidden state representations to see if they en-
code entity information (Lodiciga et al., 2022), or
(ii1)) modifying architectures to better handle dis-
course entities (Fagnou et al., 2024). While these
approaches provide valuable insights, they often
leave a gap. They either do not directly inspect
the internal mechanisms of standard architectures
or they require complex, computationally inten-
sive analysis. A direct, lightweight method for
analyzing how the native attention mechanism fa-
cilitates entity tracking, particularly in the widely
used Transformer architecture, is less explored.

This paper addresses this gap by proposing
a novel framework to investigate entity tracking
through the lens of attention scores. We treat atten-
tion as a direct, interpretable signal of the model’s
focus during processing (Section 2.2). Our cen-
tral hypothesis is that the allocation of attention
to entity tokens is a direct correlate of a model’s
entity tracking capability and that performance im-
provements from fine-tuning can be explained by
specific, measurable shifts in these attention pat-
terns. By systematically analyzing the attention
scores between entity tokens and their surrounding
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context, we aim to build a mechanistic bridge be-
tween an observable performance change and an
internal model behavior.

This research makes the following contributions:

* A systematic analysis of entity-centric atten-
tion patterns in several modern SLMs, reveal-
ing how attentional strategies adapt to differ-
ent text types and qualities.

A key finding that Parameter-Efficient Fine-
Tuning (PEFT) with QLoRA (Dettmers et al.,
2023) substantially improves performance on
an entity-centric classification task by mech-
anistically intensifying the model’s attention
on entity tokens.

A demonstration of attention analysis as a
valuable and accessible diagnostic tool for
understanding and explaining the effects of
fine-tuning on a model’s internal mechanisms.

2 Related Work

Our work is situated at the intersection of three
active research areas: entity tracking in language
models, the use of attention for interpretability, and
the mechanistic understanding of fine-tuning.

2.1 Probing Entity Representations in
Language Models

The study of how language models manage entities
has evolved from linguistic tests to sophisticated
analyses of internal model states. Earlier work
identified significant challenges, showing that even
large models struggle with fundamental aspects of
discourse, such as recognizing when a new entity
is introduced (Schuster and Linzen, 2022). Sub-
sequent research shifted from model outputs to
internal representations, finding a disconnect be-
tween a model’s latent knowledge of entities and
its ability to apply it effectively (Lodiciga et al.,
2022). More recent work has created benchmarks
to test dynamic entity tracking, discovering that
this ability can be taught via fine-tuning (Kim and
Schuster, 2023). Other studies propose architec-
tural changes to better handle dynamic entity track-
ing (Fagnou et al., 2024). Unlike these prior ap-
proaches, our framework interprets entity track-
ing behavior through the model’s native attention
weights, which directly reflect token-level interac-
tions in Transformer models.
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2.2 Attention as an Interpretability Tool

The attention mechanism, introduced as the core
component of the Transformer architecture, was
initially proposed as a window into the model’s
reasoning process. Early work suggested that visu-
alizing attention weights could serve as a proxy for
interpreting model decisions. However, this view
was contested by a line of research arguing that “at-
tention is not explanation” (Jain and Wallace, 2019;
Serrano and Smith, 2019). These studies demon-
strated that attention weights could be manipulated
without significantly affecting model output, sug-
gesting they might be a symptom of the model’s
reasoning rather than its cause.

Nevertheless, more recent work has revealed that
specific attention heads often specialize in mean-
ingful linguistic functions, including syntactic rela-
tions and coreference resolution (Clark et al., 2019).
This suggests that attention, when interpreted sys-
tematically, offers insight into the model’s inter-
nal processing. Rather than treating attention as a
complete explanation, we adopt a pragmatic per-
spective: we use it as a measurable correlate of
focus, with a particular emphasis on how attention
is distributed over discourse entities. In doing so,
we aim to reconcile the interpretability of attention
with its utility as a diagnostic signal.

2.3 Mechanistic Insights into
Parameter-Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning (PEFT) methods
such as Low-Rank Adaptation (LoRA) (Hu et al.,
2022) enable the adaptation of large pretrained
models to specific tasks by modifying only a small
subset of parameters. While PEFT methods are val-
ued for their efficiency and scalability, their effect
on the internal computations of language models
has only recently begun to receive systematic atten-
tion.

Recent work attempts to reverse-engineer fine-
tuned models using circuit analysis and other mech-
anistic tools (Wang et al., 2023; Prakash et al.,
2024). These studies identify sub-network path-
ways responsible for specific behaviors, but their
analyses are computationally intensive and often
require considerable expertise. In contrast, our
framework uses attention interactions to trace the
effects of PEFT on entity focus directly. We show
that LoRA fine-tuning leads to measurable shifts in
attention toward entity tokens, which correspond to
improved task performance. Our approach is both
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Figure 1: This example illustrates tokenization and mapping to noun phrases using the subword tokenizer of
“google/gemma-2-2b-it”. The misspelling of “developpement” results in two subword tokens, “develop” and
“pement”’, a phenomenon commonly observed in real-world data.

computationally efficient and grounded in linguis-
tic theory, making it suitable for broader adoption
in small-model development and evaluation.

3 A Framework for Analyzing
Entity-Centric Attention

In this section, we introduce a lightweight, lin-
guistically motivated framework to analyze how
Small Language Models (SLMs) allocate attention
to entities during text processing. Our method
is grounded in the assumption that coherent lan-
guage understanding involves selectively focus-
ing on salient discourse elements—primarily noun
phrases—while integrating relevant context. We
capture this behavior by systematically quantify-
ing attention flows between entity and non-entity
tokens.

3.1 Identifying and Mapping Entity Tokens

A primary challenge in analyzing the internal pro-
cessing of linguistic phenomena is the discrepancy
between human-readable words or phrases and the
subword tokens that models actually operate on (Ta-
ble 5). To bridge this gap, our framework employs
a two-stage mapping process: first identifying lin-
guistic units, then mapping them to model tokens.

3.1.1 Noun Phrase Extraction

For the purposes of this study, we define an “en-
tity” as a noun phrase. This simplification provides
a consistent and scalable method for identifying
key subjects and objects across a large corpus. We
use the Stanza constituency parser’, which seg-
ments input texts into syntactic constituents and

2https://stanfordnlp.github.io/stanza/
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extracts noun phrases based on their syntactic la-
bels. We impose a constraint that limits the length
of extracted noun phrases to a maximum of four
words to reduce structural complexity and exclude
deeply nested constructions. In cases of nested
noun phrases, we retain only the outermost phrase
to maintain consistent granularity across analyses.

3.1.2 Tokenization and Mapping

Once noun phrases are identified, we must align
them with the subword tokens generated by the
target model’s tokenizer. This alignment is a non-
trivial task, as tokenization schemes like Byte-Pair
Encoding (BPE) can fragment single words and
handle whitespace in model-specific, often propri-
etary ways. To address this, we developed a map-
ping algorithm which uses the character-level spans
of each noun phrase to identify all subword tokens
within its boundaries. As illustrated in Figure 1,
this process creates a definitive mapping from each
linguistic entity to a set of token indices, a crit-
ical step that enables our subsequent analysis of
attention flow.

3.2 Quantifying Attention Flow Across
Linguistic Boundaries

With entities mapped to tokens, we can now quan-
tify how the model allocates attention with respect
to these linguistic categories (Figure 2).

3.2.1 Attention Score Extraction

We extract attention values from the final layer of
the model’s Transformer architecture. This layer
is chosen because it represents the culmination of
the model’s processing, where representations are
expected to be the most semantically rich and task-
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+ (pement, Is) + ...

Figure 2: Example of calculating Attention Type 1: between entities and non-entities. The word “developpement” is
a typo found in a real TOEFL dataset, and it causes the subword tokenizer to split it into multiple subword tokens.

relevant. While individual attention heads may
specialize in different functions (Clark et al., 2019),
we average the attention scores across all heads
in the final layer to obtain a holistic measure of
the model’s aggregate focus. This provides a ro-
bust, high-level signal of information flow. The
raw attention scores are normalized via softmax
for each query token. The final averaged attention
score between a query token ¢, and a key token ¢t
is calculated as:
ALlast (tw tb) =

Wzl Z ALpasih(ta ty)

heH

| ! | (1

where L, denotes the last layer, H is the set
of all attention heads, and Ay, , , (ta,tp) is the
attention score from token ¢, to token t; in the
last layer and head /. Additionally, we investigate
the different attention interaction patterns across
various layers in our evaluation to provide a more
comprehensive understanding.

3.3 Analysis of Attention Score Interactions

Using the extracted attention values and the LLM
tokens that match noun phrases, we measure three
distinct types of interactions. This helps us under-
stand how the LLM processes context. For each
interaction type, we define which tokens are in-
volved and how we combine their attention scores.

In terms of formulation, for any input text, let
N be the total number of LLM tokens: T =
{t1,t2,...,tn}. Let NPy be the LLM tokens for
the k-th noun phrase: NPy, = {ti;,tiy, ..., i, }-
Let N P, be the set of all tokens that are part of
any noun phrase (entity): NPy = |J, NP. Let
NonN P, be the set of all tokens that are not part
of any noun phrase (non-entities): NonN Py =

T \ NP,. The attention score from token ¢, to
token t; is written as A Liaet (ta, tp). As detailed in
Section 3.1, we focus on the last layer.

When investigating the interactions between dif-
ferent tokens, we focus on unique pairs of elements,
effectively excluding self-attention (diagonal ele-
ments) and avoiding duplicate pairs (e.g., consider-
ing (t4, tp) and (tp, t,) as a single interaction). This
is conceptually equivalent to considering only the
upper triangle of the attention matrix and summing
the attention for each unique pair. Each interac-
tion type captures the ratio of attention taken by
these specific pairs of tokens, normalized by the
total amount of attention values between all distinct
pairs of tokens in the sequence. Let Attn_Total
be the sum of all attention values between distinct
token pairs in the sequence, considering both direc-
tions for each unique unordered pair:

Attn_Total = Z Z

tr €T ty €Tty <ty

(A(tz, ty)) ()

Our analysis focuses on three specific types of in-
teractions: 1) between entities and non-entities, 2)
between tokens of entities, and 3) between tokens
of non-entities. This structured approach allows us
to isolate and quantify specific linguistic phenom-
ena, providing insights into how LLMs encode and
leverage different types of relationships.

3.3.1 Type 1: Between entities and
non-entities

This quantifies the attention flow between any sub-
word token identified as part of an entity and any
subword token identified as a non-entity. This cap-
tures how entities interact with their broader non-
entity context within the sentence.
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We calculate the average attention where tokens
are from N P,; and tokens are from NonN P,
then normalize by Total Attention.

1
Total Attention

>

taeNPall
ty€ENonN Py,

RatiogNg =

(A(tarty)) @

X

3.3.2 Type 2: Between tokens of entities

This measures the ratio of attention among subword
tokens within the collective set of all entities, rela-
tive to the total attention in the sequence. It reflects
the internal coherence and interconnectedness of
all identified entities in the text.

We calculate the sum of attention between dis-
tinct tokens within N P,;;, considering both direc-
tions for each unique unordered pair, then normal-
ize by Total Attention.

1
Ratiopg = ———————
alOE-E Total Attention
<Y (Altaty) @
taeNPall

tyEN Py, ta<ltp
3.3.3 Type 3: Between tokens of non-entities

This quantifies the ratio of attention among sub-
word tokens within the collective set of all non-
entities, relative to the total attention in the se-
quence. It reflects the internal coherence and inter-
connectedness of the non-entity context.

We calculate the sum of attention between dis-
tinct tokens within NonN P,;, considering both
directions for each unique unordered pair, then nor-
malize by TotalAttention.

1
Total Attention

D

ta GNonNPaH
tyENonN Pyy,ta<tp

Rationg.NE =

x (A(tg,tp)) O

4 Experimental Setup

We evaluate our attention-based analysis frame-
work in the context of two representative classifica-
tion tasks using Small Language Models (SLMs).
Our goal is to examine how SLMs allocate atten-
tion over entity and non-entity tokens across dif-
ferent discourse settings and how this distribution
changes under Parameter-Efficient Fine-Tuning
(PEFT). This section describes the datasets, models,
and evaluation metrics used in our experiments.
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4.1 Datasets

To ensure generalizability across different textual
domains and discourse structures, we select two
datasets that differ markedly in length, coherence
structure, and task type.

¢ SST-5 (Stanford Sentiment Treebank): A
benchmark for fine-grained sentiment anal-
ysis, consisting of 11,855 individual movie
review sentences’ (Socher et al., 2013). The
task involves assigning one of five sentiment
labels: “very negative” to “very positive”.
These short texts typically contain a small
number of entities, often representing film
titles or actors. Thus, SST-5 enables us to
analyze attention patterns when entity infor-
mation is concentrated in compact, sentiment-
focused utterances.

TOEFL11: A dataset for proficiency-level
classification, composed of essays written by
English language learners (Blanchard et al.,
2013). Each essay is labeled with a language
proficiency score (low, medium, or high).
With an average length of over 400 words, the
dataset provides a setting for analyzing long-
form discourse. The essays include multiple
entities and exhibit varied discourse organiza-
tion, making it suitable for studying attention
flow over extended contexts.

4.2 LLM Models for Evaluation

We perform our experiments on a representative
set of modern, instruction-tuned SLMs available
via the HuggingFace Hub. These models vary in
parameter size, tokenizer behavior, and pretrain-
ing objectives, offering a diverse testbed for our
attention analysis:

google/gemma-2-2b-it
meta-llama/Llama-3.2-1B-Instruct
meta-llama/Llama-3.2-3B-Instruct
microsoft/Phi-3.5-mini-instruct

Qwen/Qwen2.5-1.5B-Instruct

To evaluate the effects of fine-tuning, we apply
Low-Rank Adaptation (LoRA) (Hu et al., 2022), a
parameter-efficient tuning technique. LORA intro-
duces trainable low-rank matrices into the model’s

Shttps://huggingface.co/datasets/SetFit/sst5
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attention projections while keeping the original
model weights frozen. We fine-tune each model on
the SST-5 dataset using LoRA and analyze the re-
sulting changes in both performance and attention
allocation.

Hyperparameters used during fine-tuning (e.g.,
rank, learning rate, and epochs) are listed in Ap-
pendix A.2. All fine-tuning experiments are con-
ducted using a consistent setup across models to
ensure comparability.

4.3 Evaluation Metrics

We assess our framework using both interpretabil-
ity metrics derived from attention interactions and
standard performance metrics for classification.

» Attention Analysis: The core of our inter-
pretability analysis relies on the three atten-
tion interaction ratios (Ratiog.ng, Ratiog.g,
and Rationg.ng) defined in Section 3.3. These
values quantify the internal focus of the model
and allow us to track systematic shifts in at-
tention behavior across datasets and tuning
conditions.

Classification Performance: We measured
model performance on the SST-5 test set us-
ing standard metrics for multi-class classifica-
tion: Accuracy, Linear Weighted Kappa (kr,),
and Quadratic Weighted Kappa (x¢). Kappa
scores are particularly important as they cor-
rect for agreement that could occur by chance
and are sensitive to the ordinal nature of the
sentiment labels (e.g., misclassifying “posi-
tive” as “very positive” is less of an error than
misclassifying it as “negative”).

5 Evaluations

Our evaluation proceeds in three stages. First, we
analyze baseline attention patterns in SLMs across
different textual domains. Second, we examine
how attention patterns vary with text granularity
and writing quality. Finally, we investigate the
impact of Parameter-Efficient Fine-Tuning (PEFT)
using LoRA on both performance and attention
allocation. Our findings demonstrate that entity-
centric attention is a consistent and informative
signal for tracking discourse focus and that LoRA
fine-tuning meaningfully enhances this behavior.
For SST-5, we treat each review as a single
unit, as reviews are typically single sentences.
For TOEFL11, we analyze each sentence indepen-
dently rather than encoding entire essays, allowing
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Figure 3: Attention allocation in pre-trained SLMs on
the short-text SST-5 dataset. Entity-related interactions
(Type 1) dominate.
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Figure 4: Attention allocation in pre-trained SLMs on
the long-text TOEFL dataset. Attention is more dis-
tributed compared to SST-5.

us to capture fine-grained variations in local atten-
tion and entity focus across discourse units.

5.1 Entity Focus Depends on Text Length and
Quality

We first examine how pretrained SLMs allocate
attention scores across entity and non-entity tokens
in two different textual settings: short-form reviews
in SST-5 and long-form essays in TOEFL11. Our
goal is to determine whether the model’s internal
focus shifts based on text length and discourse com-
plexity.

Dependence on Discourse Granularity: On
the short, sentiment-focused sentences of the SST-
5 dataset, all models dedicated the vast majority of
their attention to interactions involving entities. As
shown in Figure 3, the sum of Entity-NonEntity
(Ratiog.ng) and Entity-Entity (Ratiog.g) interac-
tions consistently accounts for over 70% of the total
attention. This indicates that for concise, opinion-
ated text, entities serve as the primary attentional
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Figure 5: Attention patterns across different qualities
of TOEFL essays. As text quality improves, the rela-
tive attention on Entity-NonEntity interactions (Type 1)
slightly decreases.

anchors for the model. In contrast, on the long-
form essays of the TOEFL dataset (Figure 4), atten-
tion is more distributed. Entity-related interactions
still command a significant share but constitute a
smaller portion of the total, ranging from 20% to
30%. This suggests that in complex, descriptive
prose, models balance their focus between key en-
tities and broader contextual and structural cues.

Effect of Writing Quality: To analyze whether
attention patterns are sensitive to writing quality,
we examine the TOEFL11 subset with labeled pro-
ficiency levels (“low”, “medium”, “high”). After
controlling for essay length and sentence count,
we observe a subtle inverse correlation: as writ-
ing quality improves, the proportion of Entity-
NonEntity attention (Type 1) slightly decreases.
Figure 5 illustrates this trend, with low-quality es-
says exhibiting approximately 26% Type 1 interac-
tion, compared to 23% for high-quality essays.

This observation aligns with previous findings
that well-written texts exhibit richer lexical diver-
sity and syntactic variety (Louis and Nenkova,
2013), allowing models to rely on a broader set
of discourse cues. Hence, entity tracking remains
essential but is less dominant when more reliable
and structured context is available.

5.2 Entities Receive Most Attention in
Complex Texts

To better understand how SLMs process long-form
texts, we conduct a fine-grained analysis of the
TOEFL11 dataset by expanding our attention scope
beyond noun phrases. Specifically, we compare
attention interactions between entities and verb
phrases (VPs), as well as between entities and other
non-labeled tokens.
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Figure 6: Attention patterns across different qualities
of TOEFL essays. As text quality improves, the rela-
tive attention on Entity-NonEntity interactions (Type 1)
slightly decreases.

Our results reveal a clear attentional hierarchy.
As shown in Figure 6, interactions involving entity
tokens (e.g., Entity-Entity, Entity-VP, Entity-Other)
consistently account for more than 70% of total
attention: the sum of Type 2, 4, and 5. By contrast,
interactions between verb phrases and non-entity
tokens are minimal (approximately 2.5%). This
finding confirms that even in linguistically complex
environments, SLMs focus on entities as central
nodes in the discourse structure.

This behavior is in line with Centering Theory
(Grosz et al., 1995), which posits that entities serve
as coherence anchors during discourse progression.
Our results suggest that pretrained SLMs implic-
itly adopt a similar processing strategy, prioritizing
entities as focal elements in attention allocation.

5.3 PEFT Increases Entity Attention and
Improves Accuracy

We next investigate whether QLoRA-based PEFT
affects entity-focused attention behavior and model
performance. The attention layers of all models
are fine-tuned on the SST-5 training set (Appendix
B). We then compare their attention distributions
and classification accuracy on a balanced evalua-
tion set, which was constructed by sampling 200
instances from each label of the test set to address
class imbalance.

Performance Gains: Prior to fine-tuning, the
models perform poorly on the 5-class sentiment
classification task, with accuracy scores around
40%. After applying LoRA, we observe substantial
improvements in classification accuracy and kappa
scores (Table 1). In particular, PEFT let SLMs pre-
dict extreme emotions well, which was not possible
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before fine-tuning (Figure 7). The models become
better at distinguishing closely related sentiment
categories, such as “positive” vs. “very positive”,
confirming that LoRA tuning effectively enhances
task-specific capabilities.

Classification Performance before LORA

Acc Kappa-L. Kappa-Q

gemma-2-2b-it  0.38 0.50 0.71
Llama-3.2-1B-it 0.26 0.16 0.27
Llama-3.2-3B-it 0.45 0.55 0.71
Qwen2.5-1.5B-it 0.41 0.54 0.71
Phi-3.5-mini-it  0.42 0.54 0.74

Classification Performance After LORA

Acc Kappa-L Kappa-Q

gemma-2-2b-it  0.60 0.73 0.88
Llama-3.2-1B-it 0.52 0.66 0.83
Llama-3.2-3B-it 0.52 0.66 0.83
Qwen2.5-1.5B-it 0.52 0.67 0.83
Phi-3.5-mini-it  0.61 0.74 0.88

Table 1: Classification performance on the SST-5 test
set before and after LORA fine-tuning. PEFT leads to
substantial improvements in accuracy (Acc) and both
Linear (~r,) and Quadratic (k) Weighted Kappa scores.

Shifts in Attention Patterns: Crucially, these
performance gains are accompanied by consistent
and measurable shifts in attention allocation. Table
2 shows that after LoORA fine-tuning, the propor-
tion of Type 2 interactions (Entity-Entity) increases
across all models. This suggests that LoRA encour-
ages the model to more explicitly model seman-
tic relationships between entities. Simultaneously,
the proportion of non-entity interactions (Type 3)
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decreases, reflecting a redistribution of attention
toward discourse-salient elements.

This result supports our central hypothesis:
LoRA fine-tuning refines the model’s internal at-
tention mechanisms by enhancing focus on lin-
guistically meaningful units—specifically, entities.
It also validates the use of our attention analysis
framework as a lightweight, model-agnostic diag-
nostic tool for tracking internal behavioral changes
induced by fine-tuning.

Model A E-NE A E-E A NE-NE
gemma-2-2b-it +0.95 -091 +0.63
Llama-3.2-1B-it +0.52 -0.94  +3.22
Llama-3.2-3B-it  -0.27 -0.62  +0.26
Qwen2.5-1.5B-it +0.40 -0.49  +0.32
Phi-3.5-mini-it -0.02  +0.04  -0.16

Table 2: Change in attention allocation ratios (in per-
centage points, pp) on SST-5 after LoRA fine-tuning.
The columns show the change in Entity-NonEntity (A E-
NE), Entity-Entity (A E-E), and NonEntity-NonEntity
(A NE-NE) attention.

6 Conclusion

Our findings suggest that attention weights — often
dismissed as unreliable — can, when anchored in
syntactic structure, serve not only as effective diag-
nostic tools but also as a valuable clue for model
development. By tracing attention flow through
entity representations, we provide an interpretable
and lightweight method that not only probes the
internal behavior of SLMs but also points toward
directions for improving or tailoring such models
to better capture entity-based coherence.

We emphasize that our findings should not be
taken as a comprehensive explanation of how Small
Language Models operate. The scope of our exper-
iments is necessarily limited, and broader general-
izations would require further study. Nonetheless,
our work highlights an intriguing avenue: entity-
focused attention analysis provides a promising
perspective on model interpretability that may in-
spire future research. Extensions could include
multi-sentence coherence modeling, cross-lingual
entity behavior, or alignment of model outputs with
formal discourse theories.



Limitations

This study, while providing clear findings, has sev-
eral limitations that offer avenues for future re-
search.

First, our definition of an “entity” as a noun
phrase is a pragmatic simplification. This approach
does not capture more abstract entities, such as
events or concepts, and a more sophisticated entity
identification method could yield further insights.

Second, our analysis treats attention as a diag-
nostic correlate, not a definitive causal mechanism.
The final output of a Transformer layer is also influ-
enced by the value vector transformations and the
computations within the feed-forward networks. A
complete mechanistic explanation would require
analyzing the interplay between all these compo-
nents, which was beyond the scope of this work.

Third, the scope of our study is confined to a
specific set of SLMs and two classification tasks.
While the consistency of our findings across multi-
ple models is encouraging, they may not generalize
to all model architectures (e.g., non-Transformers),
significantly larger models (LLMs), or different
task modalities, such as text generation.

Finally, our method of averaging attention scores
across all heads in the final layer provides a high-
level, aggregate view of the model’s focus. This
approach necessarily obscures the diverse and spe-
cialized functions that individual attention heads
are known to perform (Clark et al., 2019). A more
granular, head-level analysis could reveal which
specific heads are most affected by fine-tuning
and what linguistic roles they play, representing
a promising direction for future work.
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A Appendix: Dataset Details

The TOEFL11 dataset consists of 12,378 essays
written in response to eight distinct open-ended
prompts, which are detailed in Table 4. On average,
each essay is approximately 411 words long, with
further statistics provided in Table 3. The dataset is
labeled by proficiency, with a distribution of 1,308
low-quality, 6,568 medium-quality, and 4,502 high-
quality essays.

For our sentence-level analysis, we began with
a total of 128,549 sentences. We applied several
filtering criteria to ensure data quality, excluding:
2,046 sentences that lacked any identifiable enti-
ties; 1,970 sentences that our entity-subword map-
ping parser could not process correctly; and 3,545
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Dataset | #Texts Avg len (Std) Max len Scores
T-P1 1,656 401 (97) 902 1-3
T-P2 1,562 423 (97) 902 1-3
T-P3 1,396 407 (102) 837 1-3
T-P4 1,509 405 (99) 852 13
T-P5 1,648 424 (101) 993 13
T-P6 960 425 (101) 925 13
T-P7 1,686 396 (87) 755 13
T-P8 1,683 407 (92) 795 13

Table 3: Dataset statistics on tokenization: each TOEFL
prompt (T-P).

sentences shorter than five words. This filtering
process resulted in a final set of 120,999 sentences
used in our analysis.

The Stanford Sentiment Treebank (SST-5)
dataset contains 5,992 movie reviews for 5-class
sentiment classification (from “very negative” to
“very positive”). The average sentence length is
23.44 subwords. From this initial set, we excluded
24 sentences shorter than five words and one sen-
tence that failed parsing, resulting in a final anal-
ysis set of 5,967 sentences (99.6% of the original
dataset).

B Appendix: LORA Hyperparameter
Details

The LoRA fine-tuning was conducted using the
HuggingFace PEFT library. We employed 4-bit
quantization (QLoRA) with the nf4 data type and
loaded the base models with fp16 precision. The
target modules for LoORA were the attention lay-
ers of the SLMs: “q_proj”, “k_proj”, “v_proj”,
“o_proj”. This results in 0.12% trainable param-
eters for google/gemma-2-2b-it, and 0.14% for
meta-1llama/Llama-3.2-1B. The primary hyper-
parameters were set as follows: rank=16, alpha=32,
lora_dropout=0.05, and a learning rate of 1e-4 with
AdamW optimizer. Models were trained for 2
epochs with a batch size of 4.

C Appendix: Subwords Tokenization as
SILM

Our entity-subword mapping parser was designed
to handle model-specific tokenization schemes. We
observed that the SLMs in our study primarily use
one of two conventions to mark word boundaries:
a prefix _ (e.g., _word) or a special character “G”
(e.g., “G’word). Our parser correctly interprets
these conventions for each model to ensure accu-
rate alignment between linguistic noun phrases and
their corresponding subword tokens, as illustrated
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T-Prompt 1

Agree or Disagree: It is better to have broad knowledge of many academic subjects than to
specialize in one specific subject.

T-Prompt 2

Agree or Disagree: Young people enjoy life more than older people do.

T-Prompt 3

Agree or Disagree: Young people nowadays do not give enough time to helping their
communities.

T-Prompt 4

Agree or Disagree: Most advertisements make products seem much better than they really
are.

T-Prompt 5

Agree or Disagree: In twenty years, there will be fewer cars in use than there are today.

T-Prompt 6

Agree or Disagree: The best way to travel is in a group led by a tour guide.

T-Prompt 7

Agree or Disagree: It is more important for students to understand ideas and concepts than
it is for them to learn facts.

T-Prompt 8

Agree or Disagree: Successful people try new things and take risks rather than only doing
what they already know how to do well.

in Table 5.

Table 4: Topic description: TOEFL (T).
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Origin Text

Is it better for oneself’s developpement to have broad knowledge of many aca-
demic subjects than to specialize in one specific subject?

google/gemma-2-2b-it

Tokenized-Ids

tensor([[ 2, 2437, 665, 2525, 604, 63320, 235303, 235256, 2115, 227070, 577,
791, 7209, 5567, 576, 1767, 15459, 12749, 1178, 577, 78292, 575, 974, 3724,
5091, 235336]])

Tokenized-Subwords

13

[‘<bos>’, ‘Is’, “_it’, ‘_better’, *_for’, ‘_oneself’, ©°, ‘s’, ‘_develop’, ‘pement’,
_to’, ‘_have’, ‘_broad’, ‘_knowledge’, ‘_of’, ‘*_many’, ‘_academic’, ‘_subjects’,
‘_than’, ‘_to’, ‘_specialize’, ‘_in’, ‘_one’, ‘_specific’, ‘_subject’, ‘7’]

LY

meta-llama/Llama-3.2-1B

Tokenized-Ids

tensor([[128000, 3957, 433, 2731, 369, 57669, 596, 2274, 79, 1133, 311, 617,
7353, 6677, 315, 1690, 14584, 15223, 1109, 311, 48444, 304, 832, 3230, 3917,
301D

Tokenized-Subwords

[‘<Ibegin_of_textl>’, ‘Is’, ‘Git’, ‘Gbetter’, ‘Gfor’, ‘Goneself’, “’s’, ‘Gdevelop’, ‘P,
‘ement’, ‘Gto’, ‘Ghave’, ‘Gbroad’, ‘Gknowledge’, ‘Gof’, ‘Gmany’, ‘Gacademic’,

‘Gsubjects’, ‘Gthan’, ‘Gto’, ‘Gspecialize’, ‘Gin’, ‘Gone’, ‘Gspecific’, ‘Gsubject’, ‘?’]

Table 5: Examples of different subword tokenization schemes deployed on SLMs.
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Abstract

This study investigates stance detection on
Nigerian 2023 election tweets by comparing
transformer-based and classical machine learn-
ing models. A balanced dataset of 2,100 anno-
tated tweets was constructed, and BERT-base-
uncased was fine-tuned to perform stance clas-
sification into three categories: Favor, Neutral,
and Against. The model achieved strong re-
sults, with 98.1% accuracy on a stratified 8§0/20
split and an F1-score of 96.9% under 5-fold
cross-validation. To contextualize these out-
comes, baseline models including Naive Bayes,
Logistic Regression, Random Forest, and Sup-
port Vector Machines (SVM) were also eval-
uated. While several baselines demonstrated
competitive performance (with SVM reaching
an F1-score of 97.6%), BERT proved more ro-
bust in handling noisy, sarcastic, and ambigu-
ous text, making it better suited for real-world
applications. The findings highlight both the
competitiveness of classical methods on cu-
rated datasets and the scalability of transformer-
based models in low-resource African NLP con-
texts.

1 Introduction

Democratic governance depends on citizen partici-
pation and empowerment. These elements play a
vital role in addressing long-standing social, eco-
nomic, and political imbalances (Bandyopadhyay
and Green, 2012).

The rapid growth of social media has trans-
formed how individuals express and disseminate
political opinions. Platforms such as Twitter and
Facebook provide quick and affordable means
of gathering real-time perspectives from diverse
groups (Ceron et al., 2014; Diaz et al., 2016). These
platforms complement traditional data collection
methods and are now widely applied in political
prediction and analysis (Liu et al., 2021).

A central application of this trend is stance de-
tection, which involves determining whether a user
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supports, opposes, or remains neutral toward a spe-
cific topic (Kii¢iik and Can, 2020). Unlike sen-
timent analysis, which measures emotional tone,
stance detection explicitly links opinions to their
targets. This distinction makes it especially valu-
able for monitoring misinformation, examining po-
larization, and analyzing the dynamics of political
discourse (Hardalov et al., 2022; Zhao and Yang,
2020; Liu et al., 2024).

In highly polarized contexts such as Nigeria’s
2023 presidential election, stance detection offers
critical insights into public opinion toward candi-
dates and the broader nature of online debates.

Despite significant progress in natural language
processing (NLP), African electoral contexts re-
main underrepresented in stance detection research.
Previous studies highlight the need for localized
datasets and tailored approaches to capture elec-
toral behaviors in decentralized political systems
(Khan et al., 2024).

However, notable challenges persist. The ab-
sence of annotated datasets, the prevalence of code-
switching and informal discourse on social me-
dia, and limited computational resources restrict
progress in this area. Moreover, large language
models such as Mistral require substantial GPU
infrastructure and are trained on English data that
arguably under-represent African dialects.

While, at the moment, we can only speculate as
to the reason, this paper provides evidence that at
least one LLM performs very poorly in zero-shot as
well as few-shot evaluations, making them unsuit-
able for low-resource environments. Nevertheless,
LLMs do have a constructive role to play through
supervised fine-tuning.

This study presents a CPU-efficient stance
detection model for the 2023 Nigerian presi-
dential election. A balanced dataset of 2,100
tweets was constructed, and the resource-efficient
BERT-base-uncased model was fine-tuned to clas-
sify stances into Favor, Neutral, and Against. The
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specific contributions of this work are as follows:

¢ Construction of a balanced dataset of 2,100
annotated tweets.

¢ Demonstration of effective stance detection
using BERT on CPU-only hardware.

* Empirical evidence showing 98.1% accuracy
with F1-scores above 0.98 across stance cate-
gories.

These contributions demonstrate that, with
careful dataset curation and model selection,
transformer-based models as simple as BERT
can achieve high performance in resource-limited
African NLP contexts. This research expands the
reach of computational political analysis in under-
represented regions. In the following section, re-
lated work on stance detection and transformer-
based approaches is reviewed.

1.1 Problem Statement

Despite notable progress in natural language pro-
cessing (NLP), stance detection remains an under-
explored area in the context of African elections,
particularly in Nigeria. The 2023 Nigerian pres-
idential election generated extensive online dis-
course on platforms such as Twitter, often char-
acterized by colloquial language, slang, and fre-
quent code-switching. However, no locally anno-
tated datasets or computationally optimized models
currently exist to address this setting. Moreover,
state-of-the-art large language models, such as Mis-
tral 7B, require substantial GPU resources and, as
we will show in Section 4.4, perform poorly in
zero-shot and few-shot settings, rendering them
impractical for low-resource environments.

This gap highlights the urgent need for an effi-
cient and reliable stance detection system that can
be trained using widely available CPU hardware
while still achieving high accuracy in classifying
political stances as Favor, Neutral, or Against.

2 Related Work

The stance detection task has gained growing inter-
est in natural language processing (NLP), with the
heightened role of social media in political discus-
sion. Stance detection, unlike sentiment analysis
that involves the assessment of emotional tone, in-
volves determining if a speaker or author is support-
ive of, against, or neutral about a particular topic
(Mohammad et al., 2016). This makes it highly
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applicable to electoral research and political align-
ment studies (Al-Dayel and Magdy, 2021).

2.1 Traditional Methods

Early stance detection used classifiers like Support
Vector Machines, logistic regression, and Naive
Bayes (Mohammad et al., 2016). These relied on
hand-crafted features such as n-grams and senti-
ment lexicons. While they worked well in some
cases, they often struggled with sarcasm, slang, and
the informal language commonly found on social
media.

2.2 Transformer-based Architectures

The introduction of transformers, especially BERT
(Devlin et al., 2018). improved stance detection by
capturing the full context of sentences through self-
attention. BERT has outperformed CNN, LSTM,
and ensemble systems in benchmarks like SemEval-
2016 and COVID-19 stance detection (Sirrianni
and Zhang, 2021; Davydova and Dutta, 2024). It
shows a strong ability to recognize implicit and
subtle opinions.

2.3 New Large Language Models

Recent models like ChatGPT, LLaMA, and Mis-
tral advance NLP, with frameworks such as COLA
Lan et al. (2024) supporting multi-agent stance
recognition. However, these systems need a lot
of computational power, which limits their use in
low-resource environments.

2.4 Zero-shot and Transfer Learning
Approaches

Zero-shot and few-shot methods purport to re-
duce the need for large labeled datasets. Exam-
ples include Multi-Perspective Transferable Fea-
ture Fusion (Zhao et al., 2024, MTFF) and Cross-
Target with Text and Network embeddings (Khia-
bani et al., 2024, CT-TN) which use both textual
and network signals for stance detection across tar-
gets. While these methods are generally considered
to be effective, they require complex prompts and
careful tuning, making them more challenging to
use in limited settings.

2.5 Model Selection: BERT

We chose BERT-base-uncased as our main model.
We made this choice not because we believe it is the
best overall option, but due to its practical benefits:

* It has shown strong previous results in stance
detection studies (Sirrianni and Zhang, 2021);



¢ It works well in CPU-based environments.

* It performs reliably on medium-scale, bal-
anced datasets.

» Hugging Face’s Trainer API provided a simple
interface to batch train, validate, and log.

2.6 African NLP and Low-Resource Contexts

Beyond general stance detection, recent African
NLP efforts such as Masakhane (Orife et al.,
2020), MasakhaNER 2.0 (Adelani et al., 2022),
and AfriSenti (Abdulmumin et al., 2023) have em-
phasized the importance of building datasets and
benchmarks tailored to African languages. These
initiatives highlight the challenges of low-resource
settings, code-switching, and domain-specific bi-
ases, issues that are also evident in our Nigerian
election dataset. Our work extends this line of
research by focusing on stance detection in a politi-
cally charged African context.

This choice supports the need for resource-
efficient NLP in African contexts. It shows how
careful dataset preparation and thoughtful model
selection can enable effective stance detection with-
out the need for expensive infrastructure.

3 Dataset and Preprocessing

The study aims at stance analysis in Twitter posts
about Nigeria’s 2023 presidential election, par-
ticularly tweets mentioning four principal candi-
dates: Atiku Abubakar, Bola Ahmed Tinubu, Peter
Obi, and Rabiu Kwankwaso. The methodological
pipeline involved data collection, noise removal,
dataset enlargement, model selection, and evalua-
tion processes.

The resultant corpus contained 2,100 prepared
tweets, balanced across three stance labels favor,
neutral, and against. Tweets were scraped through
focused hashtag searches and filtered using hand-
engineered rules to remove off-topic or ambiguous
posts.

3.1 Dataset Collection and Balancing Strategy

We collected tweets with candidate-specific hash-
tags such as #atikudpresident, #tinubu2023, and
#obidatti2023. The initial distribution revealed se-
vere class imbalances, particularly in the under-
representation of some stance categories for other
candidates. Table 1 shows the skewed nature of the
raw dataset.
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Candidate Total Tweets Favor Neutral Against

Atiku 47,508 175 175 80
Tinubu 23,456 175 175 80
Peter Obi 59,212 199 — —
Kwankwaso 8,702 171 — —

Table 1: Initial distribution of scraped tweets showing
class imbalance

Candidate Favor Neutral Against
Atiku 175 175 175
Tinubu 175 175 175
Peter Obi 175 175 175
Kwankwaso 175 175 175

Table 2: Final balanced dataset following augmentation
(Total: 2,100 tweets)

To address these imbalances and ensure that the
dataset could be reliably used for training a super-
vised classifier, a set of balancing techniques was
applied. These included heuristic labeling, rule-
based annotation, and multiple data augmentation
methods.

The final training dataset was uniformly struc-
tured, with each candidate having an equal number
of tweets in each stance category, 175 per class.
This resulted in a balanced dataset of 2,100 tweets
in total. The complete breakdown is presented in
Table 2.

For a clearer overview of this transformation,
a pie chart (Figure 1) was included to illustrate
the final stance distribution. Each class—Favor,
Neutral, and Against—is represented equally, with
700 tweets each.

Final Balanced Stance Distribution

Against

Favor

Neutral

Figure 1: Final distribution of stance categories after
dataset balancing



To achieve the target level of 700 tweets per can-
didate (175 per stance category), a sequence of en-
richment and refinement processes was employed
to expand the dataset:

* Rule-Based Labeling: Sentiment words,
hashtags, and user mentions were used as
heuristics to assign initial stance labels.

* Keyword-Based Weak Supervision: Tweets
with overt expressions of support or disap-
proval were labeled "favor" or "against," while
posts lacking explicit evaluative content were
placed in the "neutral" category.

* Data Augmentation: A set of augmentation
techniques was applied to increase the linguis-
tic richness and balance of the dataset.

a. Expansion of the Dataset by Augmentation

To counteract low samples in some classes, most
prominently "favor" and "against," the following
augmentation methods were employed:

* Synonym Substitution: Synonyms were
incorporated in tweets using WordNet and
NLTK libraries to create natural variants.

* Back-Translation: Tweets were automati-
cally translated into another language and
back into English to generate paraphrased ver-
sions.

* Template-Based Generation: Stance-bias
sentence templates were completed with can-
didate names and contextual phrases to in-
crease diversity.

This multi-step approach ensured that the final
dataset was not only balanced but also linguisti-
cally rich and representative of actual social media
language.

3.2 Data Cleaning and Preprocessing

For the sake of data quality and interpretability of
models, each tweet was preprocessed with uniform
text preprocessing that consisted of:

¢ Normalization of all characters to lowercase

* Erasure of URLSs, mentions, hashtags, punctu-
ation, and redundant spaces

* Lexical analysis to identify richness and detect
anomalies

It aided in holding input consistent and removing
noise, which is particularly required in social media
settings.

3.3 Tokenization and Data Formatting

Tweets were tokenized with the
bert-base-uncased tokenizer, padding and
truncating to a fixed maximum token length of
128. The stance labels were numerically encoded
using LabelEncoder. The dataset was loaded into
Hugging Face’s Dataset format. A balanced split
of the dataset into training and test sets in the ratio
80-20 was used to preserve even class distribution
in both sets.

3.4 Model Configuration and Training

The stance classifier was built by fine-tuning the
BERTForSequenceClassification model. Train-
ing was done using Hugging Face’s Trainer class,
with parameters to configuration tweaked for CPU-
based systems:

TrainingArguments(
output_dir="./bert_stance_output”,
num_train_epochs=2,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
logging_dir="./bert_logs",
logging_steps=10,
save_steps=100,
logging_strategy="steps",
load_best_model_at_end=False

This setup allowed the model to be effectively
trained without requiring access to GPUs.

3.5 Evaluation Framework

The model performance was compared to com-
monly used classification metrics:

* Accuracy — proportion of correct predictions

* Precision — precision among positive predic-
tions

* Recall — proportion of actual positives cor-
rectly identified

* F1-Score — harmonic mean of precision and
recall



Evaluation Metric  Result
Accuracy 98.10%
Precision 98.10%
Recall 98.10%
F1-Score 98.09%
Evaluation Loss 0.1433

3.6 Error Analysis of Predictions

The below detailed confusion matrix shows how
accurately each stance class was predicted.

* Against: 139 correctly predicted, 1 misla-
beled as Neutral.

e Neutral: 139 correct, 1 mislabeled as Favor.

* Favor: 134 correctly predicted; 4 were pre-
dicted as Against, 2 as Neutral.

While overall performance was good, the major-
ity of misclassifications were between proximate
categories (e.g., Favor and Neutral). That likely
stems from the vagueness and informality of social
media use. Nevertheless, the strength of the model
in discriminating among fine-grained categories is
very high.

Identified Applied Resolution

Challenge

Failure of Replaced by BERT for local fine-
Mistral 7B to  tuning on labeled data

make stance

predictions

Imbalance Treated using multiple augmenta-

in Favor and
Against exam-

tion techniques (e.g., templates, syn-
onyms)

ples

GPU limi- Fine-tuned on CPU with optimized
tations on parameters for learning in small
Google Colab  batches

Noisy or Cleaned using rule-based heuristics
inconsistent and manual quality checks

labeling  in

the  primary

dataset

Risk of overfit- Addressed by performing 5-fold

ting due to re-
liance on a sin-
gle split

cross-validation to confirm robust-
ness

Table 3: Overview of experimental difficulties, correc-
tive strategies, and validation measures

3.7 Model Overview

This study employed the bert-base-uncased
model configuration within the Hugging Face
Transformers library (Wolf et al., 2019). BERT’s

architecture includes 12 transformer encoder lay-
ers with multi-head self-attention to encode rich
contextualized information from text input.

The modeling pipeline had the following neces-
sary steps:

* Tokenization: Raw text of tweets was to-
kenized into subword units using a BERT-
compatible tokenizer.

* Embedding: Tokens were converted into nu-
merical vectors that represent lexical and po-
sitional context.

* BERT Encoder: A series of transformer
layers was applied to the embeddings to
learn contextualized relationships within each
tweet.

Dropout: A dropout layer with a rate of 0.1
was added to lower the danger of overfitting.

Classification Layer: A Softmax over a linear
output layer mapped BERT outputs to proba-
bilities across the three classes.

Model training was performed using the Hug-
ging Face-offered Trainer utility. The most signif-
icant training parameters were:

* Epochs: 2

* Batch size: 16

* Learning rate: Se-5
* Optimizer: AdamW

Training was done using the cross-entropy loss
function, which is widely used for multi-class clas-
sification problems. Despite utilizing only CPU
resources to the fullest, high performance was
achieved due to proper implementation, efficiency,
and dataset readiness.

[ Input ]—»[ Tokenizer ]—»[ Embedding ]—»[ BERT ]

Dropout

Classifier

iCiUg

Stance

Figure 2: Compact Diagram of the Fine-Tuned BERT
Pipeline
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3.8 Training and Evaluation with
Cross-Validation

For testing generalization, the data was split into
training and test sets through a balanced 80/20
split. This meant that the proportionate distribu-
tion of the three stance labels—Favor, Neutral, and
Against—was preserved in both partitions.

Training employed the Hugging Face Trainer
framework, with the ability for model fine-tuning,
evaluation, and logging. Training was executed
only twice across two epochs, at a batch size of
16 with the AdamW optimizer at a learning rate of
Se-5. The loss function employed was the categori-
cal cross-entropy one, which suited addressing the
three discrete stances.

Intermediate evaluation was carried out after
each epoch. Logging and checkpointing routines
were activated to help ensure training reproducibil-
ity and allow progress to be picked up in the event
of need.

In addition to the 80/20 balanced split, we also
used a 5-fold balanced cross-validation to further
test the model’s strength. In this setup, we divided
the dataset into five folds, each with equal class
representation. Each fold acted as a test set once,
while the other four were used for training. We aver-
aged the model’s performance across the folds and
reported the mean accuracy, precision, recall, and
F1-scores along with standard deviations. This dual
evaluation method helped us present both detailed
single-split outcomes and broader cross-validation
results.

3.11 Methodology Summary

For clarity, we summarize the methodological
pipeline as follows:

Dataset

The dataset consisted of 2,100 tweets related to
Nigeria’s 2023 presidential election. Tweets were
heuristically labeled into three stance categories:
Favor, Neutral, and Against. Data augmentation
techniques such as synonym replacement, back-
translation, and sentence templating were used to
improve balance and diversity.

Dataset Split

We used two evaluation strategies:

1. A single 80/20 balanced split, chosen for re-
producibility and comparability with prior
studies.

59

2. Balanced 5-fold cross-validation, where the
dataset was divided into five folds with equal
class representation. Each fold was used once
as the test set while the remaining four served
as training data.

This dual setup allowed us to report both detailed
single-split results and robust average performance
across folds.

Model and Training Setup

We fine-tuned BERT-base-uncased using Hug-
ging Face’s Trainer API. Training was run on
CPU-only hardware to reflect resource-limited con-
ditions. The key parameters were: learning rate
2 x 1075, batch size 16, and 2 epochs.

Evaluation Metrics

Model performance was evaluated using accuracy,
precision, recall, and F1 score (weighted across
classes). Confusion matrices were generated for
error analysis. For cross-validation, mean and stan-
dard deviation were reported across the five folds.

4 Results

4.1 Baseline Models

To provide context for BERT’s performance, we
evaluated several classical machine learning base-
lines using TF-IDF features: Naive Bayes, Logistic
Regression, Random Forest, and Support Vector
Machine (SVM). Table 4 summarizes their 5-fold
cross-validation performance.

Model Accuracy F1-score
Naive Bayes (5-fold CV) 94.7% (+0.7) 0.947
Logistic Regression (5-fold CV) 96.6% (+0.7) 0.966
Random Forest (5-fold CV) 97.0% (£1.0) 0.970
SVM (5-fold CV) 97.6% (10.6) 0.976
BERT (5-fold CV) 96.9% (10.8) 0.969

Table 4: Comparison of classical ML baselines and
BERT on stance detection using 5-fold cross-validation.

The classical baselines performed strongly, with
Random Forest and SVM achieving Fl1-scores
above 97%. BERT’s performance (96.9% F1) was
comparable, but its main advantage lies in robust-
ness to noise, sarcasm, and domain shift, making
it more reliable for real-world deployment beyond
the controlled dataset. These results highlight that
while classical models remain competitive on bal-
anced datasets, pretrained transformers provide
scalability and adaptability.



4.2 Performance on Single Split

On the balanced 80/20 split, our BERT-base-
uncased model achieved an accuracy of 98.1% with
weighted F1-scores above 0.98 across all stance cat-
egories. The confusion matrix (Figure 3) showed
that most misclassifications occurred in tweets with
ambiguous or sarcastic language. Table 5 reports
the detailed classification metrics.

Confusion Matrix - BERT Stance Detection

Against

Neutral

True label

Support

Neutral
Predicted label

Against Support

Figure 3: Confusion matrix on the 80/20 stratified split.

Class Precision Recall F1-score
Against 0.97 0.99 0.98
Neutral 0.99 0.98 0.98
Support 0.99 0.97 0.98
Weighted Avg. 0.98 0.98 0.98

Table 5: Classification metrics on the 80/20 stratified
split.

4.3 Cross-Validation Results

To further validate robustness, we performed 5-fold
stratified cross-validation on the balanced dataset of
2,100 tweets. The model achieved a mean accuracy
of 96.9% (£0.8), precision of 96.9% (4-0.8), recall
0f 96.9% (+0.8), and F1-score of 96.9% (+£0.8), as
shown in Table 6.

Metric Mean Std Dev
Accuracy  96.9% +0.8
Precision  96.9% +0.8
Recall 96.9% +0.8
F1 Score  96.9% +0.8

Table 6: 5-fold cross-validation performance of BERT
stance classifier.

The slight difference between the single-split re-
sult (98.1%) and the cross-validation mean (96.9%)
highlights the sensitivity of performance to dataset
partitioning. The single split demonstrates the
model’s potential under a particular train—test sce-
nario, while the cross-validation average provides a
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more reliable estimate of real-world generalization
across multiple data splits.

Taken together, the single-split and cross-
validation experiments confirm that supervised fine-
tuning of BERT provides consistent and robust per-
formance across different partitions of the dataset.
However, recent advances in large language mod-
els (LLMs) have made it possible to attempt stance
detection without fine-tuning, through prompting
alone. To investigate this alternative approach, we
conducted few-shot prompting experiments, as de-
scribed in the next subsection.

4.4 Few-Shot Prompting Experiments

To explore whether large language models can
perform stance detection without supervised fine-
tuning, we conducted few-shot prompting experi-
ments using the Flan-T5-base model. The model
was evaluated in O-shot, 5-shot, 10-shot, 20-shot,
and 60-shot settings. In each case, a small set of
labeled examples was provided in the prompt as
demonstrations before classifying unseen tweets.
Table 7 summarizes the results.

Setup Accuracy Macro F1
0-shot 54% 0.42
5-shot 52% 0.41
10-shot 52% 0.41
20-shot 38% 0.18
60-shot 38% 0.18

Table 7: Few-shot prompting performance of Flan-T5
on stance detection.

The results indicate that few-shot prompting
did not perform in the same league as supervised
methods. The best performance was achieved in
the O-shot setting, with an accuracy of 54% and
macro F1 of 0.42. Adding more examples (5-shot
and 10-shot) yielded no improvement, while larger
prompts (20-shot and 60-shot) performed signifi-
cantly worse, likely due to input truncation from
the model’s limited context window.

An initial effort at zero-shot stance classification
using Mistral 7B Instruct, another large language
model, was confronted with its own drawbacks:

* Poor prediction scores: All the evaluation
metrics (precision, recall, and F1-score) had a
value of zero for stance classes.

* Total misclassification: The model made no
correct predictions on over 279,000 tweets.



« Bias against ''favor'' class: The model made
no outputs tagged as "favor," likely due to
biased prompt encoding or internal represen-
tation issues.

* Overcomputing demands: GPU memory
limitations in freely available platforms like
Google Colab rendered training impossible.

* Stable operation: Inference and loading cy-
cles that were slow resulted in frequent fail-
ures and crashing of the sessions.

Furthermore, across all prompting conditions,
the Support class was never predicted, highlighting
class imbalance issues. These findings suggest that
while instruction-tuned LLMs can perform stance
detection without fine-tuning, their performance is
inconsistent and substantially weaker than super-
vised approaches like BERT. This demonstrates the
limitations of relying solely on prompting-based
methods for nuanced political stance classification.

4.5 Error Analysis

Despite overall strong results, errors were observed
in tweets that used indirect references, irony, or
heavy code-switching between English and local
languages. Such cases remain challenging for trans-
former models and indicate areas for future dataset
expansion and multilingual model fine-tuning.

To illustrate these challenges more concretely,
Table 8 presents several example tweets where the
model made errors.

As shown, errors often arose from sarcasm, com-
parative statements, or mixed sentiments, which
remain difficult even for transformer-based models.
These examples highlight the importance of ex-
panding datasets with more nuanced cases and con-
sidering multilingual or context-aware approaches
in future work, We next interpret these results in
detail in the following discussion section.

5 Discussion

The results show that fine-tuning a transformer
model like BERT on a balanced and well-curated
dataset can achieve strong classification perfor-
mance in politically sensitive contexts. The model
reached 98.1% accuracy on an 80/20 split and main-
tained stable results under 5-fold cross-validation
(mean accuracy and F1-score of 96.9%). The small
gap between the two estimates suggests consis-
tent performance across dataset splits, with cross-
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Tweet True La- Predicted Comment
(anonymized) bel
“So after all this, Against Neutral Sarcasm
Obi still thinks he confused
can win? Nigeri- the model.
ans know better.”
“Tinubu has his Favor Neutral Subtle
flaws but at least support
he has experi- phrased
ence.” cau-
tiously.
“#Atiku2023 we  Against Favor Hashtag
deserve better misled
leaders!” model
despite
negative
wording.
“Kwankwaso Neutral Favor Mixed
is not bad, but stance
Obi remains my with com-
choice.” parative
phrasing.
“I don’t care who  Neutral Against Cynicism
wins, same story mistaken
every time.” for oppo-

sition.

Table 8: Examples of challenging tweets where the
model made errors. Tweets have been anonymized and
paraphrased for clarity.

validation offering a more reliable measure of true
generalization.

To contextualize these findings, we compared
BERT with classical baselines. Interestingly, SVM
performed competitively (F1 score of 97.6% under
cross-validation), nearly matching BERT. This in-
dicates that the dataset is relatively learnable for
simpler models due to its balanced distribution and
clear stance signals. However, BERT remains more
scalable and robust, particularly in handling nu-
anced expressions, sarcasm, and noisy text com-
mon in political discourse.

Mistral 7B, while theoretically stronger, under-
performed in practice. It struggled with zero-
shot predictions and faced hardware limitations,
including memory overflows in free-tier environ-
ments. By contrast, BERT-base-uncased proved
efficient, resource-friendly, and easy to implement
with widely available tools like Hugging Face’s
Trainer.

Data preparation was a major challenge, as the
original stance labels were skewed toward nega-
tive tweets, with fewer neutral or supportive exam-
ples. To mitigate this, we applied data augmen-
tation techniques such as synonym substitution,
template rewriting, and back-translation. These
methods helped balance the dataset and improved



generalization.

Error analysis revealed that most misclassifica-
tions occurred between Neutral and Favor classes,
reflecting the implicit nature of stance in political
text. These errors were relatively minor and had lit-
tle impact on overall accuracy. Preprocessing also
played a key role: text normalization, removal of
irrelevant tokens (e.g., links, mentions), and basic
linguistic filtering improved input quality and en-
sured that the model learned from the most relevant
features.

Despite strong results, limitations remain. The
dataset includes only English tweets, while much
Nigerian political discourse involves multiple lan-
guages and frequent code-switching. Moreover,
real-world distributions are more skewed and un-
stable than the curated dataset used here, which
may limit generalizability.

Overall, this study demonstrates that high-
performance stance detection is achievable with-
out large-scale hardware, provided the dataset is
carefully prepared and models are fine-tuned. The
comparison of classical baselines with transformer
models highlights the complementary value of both
approaches. Future work will extend this effort to
code-switched and multilingual stance detection in
Nigerian political discourse, building on African
NLP initiatives such as Masakhane, MasakhaNER,
and AfriSenti.

6 Conclusion

This study examined stance detection on Nige-
rian election tweets using BERT and classical ma-
chine learning baselines. The results show that
fine-tuning BERT on a balanced and augmented
dataset yields high accuracy, achieving 98.1% on a
stratified 80/20 split and 96.9% F1 on 5-fold cross-
validation. Classical baselines, including Logistic
Regression, Random Forest, and SVM, also per-
formed strongly, with SVM achieving 97.6% F1.
These findings suggest that while the dataset is
learnable with simpler models, transformers pro-
vide robustness to noisy and nuanced political lan-
guage, offering better generalization potential.
Error analysis revealed that most misclassifica-
tions occurred between Neutral and Support, often
due to sarcasm, subtlety, or code-switching. Al-
though BERT proved efficient and effective, lim-
itations remain: the dataset only covered English
tweets, and political discourse in Nigeria frequently
involves multiple languages and code-switching.
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Future work will explore multilingual stance detec-
tion and context-aware transformers, building on
recent African NLP initiatives such as Masakhane,
MasakhaNER, and AfriSenti.

Overall, this research confirms that high-
performance stance detection is possible without
large-scale hardware, provided that data prepara-
tion is rigorous. Combining classical baselines
with transformer models provides a comprehensive
evaluation and demonstrates the potential of mod-
ern NLP approaches for political text classification
in low-resource African settings.

6.1 Limitations and Future Work

Although this study demonstrates the feasibility
of stance detection in a low-resource African elec-
toral context, several limitations remain. First, the
dataset consists of 2,100 tweets, which, while bal-
anced, is relatively small. The reliance on heuristic
labeling and data augmentation may also introduce
noise, and further validation with human-annotated
datasets would strengthen reliability.

Our experiments were restricted to English-
language tweets and a CPU-only training setup.
This excludes the widespread use of code-
switching and indigenous languages in Nigerian
political discourse, which may reduce real-world
applicability.

While BERT-base-uncased performed consis-
tently under cross-validation, the study did not com-
pare fine-tuned large language models (LLMs) due
to hardware constraints. Future research should ex-
plore multilingual transformer models, lightweight
LLM adaptations (e.g., quantization, distillation),
and larger annotated datasets to better capture the
complexity of political conversations in Nigeria
and other underrepresented regions.
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Abstract

Code-switching (CSW) in speech is motivated
by conversational factors across levels of lin-
guistic analysis. While we know much about
why speakers code-switch, there remains great
scope for exploring how CSW occurs in speech,
particularly within the discourse-level linguis-
tic context. We build on prior work by ask-
ing: how are patterns of CSW influenced by
different conversational contexts spanning Aca-
demic, Cultural, Personal, and Professional
discourse topics? To answer this, we annotate
a Mandarin-English spontaneous speech cor-
pus, and analyze its discourse topics alongside
various aspects of CSW production. We show
that discourse topics interact significantly with
utterance-level CSW, resulting in distinctive
patterns of CSW presence, richness, language
direction, and syntax that are uniquely associ-
ated with different contexts. Our work is the
first to take such a context-sensitive approach to
studying CSW, contributing to a broader under-
standing of the discourse topics that motivate
speakers to code-switch in diverse ways.

1 Introduction

Code-switching (CSW) occurs when a multilingual
speaker alternates between languages in speech or
writing (Poplack, 1980). Speakers can code-switch
between or within utterances across a variety of
language pairs, producing a) syntactically simple
insertional code-switches of single words or short
phrases, or b) more syntactically complex alterna-
tional code-switches at grammatical clause bound-
aries (Muysken, 2000),! e.g.:

(1) "1k F ZH & 1Y calculator.”

["Let me get out my calculator."]

"3 A~ 1# but the result isn’t out yet."
["I don’t understand but the result isn’t
out yet."]

a.

b.

Insertional and alternational code-switches are known as
different strategies of code-switching.
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Prior work has examined why speakers code-
switch, showing the influence of various conver-
sational factors: speaker competency, linguistic
context, affective state of the speaker, the type of in-
formation the speaker wants to convey, and listener
identity, among many others (Dornic, 1978; Bell,
1984; Gardner-Chloros, 2009; Broersma, 2009; Fer-
reira, 2017; Bhattacharya et al., 2024b). While
much work has focused on the psycho-, socio-, and
paralinguistic motivations for CSW, some studies
have proposed alternative explanations of CSW
based on discourse-level analysis. Early discourse-
functional work on code-switched speech, e.g.
Blom and Gumperz (1972); Auer (1998), suggested
that CSW indicates a shift in topic during spon-
taneous conversations. This claim has held true
in more recent studies across speech settings and
language pairs (see Section 2). However, little is
known about the types of topics that tend to elicit
CSW, or how different genres of topic motivate dis-
tinctive patterns of downstream code-switched lan-
guage production, particularly from a quantitative
perspective across large-scale datasets of conversa-
tional speech. So, while we know much about why
speakers code-switch in speech, there remains great
scope for exploring how CSW occurs, especially
within the discourse-level linguistic context.

We begin this research by studying the extent
to which the topic of bilingual Mandarin-English
conversations interacts with the presence, quan-
tity, frequency, language direction, and syntac-
tic complexity of CSW in spontaneous speech.
We do so by examining an augmented version
of the SEAME corpus of code-switched speech
(Lyu et al., 2010) using statistical and unsupervised
learning approaches, finding not only that differ-
ences in discourse topics interact significantly with
CSW, but also that these interactions result in dis-
tinctive patterns of CSW features that can be used
to distinguish between conversational contexts.

Our contributions include 1) producing a man-
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ually annotated version of the SEAME corpus for
new aspects of CSW, which we share at https:
//tinyurl.com/3ac6jv2b; 2) building a topic
classifier for automatic annotation that is robust
to both monolingual and multilingual Mandarin
and English speech; and 3) identifying novel and
nuanced quantitative and qualitative insight into the
influence of discourse on multiple aspects of CSW.
Overall, we contribute to a broader understanding
of the conversational contexts that motivate speak-
ers to code-switch in diverse ways. We hope that
this work will inform innovation in robust spoken
language technology that is capable of both un-
derstanding and producing code-switched speech
grounded in naturalistic aspects of multilingual dis-
course function.

2 Prior Work

The earliest work on discourse aspects of CSW
focused on defining taxonomies of when and why
speakers code-switch. Notably, Blom and Gumperz
(1972) proposed a dichotomy between situational
CSW that indicates the topic of conversation, and
metaphorical CSW for signaling emphasis; the
combination of these allowed for the prediction
of language choice among bilingual speakers in
Norway. Though the precise boundary between
situational and metaphorical CSW has been the
subject of debate among authors such as Auer and
Wei, subsequent work has supported the claim
that CSW serves as a discourse context cue that
signals a semantic shift in the topic of Italian-
German and Cantonese-English dialogue (Auer,
1998; Wei, 1998; Auer, 2003). Ethnographic stud-
ies of Spanish-English, e.g. Lowi (2005), have sim-
ilarly shown that both intra- and inter-sentential
CSW is used as a discourse feature to indicate
change of topic among adult bilinguals of vary-
ing linguistic ability. These results generalize to
the speech of children, in which topic and situation
shift signaling is found to be a primary function of
Spanish-English CSW (Reyes, 2004). Such a rela-
tionship between discourse framing and CSW has
been observed in other language pairs, including
Malaysian-English (Ariffin and Rafik-Galea, 2009),
Bangla-English (Das, 2012), and Hindi-English
(Dey and Fung, 2014; Begum et al., 2016), and
across spoken and written modalities.

By primarily conducting qualitative examina-
tions of small-scale and hand-curated speech cor-
pora, and analyzing coarse-grained CSW charac-
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teristics (e.g. the number of code-switches in a
given dialogue), the existing work described above
has consistently established a link between dis-
course framing and CSW. However, few studies
have extended this to consider finer-grained aspects
of code-switched speech in relation to the nature of
specific discourse topics. This is especially strik-
ing for the Mandarin-English language pair, given
the vast number of global Mandarin native speak-
ers,” many of whom are bilingual in English and
code-switch regularly. Prior work on the high-level
processing of topics in code-switched social me-
dia text and speech (Peng et al., 2014; Asnani and
Pawar, 2016; Rabinovich et al., 2019) has targeted
making topic modeling techniques robust to mul-
tilingual inputs, rather than identifying a deeper
understanding of the types of topics that are associ-
ated with specific CSW behaviors. To address this
gap, we ask RQ: How are specific discourse topics
associated with patterns in the presence, quantity,
frequency, direction, and syntactic complexity of
CSW in a conversational domain?

3 Corpus

We examine the Mandarin-English Code-switching
in South-East Asia (SEAME) corpus of sponta-
neous speech (Lyu et al., 2010). This corpus is
made available by the LDC User Agreement for
Non-Members. SEAME consists of 192 hours
of speech and 1,074,032 transcribed words across
256 dialogues. 156 unique speakers from Singa-
pore and Malaysia are represented in the corpus.
All dialogues are in an informal register, whether
they were recorded in open-domain conversation
settings or slightly more structured interview set-
tings. Recordings comprise a mix of monolingual
and code-switched utterances, the latter of which
are Mandarin-dominant with inter-sentential code-
switches to English. The corpus-level token ratio
of Mandarin to English is 1.54:1.

4 Method

Data annotation and pre-processing: aspects of
CSW. We annotate SEAME for the different as-
pects of CSW performed by speakers. First, we
inspect the 110K utterance-level transcripts and
automatically label each one for whether it is code-
switched or monolingual, based on the Simplified
Chinese and English orthographies used in the cor-
pus. For the code-switched utterances, we also

2Almost 1 billion, per Ethnologue as of early 2025.
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calculate utterance-level CSW quantity using the
CSW ratio and M-index metrics (Soto et al., 2018;
Barnett et al., 2000) and CSW frequency using
the I-index metric (Guzman et al., 2016). We pro-
vide complete definitions of these metrics in Ap-
pendix A. We then perform additional manual an-
notations on the code-switched utterances to dis-
tinguish between insertional (I), alternational (A),
and “other” (O) forms of CSW. We define “other”
CSW similarly to tag-switching (Poplack, 1980),
as the strategy used in any utterance where the
code-switch is a filler word at the outset or end
of a sentence. All annotation is performed by the
second and third authors, who are native speak-
ers of Mandarin with first-language proficiency in
English. When the annotators disagree on a label,
which occurs in less than 1% of utterances, they
discuss their reasoning with each other until the
disagreement is resolved.

We find that 48% of utterances in the corpus are
monolingual. Among the 52% of code-switched
corpus utterances, 89% use insertional CSW, 12%
use alternational CSW, and 7% use “other”> CSW.

Classifier construction: discourse topic label-
ing. Given the dataset’s size, instead of performing
a second round of manual annotation of discourse
topics over the entire corpus, we use a multi-class
classifier to approximate utterance-level ground
truth labels of discourse topics. Rather than unsu-
pervised topic modeling, we use classification to ap-
proximate ground truth labels since we have some
prior knowledge of the discourse topics present in
the corpus. To do so, we train* and evaluate four
classifier models on a 10% sample of the corpus
(11K utterances; the ground truth set), which we
manually annotate for topic using the same pro-
tocol for resolving disagreement as above; label
disagreements occur in less than 5% of utterances.
Full task instructions are in Appendix A. We then
apply the best-performing classifier for inference
on the remainder of the corpus.

We begin with a rule-based approach and define
a set of seed words in English and Mandarin as
the lexicon associated with each of the following
broad topic areas: Academic, Cultural, Personal,
Professional> We choose this particular set of

3We retain all annotations of this CSW strategy in our aug-
mented version of the SEAME corpus, but largely exclude this
strategy from our subsequent statistical analyses for simplicity.

“Models are trained in about an hour on a Mac M1 chip.

SFor detailed definitions and examples of each, as well as a
complete list of seed words in each lexicon, see Appendix A.
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topics based on those that were used to elicit speech
during the collection of the corpus by Lyu et al.,
and our own observations of the data during our
initial annotation pass, as these are most likely to
reliably reflect the topics actually present in the
data, and to avoid unnecessary complexity for an
already time-intensive manual annotation task. We
further justify this choice of topics experimentally
in Appendix A. We define an additional Other topic
to account for utterances that do not fall into any of
the above topic areas. At inference time, we assign
topic labels by identifying the number of exact
matches with each topic’s lexicon and breaking ties
at random. Any utterance with zero matches is
labeled as Other. We assess the performance of
this initial classifier on both the entire ground truth
set and a test-time subset of it, for consistency with
subsequent models.

We then refine our rule-based approach by ex-
panding our handcrafted lexica with lexical and
conceptual synonyms, applying Havaldar et al.
(2024)’s method. This involves choosing the ten
most similar neighbors per seed word using a co-
sine similarity threshold greater than or equal to
0.9 on pre-trained GloVe embeddings (Pennington
et al., 2014).5 We incorporate these synonyms into
our existing lexica, then perform inference with the
expanded classifier and evaluate performance on
the ground truth set and its test-time subset.

Next, weuse scikit—learn 1.6.1 totrain
a stacking ensemble (291K params.) combining
three individually calibrated base learners: logistic
regression, random forest, and gradient boosting.
The ensemble takes as input utterance-level speaker
gender, dialogue type, token length, presence of
filler words (see list in Appendix A), presence of
corpus-level frequent words, unigram tf-idf statis-
tics, speaking rate, duration, and pause rate, in
addition to weighted counts of seed words from the
discourse topic lexica. We train this classifier using
a logistic regression meta-learner on 80% (8.8K
utterances) of the ground truth set, blending predic-
tions with 3-fold cross-validation, and evaluate its
performance on the remaining 20% of the ground
truth set (2.2K utterances; the held-out test set).

Finally, we use a self-supervised learning ap-
proach, with a class-weighted logistic regression
base model (17K params.). The input features to
this model are the same as those used by the ensem-
ble classifier, with additional bigram tf-idf statistics

bglove-wiki-gigaword-50 accessed via Gensim.



and pre-trained sentence embeddings sourced from
HuggingFace’ (33M frozen params.). This model
iteratively generates pseudo-labels for unlabeled
utterances in each of up to five rounds. For each
discourse topic, we select up to a fixed quota of
the highest-confidence predictions, using specific
thresholds tuned per class that particularly include
a dynamic adjustment for the relatively sparsely
represented Cultural class. We treat 70% (7.7K ut-
terances) of the ground truth set as the pseudo-train
set and append newly pseudo-labeled examples to
it before retraining and recalibrating the model. We
monitor performance on a separate 10% subset of
the ground truth set (1.1K utterances), using macro
F1 to determine early stopping, and evaluate final
model performance on the same held-out test set as
above.®

Statistical analysis. Once the corpus is labeled
for all CSW features of interest and discourse top-
ics, we examine the relationship between these by
using chi-squared and one-way ANOVA tests.

Clustering analysis. We build on significant sta-
tistical results by using scikit-learn 1.6.1
to perform k-means clustering (10 params.) on vec-
tors representing utterance-level binary CSW pres-
ence, strategy, and language direction, and CSW
quantity and frequency, standardized to zero mean
and unit variance. We then examine the resulting
clusters and compare their composition over dis-
course topics and each CSW feature of interest.

5 Results

5.1 ML models outperform rule-based

classifiers on discourse topic labeling.

We first calculate the expected blind guessing, i.e.
random, baseline accuracy on our data, given the
distribution of discourse topic labels in the held-out
test set: 0.33. We subsequently use this value to
contextualize the performance of our models.

We find that all four of our models significantly
outperform the calculated baseline over the held-
out test set (Table 1).° As expected, the perfor-
mance of our rule-based classifiers is generally in-
ferior to that of the machine learning models, given
that certain characteristics of the discourse topic
cannot be captured by the raw content of an utter-

"sentence-transformers/all-MiniLM-L6-
v2

$Hyperparameter values for both the ensemble and self-
supervised models are in Appendix A.

°For the rule-based classifiers’ performance over the entire
ground truth set, see Appendix A.
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ance alone. Somewhat unexpectedly, the expanded
lexicon-based classifier performs worse than the
initial rule-based one, indicating that certain syn-
onyms effectively dilute associations with specific
discourse topics. On the other hand, the relative
performance of the two machine learning models
aligns with our expectations, as the self-supervised
classifier demonstrates its unique ability to leverage
large quantities of unlabeled data during learning.
However, despite both machine learning models’
relative superior performance, we note the overall
difficulty of utterance-level discourse topic label-
ing, reflected by the modest absolute value of all
four classifiers’ task accuracy. '’

Classifier Accuracy F1 Score
Initial lexicon-based 0.62 0.60
Expanded lexicon-based 0.60 0.59
Ensemble: LR, RF, GB 0.68 0.62
Self-supervised LR 0.72 0.71

Table 1: Classifiers’ accuracy and macro F1 score on
discourse topic labeling over the held-out test set. We
also report per-class performance metrics for the best-
performing model in Table 14 in Appendix A.11.

Following training and evaluating the four classi-
fiers on our sample of ground truth data, we use the
self-supervised model to infer discourse topics for
the remaining 90% of the corpus (99K utterances)
that consists of unlabeled utterances. This results in
the utterance-level distribution of discourse topics
shown in Table 2, which suggests that certain con-
versational contexts are more popular than others.

Discourse topic % of corpus

Academic 7.8
Cultural 0.1
Personal 28.1

Professional 2.4
Other 61.5

Table 2: Discourse topic label distribution across classes
in the entire SEAME corpus. Please see Table 15 in
Appendix A.12 for distributions across the ground truth
and automatically-annotated subsets of the corpus.

We note that utterances on Other topics dom-
inate the corpus, aligning with expectations for
open-domain dialogue, and supporting our defini-
tion of this category to account for most utterances.
To verify the absence of hidden clusters of topics
within the Other category, we use exploratory LDA

10See ablation studies in Appendix A for relative contribu-
tions of different features to topic classification performance.
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and BERTopic models (Blei et al., 2003; Grooten-
dorst, 2022).!! Both show that Other utterances
are typically too short!? to clearly denote any topic,
and primarily consist of function words like wh-
question words and deictic pronouns, fillers (e.g.
“um”, “loh”), and temporal or connective mark-
ers (e.g. “then”, “UI15R”, “after”). While some
functional groupings are present, we conclude that
further subdividing the Other topic is not justified,
as no additional coherent semantic topics emerge
from this analysis.

The Personal topic is the next-most highly rep-
resented at the corpus-level, accounting for close
to a third of utterances. This reflects how every-
day conversations often revolve around personal
anecdotes, thoughts, opinions, and feelings, vali-
dating our choice to examine it as a core discourse
topic. The Academic and Professional topics are
also present in the corpus, though their representa-
tion is relatively modest. And, while the Cultural
topic is rare within the SEAME corpus, note that it
still accounts for hundreds of unique utterances.

5.2 Discourse topics interact significantly with
CSW presence, strategy, direction,
quantity, and frequency.

Having a fully labeled corpus, we begin our sta-
tistical study of how discourse topics interact with
aspects of CSW production in SEAME by con-
sidering differences in topic between monolingual
and code-switched utterances. We control for utter-
ances that are greater than 6 tokens in length across
topics, since utterances in the Other topic are no-
tably shorter than those in the other four topics.
Chi-squared tests comparing monolingual and
code-switched utterances by topic all yield signifi-
cant results, with clear patterns in associated odds
ratios (Table 3). The odds that an utterance is about
Academic, Cultural, Personal, or Professional top-
ics, given it is code-switched, are at least two times
those for a monolingual utterance. It seems that
certain discourse contexts significantly lend them-
selves to multilingual, rather than monolingual,
production, which is particularly noteworthy given
their collective minority representation in the cor-
pus overall. In contrast, the odds that an utterance
is about any Other topic, given it is code-switched,
are only about two-thirds of those for a monolin-

""Hyperparameter details are in Appendix A.

2Mean and standard deviation token length for Other utter-
ances are 6.5 and 6.2, respectively. Across all other utterances,
these are 15.1 and 9.3, respectively.
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gual utterance, suggesting that Other topics are
much better expressed in a monolingual fashion.

Topic x> p-val. OR  95% CI
Academic 4433  ** 192 [1.81,2.05]
Cultural 13.7 #0248  [1.52,4.27]
Personal 4302  ** 249 [2.42,2.56]
Professional 357.4 * 3.16 [2.78,3.59]
Other 448.1  *  0.68 [0.66,0.70]

Table 3: Chi-squared tests and odds ratios comparing
topics in monolingual and code-switched utterances.
Odds ratios >1 favor CSW. Odds ratios <1 favor mono-
linguality. p-values less than 0.01 are denoted by **.

Honing in specifically on CSW, utterances on
Academic, Professional, or Other topics are more
likely to be insertionally code-switched than alter-
nationally code-switched (Table 4), reflecting how
specific discourse contexts intersect with the strat-
egy of CSW that is most represented in the corpus.
Each of these topics also has greater representa-
tion of insertional CSW than the corpus overall
(94% on average, compared to corpus-level 89%),
reinforcing the influence of topic on CSW strategy.
Interestingly, in Cultural and Personal topics, in-
sertional CSW is equally and one-third as likely
as alternational CSW, respectively, indicating that
the relatively more complex CSW strategy is more
suited to conversation topics that may require less
subject knowledge to discuss, while the opposite
was true for topics that may be more difficult to
speak on. These patterns suggest that speakers
might attempt to achieve a balance in complexity
between the nature of the discourse topic under
discussion and the CSW strategy used to express
it when producing CSW. Given that both topics’
representation of alternational CSW is the same as
the corpus overall (about 12% in all cases), these
topics’ relative skew towards alternational CSW in
our calculated odds ratios is even more striking.

Topic x> p-va. OR  95% CI
Academic 28.5 wok 1.25 [1.15, 1.36]
Cultural 435.0 * 1.03 [0.61, 1.86]
Personal 2029.2 ok 0.31 [0.30, 0.33]
Professional 54.7 *k 1.79  [1.53,2.11]
Other 1430.0 wok 298 [2.81,3.16]

Table 4: Chi-squared tests and odds ratios comparing
topics in insertional and alternational CSW. Odds ra-
tios >1 favor insertional CSW. Odds ratios <1 favor
alternational CSW. p-values less than 0.05 and 0.01 are
denoted by * and **, respectively.



With respect to language direction of CSW, Aca-
demic and Professional utterances are about two-
thirds as likely to be code-switched from English
to Mandarin, as from Mandarin to English, reflect-
ing the frequency of insertion of English technical,
jargon-like, and/or domain-specific terms into such
multilingual utterances (Table 5). Personal and
Cultural utterances have relatively higher odds of
being code-switched from English to Mandarin,
and are about equally likely to be code-switched
from Mandarin to English. Only utterances on
Other topics are significantly more likely to be
code-switched from English to Mandarin at an odds
ratio of 1.22, which is especially worth noting given
the overall skew of the corpus towards Mandarin.

2

Topic X p-val.  OR 95% CI
Academic 78.0 Hk 0.75 [0.70, 0.80]
Cultural 0.007 - 0.96 [0.61,1.47]
Personal 0.5 - 0.99 [0.95,1.03]
Professional ~ 91.7 *k 0.57 [0.51, 0.64]
Other 102.6 Hok 1.22  [1.17,1.27]

Table 5: Chi-squared tests and odds ratios comparing
topics in English-to-Mandarin (en — zh) and Mandarin-
to-English (zh — en) CSW. Odds ratios >1 favor en —
zh. Odds ratios <1 favor zh — en. p-values less than
0.01 are denoted by **. p-values more than 0.05 are
denoted by —.

Next, we perform one-way ANOVA tests to com-
pare CSW quantity and frequency metrics across
the different discourse topics. For each of CSW
ratio, M-index, and I-index, ANOVA tests show a
strong and statistically significant (p < 0.01) asso-
ciation between each topic and the metric of CSW
richness. This statistical significance holds even
after applying Bonferroni correction to account
for possible noise in discourse topic labels gener-
ated by our best-performing classifier from Sec-
tion 5.1. These associations suggest that variations
in discourse topic can distinguish CSW behavior in
terms of both quantity and frequency of utterance-
level CSW. That is, there are significant differences
in CSW richness in utterances on different topics.
More concretely, we find that the Personal and Cul-
tural topics consistently rank the lowest in terms
of mean CSW richness across metrics, while the
Professional and Academic topics are the two most
highly ranked across the board. The Other topic
sits in the middle of the ranking in each case. These
results provide further evidence of a relationship
between discourse-level conversational context and
various aspects of CSW behavior in SEAME.
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Overall, the results of our statistical analysis
reveal significant interactions between specific
discourse topics and granular patterns of code-
switched speech production in SEAME. Not only
are utterances on Academic, Cultural, Personal,
and Professional topics more likely to be expressed
using CSW, but each of these topics also has a
unique, typical CSW profile. Multilingual utter-
ances on Academic and Professional topics are
characterized by higher quantity and frequency of
CSW, with the majority of such code-switches tak-
ing place from Mandarin to English in an inser-
tional fashion. In contrast, Personal and Cultural
utterances are characterized by fewer and less fre-
quent alternational code-switches from Mandarin
to English. Utterances on Other topics are overall
less likely to be code-switched; when such utter-
ances are expressed multilingually, these are less
striking in their CSW quantity or frequency, but are
more likely to involve insertional code-switches
from English to Mandarin. These findings provide
the motivation for the remainder of the work.

5.3 Unsupervised models learn many
discourse-CSW relationships.

Having found multiple significant interactions be-
tween discourse topics and several fine-grained as-
pects of CSW behavior in SEAME, we further de-
velop our investigation by assessing whether these
relationships are salient enough to be learned by un-
supervised models, and potentially in turn inform
the downstream outputs of such models. Instead of
methods like LDA that explicitly group datapoints
by topic, we want to see if unsupervised models
that do not have this specific topic-centric objective
can still cluster utterances based on both topic and
CSW information, as a stronger test for the validity
of associated patterns. To do so, we implement k-
means clustering, setting £ = 5 to match the num-
ber of distinct discourse topic labels, with random
starting points'? and principal component analysis.
We then compare resulting cluster compositions
across discourse topic and CSW presence, strat-
egy, language direction, and richness, verifying the
significance of these groupings using chi-squared
tests. Throughout this section, we discuss only the
comparisons yielding significant p-values.

We begin by comparing cluster compositions
across topics and CSW presence, and find a clear
separation between Cluster 2 and the remaining

3We motivate this design choice further in Appendix A.



Topic C1 C2 C3 C4 C5

Acad. 6.3% 36% 132% 8.6%  10.0%
Cult. 0.2% 0.1% 0.2% 0.1% 0.9%
Pers. 298% 188% 39.0% 30.1% 62.2%
Prof. 1.2% 0.7% 4.8% 2.1% 2.7%
Other 62.5% 76.7% 42.77% 59.1% 243%

Table 6: Cluster composition by discourse topic.

CcSw? C1 C2 C3 C4 C5
No 0% 99.9% 0% 0% 0%
Yes 100% 01% 100% 100% 100%

Table 7: Cluster composition by CSW presence.

four clusters in terms of multilinguality of con-
stituent utterances; this cluster is almost entirely
dominated by non-code-switched utterances (Ta-
ble 7), while also representing Other topics most
highly (Table 6), in a clear reflection of the specific
association between discourse and monolingual ex-
pression we have found in Section 5.2. Clusters 1,
3,4, and 5 are all dominated by CSW, and each rep-
resents a mix of discourse topics. Cluster 5 is most
representative of Personal utterances while Cluster
3 contains a combined majority mix of Academic
and Personal topics. Although these patterns do not
exactly align with our initial hopes of obtaining five
distinct clusters, each of which is uniquely domi-
nated by one of the discourse topics, these are still
interesting as they mirror many of our earlier sta-
tistical findings. We hypothesize that the absence
of a clear Professional or Cultural cluster may be
due to the relatively lower representation of these
discourse topics in the corpus overall (Table 2).

Strategy C1 C2 C3 C4 Cs
I 587% 0.1% 958% 82.0% 27.0%
A 125%  0.0% 1.6% 105% 3.6%
(0] 288%  0.0% 2.6% 74%  69.4%
None 0.0% 99.9%  0.0% 0.0% 0.0%

Table 8: Cluster composition by CSW strategy.

Considering cluster compositions in Table 8, we
again find patterns of overlap between utterance-
level CSW strategies and discourse topics that align
with those found in Section 5.2. For instance, Clus-
ter 3, which we have already noted for its repre-
sentation of Academic utterances, while simultane-
ously representing the greatest proportion of Pro-
fessional utterances relative to other clusters, also
contains the greatest proportion of insertional CSW.
This reinforces the strength of the interaction be-
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tween discourse and CSW strategy for these topics.
Similarly, Cluster 5, which is dominated by the
Personal topic and contains the greatest propor-
tion of the Cultural topic relative to other clusters,
has the smallest gap in representation between in-
sertional and alternational CSW. This aligns with
our statistically significant observation that these
topics are less associated with insertional than al-
ternational CSW. However, we also note the over-
all lower proportion of alternational CSW in each
cluster, and hypothesize that this may be due to the
relative infrequency of this CSW strategy in the
corpus compared to insertional CSW, as noted in
Section 4.

Next, we compare cluster compositions across
CSW language direction (Table 9) and metrics of
CSW quantity and frequency (Table 10). In the case
of the latter, we transform utterance-level CSW
ratio, M-index, and I-index into binary variables by
denoting values less than the median of each metric
of CSW richness as “low” and values greater than
or equal to the median as “high”.

CSW dir. C1 C2 C3 C4 Cs
en—zh 100% 0.1% 15.6% 0% 64.9 %
zh — en 0% 0.0% 844% 100% 35.1%

Table 9: Cluster composition by CSW language direc-
tion: English-to-Mandarin or Mandarin-to-English.

With respect to CSW language direction, Cluster
1, which primarily consists of utterances on Other
topics, is made up exclusively of code-switches
from English to Mandarin. This is striking as we
know the Other topic is the only one that is sig-
nificantly more likely to be expressed in such a
fashion. Cluster 3, whose combined majority topic
representation is from the Personal and Academic
topics, is dominated by Mandarin to English CSW,
which also aligns with our previous finding, since
the Academic topic in particular is more likely to be
code-switched in this direction. Cluster 5’s English-
to-Mandarin dominance is also interesting, and is
likely due to the presence of the Personal and Other
topics, the former of which is equally likely to be
code-switched in either direction, and the latter of
which is always more likely to be code-switched
from English to Mandarin; their combination likely
determines the overall cluster composition in terms
of CSW language direction. Recall that Cluster 2
effectively contains no CSW (Table 7) and hence
does not contain CSW 1in either direction.



Metric C1 Cc2 C3 C4 Cs
R:H 90.1% 0% 98.9%  90.0% 0%
R:L 99% 100% 1.1% 10.0% 100%
M:H 95.9% 0% 98.1% 87.5% 0%
M:L 41% 100% 1.9% 125% 100%
I:H 90.1% 0% 98.7%  90.0% 0%
I:.L 99% 100% 1.2% 10.0% 100%

Table 10: Cluster composition by metrics of CSW rich-
ness: CSW ratio (R), M-index (M), and I-index (I),
binned into high (H) and low (L) values.

Finally, we examine cluster composition across
metrics of CSW quantity and frequency. We find
that the distribution of high vs. low values of each
metric in Cluster 5 supports our previous finding
that Personal and Cultural topics always contain
the lowest quantity and frequency of CSW. Simi-
larly, Cluster 3 reinforces how the Academic topic
always has the highest values across metrics. The
composition of Cluster 4 also demonstrates how
the Other and Academic topics, which we know are
associated with mid to high levels of CSW richness,
pull metric values up within the cluster.

Overall, our clustering model is able to group
utterances according to both topic and CSW char-
acteristics, which indicates that it can learn rela-
tionships between topics and CSW patterns in a
reasonable way. These results demonstrate that
many of the statistical relationships we have found
between discourse topics and various fine-grained
aspects of CSW behavior in SEAME are significant
enough to be learned by unsupervised models, and
may well inform their downstream outputs, though
we leave a detailed investigation of the latter claim
to future work. A random baseline analysis con-
firms this conclusion and validates that our current
clusters particularly capture topic structure beyond
chance.'* General agreement between our com-
parative clustering analyses and initial statistical
findings lends validity to the latter, demonstrating
their value in understanding and modeling CSW.

6 Discussion

We find that specific discourse topics have no-
table relationships with several fine-grained as-
pects of Mandarin-English CSW in SEAME. These
utterance-level relationships are sufficiently strik-

'4Cramer’s V measures show that the strength of association
between topic labels and current clusters is several orders of
magnitude greater than between topic labels and random, size-
matched clusters (0.168 vs. 0.005; both p-values < 0.01).
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ing as to produce distinct values of CSW features
across dimensions of multilingual spoken behav-
ior that effectively distinguish between the topics
being discussed in those code-switched utterances.

Our exploration and subsequent findings on how
discourse topics relate to the presence of CSW echo
and validate prior work on code-switches func-
tioning as signals of topic shift, e.g. Wei (1998);
Auer (2003), while our study of CSW quantity,
frequency, language direction, and strategy reveal
novel associations with topic at a level of detail pre-
viously not attained in discourse-functional work
on CSW. Specific CSW patterns that group the Aca-
demic and Professional topics, and the Personal
and Cultural topics, are reminiscent of prior quali-
tative work on an emotional detachment effect in
CSW scenarios (Ladegaard, 2018; Ferreira, 2017).
We speculate that the affective properties of cer-
tain kinds of discourse topics may similarly help
determine the CSW style used to express them.
Using Mandarin and English emotion lexica (Mo-
hammad and Turney, 2010, 2013), we preliminarily
find that utterances on Personal and Cultural topics
have significantly greater emotional intensity than
those on Academic and Professional topics (details
in Appendix A). This aligns with our results on
the association between discourse topic complexity
and CSW strategy, and suggests that affect may
modulate this interaction, though further work is
required to confirm this hypothesis. Separately, we
show that more formal topics (i.e. Academic, Pro-
fessional) can involve CSW in speech, unlike prior
studies that have primarily noted CSW in informal
contexts, e.g. Bhattacharya et al. (2023). Finally,
we show that many of the relationships we find
can even be learned and applied by a simple unsu-
pervised clustering model, lending validity to our
statistical findings in a clearly interpretable manner.

7 Conclusion

We extensively examine the relationship between
discourse topic and patterns of spontaneous CSW
in the SEAME corpus. We find that (1a) certain dis-
course topics are much more likely to be expressed
in code-switched utterances than monolingual ones;
(1b) those discourse topics have significant associa-
tions with multilingual language production across
previously unexamined patterns of CSW strategy,
language direction, quantity, and frequency; (2)
these associations lend themselves towards the in-
ference of unique CSW profiles linked to specific



(groups of) topics; (3) the statistical relationships
found in (1) and (2) are salient enough to be learned
and applied in part by unsupervised clustering mod-
els. We conclude that the nature of the discourse
topic in conversation contributes meaningfully to-
wards motivating diverse patterns of Mandarin-
English CSW in speech. Our work’s novelty is
based in its context-sensitive approach towards un-
derstanding a dataset that we augment with new
annotations across features of discourse and CSW.
We hope this work will serve as a first step to-
wards building improved models of CSW compre-
hension and informing the generation of authentic
and discourse-informed multilingual speech.

Limitations

Our work focuses on a single language pair in
a single corpus of CSW, which is somewhat
skewed towards Mandarin relative to English. Both
languages are represented only in the forms in
which they are typically spoken in Singapore and
Malaysia, in contrast to the majority of Mandarin-
English code-switched corpora that are sourced
from Mainland Chinese speakers. We acknowl-
edge the need to extend our methods to the same
language pair within different cultural contexts, and
to additional language pairs with varying levels of
typological distance, to test the robustness of our
findings. We plan to do so in future work. Due to
lack of access to CSW datasets, particularly those
containing highly time-intensive manual discourse-
level annotations and/or less discourse topic spar-
sity than in SEAME, our work makes use of the
best currently available resources and serves as a
reasonable first step towards understanding the role
of discourse topics on code-switched speech pro-
duction. For the Cultural topic in particular, we
acknowledge that the relative corpus-level repre-
sentation of this discourse topic in SEAME makes
the associated findings, though novel and insight-
ful, difficult to generalize. We are very interested in
ultimately replicating our analyses on other CSW
datasets, but also note that direct comparisons may
be difficult since the categories and distributions of
topics may differ across datasets.

With respect to our discourse topic classifiers,
we note the inherent limitation of a single utterance
receiving only a single label in our multi-class set-
up. By definition, this model design choice ignores
the possibility of certain utterances dealing with
multiple topics at a time by collapsing predictions
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into a single output label. Given the number of dis-
course topics we examine in this work, we believe
this was nonetheless a reasonable design choice
that prevented subsequent analyses from becoming
overly complex.

Relatedly, it could have been helpful to incorpo-
rate additional features, such as Linguistic Inquiry
and Word Count (LIWC) labels (Boyd et al., 2022),
into our machine learning discourse topic classi-
fiers. We speculate that such features covering psy-
chological processes and personal concerns could
have augmented the performance of our supervised
models. However, it is difficult to reliably extract
LIWC features from code-switched language, as
this framework was originally developed for use
in monolingual settings, and we leave this method-
ological extension to future work.

Finally, while our best-performing classifier
achieves an accuracy of 72%, which is well above
baseline performance, there remains 28% error in
subsequently inferred discourse topic labels. This
residual noise in the data could impact downstream
statistical analyses. We handle this using error
aware correction in our one-way ANOVA tests, and
preliminarily find in Appendix A.12 that any re-
maining noise effectively has no impact on our cur-
rent results. However, a fruitful direction for future
work would be to replicate these downstream re-
sults by exploring alternative methods for deriving
discourse topic labels, such as pre-trained multilin-
gual transformer models and LLMs, e.g. mBERT
or zero-shot GPT. We chose not to use these in
the present work primarily in order to avoid issues
arising from domain mismatch in pre-training data,
which may not be sufficiently mitigated through
fine-tuning due to a scarcity of appropriate code-
switched data, as well as the relatively lower inher-
ent transparency, interpretability, and modularity
of these methods in comparison to each of our four
classifiers. However, we acknowledge that in future
work it may be worth trading off the drawbacks of
these methods, as well as relevant cost and feasi-
bility concerns, in favor of their potential to boost
classification performance, which would increase
the reliability of downstream analyses. Our delib-
erate design choice to avoid such models in the
present work is particularly relevant since our main
contribution is not to provide state-of-the-art model
performance, but rather to leverage our current cus-
tom models to augment data and provide nuanced
insights on that data.
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A Appendix

A.1 CSW quantity and frequency metric
definitions.

CSW ratio measures the number of code-switches
normalized by the token length of the utterance.
This differs from M-index, which incorporates
information about the utterance-level balance be-
tween language varieties present. Different from
both metrics of CSW quantity, I-index reflects
CSW frequency via the number of potential switch
points in an utterance. All three metrics of CSW
richness have a minimum value of 0, associated
with monolingual utterances. The maximum value
of CSW ratio approaches but does not equal to 1,
while both M- and I-indices can achieve maximum
values of 1, associated with a code-switched utter-
ance evenly mixed between languages.

A.2 Discourse topic definitions and examples.

Academic: utterances discussing education (at pri-
mary, secondary, or university levels), research,
studying, or coursework.

Example 1: ASFf il exam. ["The kind he takes
on an exam."|

Example 2: fif 5& full time tuition teacher. ["He
is a full time tuition teacher."]

Example 3: 3X#F fif 34 A L graduate in four
years 14 25 58 [, ["This way he can graduate in
four years, which is pretty impressive."]

Cultural: utterances discussing traditions, cus-
toms, festivals, cultural practices, holidays, or reli-
gious celebrations.

Example 1: 85 17 = —H Ur 2] H N7
ME Christmas carols #} 5 1RIF r. ["Then you’ll
keep hearing people singing Christmas carols and
it’s fun."]

Example 2: Oh Chinese New Year & #{ &
—7¥ [. ["Oh Chinese New Year is the same every
year."]

Example 3: But /b 1t 1£ preserve i) A1
culture ftff 7472 % Hokkien. ["But at least he still
preserves his culture and he still knows Hokkien.]

Personal: utterances discussing hobbies, day-to-
day/habitual experiences, opinions, feelings, pref-
erences, family, friends, or other relationships.

Example 1: A& @ ' boyfriend 52 like fi{-
["But her boyfriend likes to do - "]

Example 2: ftfl 5t 515 like Bt ER A1 the
feeling is not right anymore because . AR %0
R BT B XHE. ["He feels like the feeling
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is not right anymore because I clearly know you
betrayed me.]

Example 3: I think when you break up R 1/
i1 AT LA i %% 5 friend /& K24 at that time
TR BR A AR e AR B, [T think
when you break up you can continue to be friends
because at that time you didn’t really feel like you
were together.]

Professional: utterances discussing work life
and technical aspects of a job, including the use of
technology or programming.

Example 1: Actually what I did was to source
for {17 2 /7 ] data. ["Actually what I did was
to source for their clients’ data."]

Example 2: start {/RH business /R 7] L. ["You
can start your business."]

Example 3: Bt 40 FX interested in supply
chain 415 ["For example, if I am interested in
the supply chain."]

A.3 Instructions for discourse topic
annotation task.

Please label the following utterances for topic of
conversation discussed: Academic, Professional,
Personal, Cultural, or Other. Below are guidelines
to help you distinguish between topics.

* Academic: Topics related to education, re-
search, school, university, study, or course-
work.

— Examples: discussions about classes, re-
search projects, GPA, or teachers.

Professional: Topics related to work, technol-
0gy, programming, or aspects of a job, espe-
cially technical ones.

— Examples: discussions about work, com-
pany, office, salary, etc.

Personal: Topics focused on personal life, hob-
bies, family, friends, feelings, or relationships.

— Examples: conversations about family
members, personal emotions, thoughts,
preferences, or day-to-day/habitual expe-
riences.

Cultural: Topics related to traditions, festi-
vals, cultural practices, holidays, or religious
celebrations.

— Examples: discussions about cultural
holidays*/events, or traditional customs.
*Not just mentions of vacations or trips.



e Other: If the utterance does not clearly fit into
any of the above categories.

— Examples: Short utterances will tend to
fit into this topic.

A.4 Validating the current set of core
discourse topics.

We believe the current granularity of discourse top-
ics studied represents a reasonable starting point for
this work. To validate this, we perform additional
exploratory topic modeling, with an automatic num-
ber of topics from a BERTopic model, on each
predefined topic in the corpus to assess whether
additional, finer-grained topics emerge from any
(see Appendix A.13 for implementation details).

While each of the Personal, Academic, and Pro-
fessional topics demonstrate related subdivisions,
(discussing relationships with friends/family vs.
thoughts/feelings/preferences; studying for exams
vs. specific school subjects; technical jargon vs.
professional roles and responsibilities), none of
these is distinct enough from its parent topic to war-
rant defining a distinct new topic; see Appendix A.5
for detailed examples. Thus, we confirm the appro-
priate granularity of the set of topics we choose to
study.

A.5 Examples of related but non-distinctive
sub-topic clusters within Academic,
Personal, and Professional topics.

A5.1 Academic.
* Sub-topic 1 (discussing exam preparation): 2%
12, exam, study, & 7%, studying.

* Sub-topic 2 (discussing specific school sub-
jects): school, lecture, maths, science, ger-
man.

Other Academic sub-topics are defined mainly
by functional words, indicating that more granular
topics do not exist within the Academic topic, e.g.

Sub-topic 3: FA1, then, %4, AL, R 7.
A.5.2 Personal.

* Sub-topic 3 (discussing thoughts and prefer-
ences): HA5F, iXHFF, FLEL, like, think.

* Sub-topic 5 (discussing interpersonal relation-
ships): fBAI], my, friend, A, parents.

Other Personal subtopics are also defined mainly
by functional words, indicating that more granular
topics do not exist within the Personal topic, e.g.
Sub-topic 1: that, is, it, and, then.
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A.5.3 Professional.

* Sub-topic 3 (discussing professional roles and
responsibilities): lead, business, project, man-
ager, fulltime.

* Sub-topic 5 (discussing jargon-like aspects):
processing, —, job, software, data.

Other Professional subtopics are defined with
related words, but in a less clearly cohesive way,
indicating that more granular topics do not exist
within the Professional topic, e.g. Sub-topic 4: part,

time, Bl ], PUAE, L.

A.6 Seed words used for initial rule-based
classifier.

* Academic: course, class, unit, lesson, lecture,
batch, final, review, conference, presentation,
reference, archive, result, semester, sem, aca-
demic, student, admit, scholar, teacher, prof,
report, learn, uni, school, book, chapter, syl-
labus, read, paper, essay, econ, math, physics,
chem, bio, science, psychology, grade, point,
score, credit, fail, committee, major, master,
phd, thesis, module, subject, average, ana-
lyze, analyse, honours, junior, question, lab,
diploma, percent, quiz, exam, tutor, tuition,
enroll, prove, uniform, graduate, orientation,
levels, recess, homework, primary, secondary,
year, study, engineering, gpa, studies, college,
research, education, edu, pre, 1512, BEZ,
TC, VAR, VREE, LR, BIR, B>, &1, 1H
A, KRB 2, BN, R, I, 5], K
LR, B, B, BEERN, FEE, B,
E, 25, B, M, LA, R, R,
DEE SR, S EL B, 0, AN, &
e, Bk, mit, M4, R0 Bk, RBLE,
L8, AT, A, R, WA, (A1, SEEGE,
R, B, EE, sk, S, 23, T
UERA, iRk, Belk, T, AP, KB, KEE
VB, /N, Fae, SEg % 5] B, TR IR &
B O R T E AR

Cultural: christmas, carol, halloween, new
year, typical, traditional, pray, buddha, jesus,
islam, church, god, goddess, red envelope,
gathering, taoist, bible, scripture, christian,
orthodox, holiday, holidays, religion, lantern,
china, mid-autumn, ZEHETT,EWE, 7 2%, B

AR ET, B, B R0y, Wrds, 06, BR

BR, (R B, W, M, 4LE, R,

B, 22, 23 BB, ESL |/ET



B, JTH,JCH 7R R AL LR 4R B
HACKT KT 0k, 7 LB L 4R

Personal: think, feel, feeling, understand, be-
lieve, trust, like, know, prefer, want, miss,
worry, regret, stress, remember, happy, sad,
afraid, miserable, excite, mad, anger, angry,
friend, cousin, mother, father, mom, dad, par-
ent, child, brother, sister, sibling, uncle, aunt,
daughter, son, family, relative, husband, wife,
boyfriend, girlfriend, fun, together, individual,
personal, relationship, play, piano, rugby, ten-
nis, badminton, soccer, football, basketball,
hobby, usual, often, home, house, room, live,
birthday, community, facebook, show, name,
person, people, identity, favourite, favorite,
swim, self, 0% B, B, B, HH15,
B, B, 7iE, HEW, 2, 8, 1O,
Ja i, T, A, BROR, AR, FE, R,
ey, AL BUR, IR, FoR, B5E, AOE,
o, W, AR, A, SR, fHER, AR
ok, BURL, BT, )L, JLF, ZKRE, R, oL
K, EF, BHK, TR, R, —iE, 1A,
AN, K&, B, 5, BBk, M3k, PR,
JEEK, BB, B, PE, B, K BT, B
[|], 423, &2 H, #HIX, e, ZiE, 84, A
v, \¥, 31, EW, DK, & 5,80
JER GRS I T S R R R SR ERIE IS c
9598, A AR A B B T, BRI
U A5 M B, B 2.

Professional: freelance, position, job, part-
time, occupation, apply, application, work,
interview, dollar, cent, salary, technology,
program, boss, colleague, staff, regression,
model, correlation, correlate, download, sen-
sor, email, database, internet, website, system,
algorithm, bug, update, server, warranty, busi-
ness, service, user, experience, audit, consult,
career, manage, stock, portfolio, project, sys-
tem, procedure, develop, design, quality, team,
equipment, lead, produce, function, tool, skill,
consumer, customer, employee, contract, in-
formation, solve, solution, profit, design, ma-
chine, paperwork, training, zoom, company,
firm, hierarchy, maintain, chip, weld, manu-
facture, manufacturing, property, properties,
special, identify, admin, bank, software, tech,
troubleshoot, industry, data, recruit, hire, offer,
trademark, market, competition, government,
capital, promotion, reboot, protocol, profit,
commission, downstream, commercial, indus-
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trial, stage, tutorial, manage, manager, inter-
face, B HIHERL, BRAL, TAE, #EHR, B, F
5, BiE, TIE, mit, T, 9, FoK, 50K,
7, M, A5, T, |05, 83, A e,
HHR, T, R, R, 2R E, B
BRI, Wk, RG%, B, R, B, RS54,
RIE, W55, Ik, F P, 25, 5, &,
B, B2, IR, I G, W, R4t 2
Fr, FE&, it BiE, BIRA, e, S, &
7=, DheE, TR, #6e, HE, &5, AL,
GIF, (5B, MR, BRIRTT 2, FINE, &t Bl
ay, SO TAE, 85I, 48hk, AF], AF], EIX
BER, Y4BT, R, IR, E, dlE, T,
B, FEER, A, B A, BAT, B, FOR,
PR HERR, 1T, £, 1658, B, feft, 7
¥R, T8, T, BUN, B, (2%, EHE
B, B AN, R4, T D, ol B
B i T fh, T 008 A S

A.7 Performance of rule-based classifiers on

full ground truth set.
Classifier Accuracy F1 Score
Initial lexicon-based 0.61 0.54
Expanded lexicon-based 0.59 0.53

Table 11: Rule-based classifiers’ accuracy and macro F1
score on discourse topic labeling over the entire ground
truth set.

A.8 Filler words used in ensemble and
self-supervised classifiers.

Um, ah, uh, eh, er, hmm, mm, mmm, umm, ar, hm,
W, ., ., W, I, R, e

Ty TN u?’ .
A.9 Classifier models’ hyperparameter
settings.

In the ensemble classifier, the TfidfVector-
izer used has its maximum features set to 2000
and its analyzer set to ‘word’. All other parame-
ters are left at default values. All numeric features
used in this model are normalized to zero mean
and unit variance using StandardScaler. The
ensemble architecture consists of three base mod-
els and one meta model. The first base model is a
logistic regression model with the following hyper-
parameters: C' = 0.9, class weight = ‘balanced’,
maximum iterations = 3000, and solver = ‘saga’.
The second base model is a random forest classi-
fier with the following hyperparamters: number
of estimators = 300, maximum depth = 20, class
weight = ‘balanced’, and random state = 57. The



third base model is a gradient boosting classifier
with the following hyperparameters: number of
estimators = 250, learning rate = 0.03, maximum
depth = 6, subsample = 0.8, and random state = 57.
All base models are calibrated using Calibrat -
edClassifierCV with cv = 3. Calibration of
output probabilities uses Platt scaling. The meta
model is a logisic regression model with default
hyperparameter settings. The train/test split for the
ensemble is determined using random state = 57.

In the self-supervised classifier, the Tfid-
fVectorizer used has its maximum features
set to 3000, ngram range set to (1, 2), and mini-
mum df set to 3. As with the ensemble model, the
numeric features used in this classifier are normal-
ized to zero mean and unit variance using Stan-—
dardScaler. The sentence embeddings used
have output dimension = 384. These are converted
to sparse CSR and stacked horizontally. The base
model for the self-supervised classifier is a logistic
regression with solver = ‘liblinear’, class weight =
‘balanced’, and maximum iterations = 3000 (2000
in loop iterations). This base model is calibrated
using CalibratedClassifierCV with cv =
5 and method = ‘sigmoid’. Output probabilities
are also calibrated using Platt scaling. As with the
ensemble classifier, data splits for training and eval-
uation are determined with random state set to 57.
In addition, the stratify parameter is set to y. The
self-training loop has its number of iterations set to
5, with base per-class confidence thresholds as fol-
lows: Academic = 0.6, Cultural = 0.3, Other = 0.9,
Personal = 0.8, Professional = 0.9. The maximum
pseudo-labeled samples per class per iteration are
as follows: Academic = 100, Cultural = 200, Other
= 100, Personal = 100, Professional = 100. For
the Cultural class in particular, we implement dy-
namic thresholding, which we adjust using the 90th
percentile probabilities for the class. This can be
lowered slightly if insufficient samples are added,
using dynamic adjustment = 0.05. We also imple-
ment hard negative mining for the Cultural class.
After self-training, misclassified Cultural samples
in the validation set are oversampled threefold and
added back into the training set. Re-training occurs
with these hard examples.

For both of the above models, we manually tuned
hyperparameter settings until we found a good set
of values that produced reasonable per-topic perfor-
mance, especially on minority classes in the data.
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A.10 Ablation studies on ensemble and
self-supervised classifiers.

For the ensemble classifier, sentence embeddings,
tf-idf, and lexicon count features contribute slightly
positively to model performance and to roughly
equal degrees, as demonstrated by the small de-
creases in accuracy resulting from each of their
exclusion from the model pipeline (Table 12). In
contrast, the exclusion of acoustic-prosodic and
other lexical features from the model improves
model performance, suggesting that these features
are detrimental to accurate classification decisions.

Excluded feature group  Accuracy F1 score

- 0.68 0.62

tf-idf 0.67 0.67

Lexicon seed word counts 0.67 0.67
Lexical 0.69 0.69
Acoustic-prosodic 0.71 0.70
Sentence embeddings 0.67 0.67

Table 12: Comparing ensemble classifier accuracy and
macro F1 score across subsets of the entire feature set.
The first row, where no features are excluded, denotes
the performance of the model on the entire feature set,
as originally shown in Table 1.

Excluded feature group  Accuracy F1 score
- 0.72 0.71
tf-idf 0.70 0.69
Lexicon seed word counts 0.70 0.69
Lexical 0.71 0.71
Acoustic-prosodic 0.72 0.71
Sentence embeddings 0.68 0.67

Table 13: Comparing self-supervised classifier accuracy
and macro F1 score across subsets of the entire feature
set. The first row, where no features are excluded, de-
notes the performance of the model on the entire feature
set, as originally shown in Table 1.

For the self-supervised classifier, sentence em-
bedding features are the single biggest positive con-
tributor to model performance, as demonstrated by
the drop in accuracy from its exclusion (Table 13).
Tf-idf and lexicon count features also contribute
positively and roughly equally. On the other hand,
the exclusion of acoustic-prosodic and other lexi-
cal features from the model does not affect perfor-
mance, indicating that these may act as a source of
noise instead of a model signal. These patterns are
generally consistent with those from ablations over
the ensemble classifier’s features.



A.11 Per-class performance of our
best-performing (self-supervised) topic
classifier.

We report per-class performance metrics and cor-
responding confusion matrix statistics for our best-
performing topic classifier to derive further insight
into which classes drive the overall performance of
this self-supervised model (Table 14 and Figure 1).

Class Precision Recall F1  Support
Academic 0.78 0.67 0.72 227
Cultural 0.85 0.71 0.77 24
Personal 0.67 0.66 0.67 685
Professional 0.74 0.53 0.62 189
Other 0.73 0.81 0.77 914

Table 14: Self-supervised classifier performance over
the held-out test set, stratified by class, i.e. discourse
topic. Recall that our best-performing topic classifier
achieves an overall accuracy of 0.72, corresponding to a
macro F1 score of 0.71 (Table 1). Given the respective
class-level support values, we calculate the contribu-
tion to model accuracy of each class, in order: 0.07
(Academic), 0.01 (Cultural), 0.22 Personal, 0.05 (Pro-
fessional), and 0.36 (Other). Thus, it appears that the
overall performance of the model is primarily driven
by the Other class (corresponding to 36.3% of correct
predictions) and the Personal class (corresponding to
22.2% of correct predictions), while the other three dis-
course topic classes contribute relatively little.

0.8

academic 0.67 0.00 0.14 0.15 0.04

0.7

0.6
cultural

0.5

other 0.4

True label

+0.3
personal

r0.2

professional - [ 01

- 0.0

Predicted label

Figure 1: Row-normalized confusion matrix associated
with our best-performing topic classifier. This provides
additional support for the Other topic driving the major
part of this self-supervised model’s performance.
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A.12 Discourse topic label distribution in
subsets of the corpus.

Discourse topic % of corpus % of GT % of AA

Academic 7.8 11.0 7.5
Cultural 0.1 1.2 0.1
Personal 28.1 34.1 27.5

Professional 2.4 9.1 1.7
Other 61.5 44.6 63.2

Table 15: Discourse topic label distribution across
classes in the entire SEAME corpus, the ground truth
(GT) subset of the corpus, and the automatically-
annotated (AA) subset of the corpus. This breakdown of
results helps to diagnose a potential source of class im-
balance in the fully-annotated corpus and may point to
some distributional shift induced by our best-performing
classifier. However, in spite of this, note that we repli-
cate all the patterns described in Section 5.2 when
we run the same analyses on 1) data from the ground
truth set only and 2) data from high confidence sub-
sets (P >= 0.7, P >= 0.8, P >= 0.9) of the
automatically-annotated portion of the corpus; the sub-
sequent results remain statistically significant with the
same general trends by discourse topic for CSW pres-
ence, strategy, direction, quantity, and frequency, though
the exact values of odds ratios are slightly different. Sim-
ilarly, we also replicate the majority of clustering pat-
terns described in Section 5.3 using both 1) the ground
truth subset and 2) the high-confidence subsets of the
automatically-annotated portion of the corpus; cluster
means in each case closely match those corresponding
to clusters in Section 5.3. Combined, these replications
reinforce the reliability of our current findings.

A.13 Exploratory LDA and BERTopic model
hyperparameter settings.

For our LDA analysis on the Other topic reported
in Section 5.1, we defined a custom list of En-
glish and Mandarin filler words (see Appendix A.8)
based on prior work (Bhattacharya et al., 2024a).
We treated these as stopwords. When building the
model vocabulary, we ignored terms that had a
document frequency higher than 0.9, and used a
cut-off value of 50. We used 5 as the number of
topics, which agreed with the automatic number of
topics yielded by the BERTopic model with all-
MiniLM-L6-v2 embedding for the same analy-
sis. We used the default ‘batch’ learning method
for LDA. For the exploratory sub-topic analyses
on the Academic, Personal, and Professional top-
ics (see Appendix A.4), we use the same model
implementation details.



A.14 Unsupervised clustering initialization.

We select starting points at random to ensure that
final k-means clustering results in Section 5.3 are
not unduly influenced by initial points. We verify
the validity of the conclusions that directly follow
this design choice by re-running our current clus-
tering implementation across 30 additional random
seeds using different random starting points. We
also try an initialization setting that uses one ut-
terance from each topic as starting points for clus-
tering. In each case, the resulting clusters retain
the overall trends in cluster compositions that we
report in Section 5.3, though the exact proportions
in each cluster change slightly. This demonstrates
that that our qualitative conclusions are robust to
initialization and validates our design choice.

A.15 Investigating the interplay of affect and
discourse topic.

We conduct exploratory analysis to follow up on
our hypothesis of a relationship between affect and
discourse topic that goes on to shape the CSW
patterns used to express those topics. To begin
to verify the extent to which each discourse topic
uses affective language, we combine English and
Mandarin emotion lexica from Mohammad and
Turney (2010, 2013) and calculate utterance-level
normalized emotional intensity scores across eight
basic emotions (anger, fear, anticipation, trust, sur-
prise, sadness, joy, disgust) and two categories of
sentiment (positive, negative). We bin utterances
into high- or low-emotional intensity, based on
the corpus-level median normalized emotional in-
tensity score. We then perform chi-squared tests
to compare emotional intensity across topics (Ta-
ble 16). On average, the Personal and Cultural top-
ics have greater odds of expressing high emotional
intensity than low emotional intensity, relative to
the Academic and Professional topics. Based on
these results, we posit that greater affect is linked
to discourse topics that require less up-front sub-
ject knowledge to discuss, i.e. less complex topics,
which in turn allows for their expression using more
structured and complex CSW strategies.
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2

Topic X p-val.  OR 95% CI
Academic 185.8 wok 1.36  [1.30, 1.42]
Cultural 4.0 * 1.39 [1.01, 1.91]
Personal 3950.7 * 234  [2.28,2.41]
Professional ~ 231.8 Hok 1.80 [1.67,1.95]
Other 4982.2 *k 0.41 [0.40, 0.42]

Table 16: Chi-squared tests and odds ratios comparing
topics in high and low emotional intensity utterances.
p-values less than 0.05 are denoted by *. p-values less
than 0.01 are denoted by **.
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Abstract

Discourse adverbials are key features of dis-
course coherence, but their function is often
ambiguous. In this work, we investigate how
the discourse function of otherwise varies in
different contexts. We revise the function set in
Rohde et al. (2018b) to account for a new mean-
ing we have encountered. In turn, we create the
otherwise corpus, a dataset of naturally occur-
ring passages annotated for discourse functions,
and identify lexical signals that make a function
available with a corpus study. We define con-
tinuation acceptability, a metric based on sur-
prisal to probe language models for what they
take the function of otherwise to be in a given
context. Our experiments show that one can
improve function inference by focusing solely
on tokens up to and including the head verb
of the continuation (i.e., otherwise clause) that
have the most varied surprisal across function-
disambiguating discourse markers. Lastly, we
observe that some of these tokens confirm lexi-
cal signals we found in our earlier corpus study,
which provides some promising evidence to
motivate future pragmatic studies in language
models.!

1 Introduction

Discourse coherence helps us understand what a
speaker or writer is trying to say in placing one
segment of text next to another (Kehler, 2006). In
this paper, we focus on a key aspect of discourse
coherence: the discourse adverbial otherwise, a
word whose function in discourse depends on both
its lexical semantics and a pragmatic understanding
of the context. As seen in Figure 1, otherwise can
convey 1) CONSEQUENCE: what would happen
when a situation doesn’t occur, 2) ENUMERATION:
what is another option to achieve some goal, and
3) EXCEPTION: what is usually the case given that
the clause left of otherwise, or left hand side [LHS]
conveys an exception.

!Code and data are available in https://github.com/
GuifuLiu/otherwise
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Because
ou’ll o 1
Take your umbrella. Otherwise, you'll get wet!
(a) you'll get wet (CONSEQUENCE)

(b) bring a raincoat (ENUMERATION )

(c) it's best to travel light (EXCEPTION)

Why should I take
my umbrella?

Figure 1: An example of otherwise functions.

Being able to distinguish these discourse func-
tions is important for downstream applications
in natural language understanding. For example,
when asked “Why should I take an umbrella?”’, a
question-answering system should apply clause (a)
and respond with “to avoid getting wet”, rather than
clause (b) “to avoid bringing a raincoat”.

Although Rohde et al. (2018b) have shown that
human participants can distinguish these discourse
functions in a provided context, we still don’t un-
derstand the signals that make such a function
available, and the extent to which language mod-
els can infer these discourse functions. In ad-
dition, previous work has been limited to small-
scale, researcher-constructed examples in the con-
text of psycholinguistic studies (Rohde et al., 2016,
2018a).

To shine light on these questions, we introduce
the otherwise corpus, a dataset of 294 naturally-
occurring passages annotated for discourse func-
tions, and a revised otherwise function set, to ac-
count for a new meaning that is not discussed in
Rohde et al. (2018b). Through corpus study, we
find that these respective functions are associated
with the presence of distinctive lexical cues such
as negation markers, modal triggers, and conjunc-
tions.

To study how language models infer the function
of otherwise in context, we define continuation
acceptability: we replace otherwise with a set of
candidate discourse markers that are distinctive of
a function (e.g., alternatively for ENUMERATION).
We expect that the model will accept the one that
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best fits the context by assigning low surprisal (a
word’s negative log probability in context) to the
continuation (the text segment after a candidate
marker, or right hand side [RHS]). We validate this
metric by showing that it can infer the annotators’
assigned function better than a majority baseline,
though its ability to do so varies across discourse
functions of the passage and models.

We then explore alternative aggregation methods
beyond the per-token average used in continuation
acceptability to identify key tokens that help signal
the function of otherwise. We find that solely focus-
ing on tokens up to and including the head verb of
the continuation that have the most varied surprisal
across discourse markers shows convincing perfor-
mance improvement, despite ignoring other tokens.
In addition, some of these tokens confirm lexical
signals identified in the corpus study, suggesting
that when the model infers the otherwise function,
these signals are indeed relevant.

Our contributions are (i) the otherwise corpus, a
dataset of naturally-occurring otherwise passages
annotated for discourse functions (§3.2), (ii) con-
tinuation acceptability, a new metric based on lan-
guage models to probe for their most accepted dis-
course function (§3.4), (iii) insights into how lexi-
cal signals help make a discourse function available
(§3.3), and (iv) results showing how language mod-
els are affected by certain aspects of the context
(84.2, §4.3).

2 Related Work

Theories of discourse coherence shape our research
questions and inform our experimental design. In
what follows, we begin by outlining prior work
on interpreting otherwise in context (§2.1). We
then discuss the application of language models in
discourse research (§2.2).

2.1 Otherwise in Context

Knott (1996) studied the semantics of otherwise in
relation to other discourse markers with a substi-
tution test to discover when a writer is willing to
substitute otherwise for another discourse marker.
Otherwise was found to be synonymous with if not,
a hyponym of or and or else, and contingently sub-
stitutable with alternatively. The finding suggests
that otherwise exhibits granularity in its semantic
meaning.

Webber et al. (1999) noted that otherwise is com-
patible with additional discourse relations, such as
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an unmarked because in “If the light is red, stop.
Otherwise, you might get run over". Likewise, Ro-
hde et al. (2016) have shown that, in the presence
of otherwise, people infer additional discourse re-
lations that hold jointly with those associated with
the adverbial, by inserting connectives because, or,
but before otherwise. For instance, in Figure 1,
one may insert because to indicate inference of AR-
GUMENTATION for (a), or to indicate inference of
ENUMERATION for (b), and but to indicate infer-
ence of EXCEPTION for (c).

Rohde et al. (2018b) subsequently provide em-
pirical evidence for why conjunctions inserted be-
fore otherwise split among these three. They have
found that variability in the choice of conjunctions
arises from the lexical semantics of otherwise, com-
bined with inferences of its discourse function (to
be discussed in §3.1).

Our work builds on previous findings by scru-
tinizing the lexical signals that make a function
available, using large-scale, naturally occurring ex-
amples that represent how a speaker or writer uses
the discourse adverbial, and examining how lan-
guage models infer the functions of otherwise.

2.2 Discourse and Language Models

The use of language models in discourse is an
active research area. Recent work on discourse
markers and language models has taken two main
approaches: (i) using cloze tasks with masked lan-
guage models to predict connectives (Kurfali and
Ostling, 2021; Pandia et al., 2021; Stodden et al.,
2023; Dong et al., 2024), and (ii) using prompt-
ing to insert discourse connectives for implicit dis-
course relation annotation (Yung et al., 2024) and
to uncover the function of discourse particle actu-
ally (Sadlier-Brown et al., 2024) and just (Sheffield
et al.).

While standard masked language models may be
limited in predicting multi-token discourse markers
without additional training (Kalinsky et al., 2023),
prompting also has several shortcomings. In par-
ticular, small variations in the prompt are shown to
affect model outputs (Salinas and Morstatter, 2024;
Mizrahi et al., 2024). To avoid the drawbacks of
prompting, we use surprisal scores of language
models to infer the discourse function of otherwise.
There is also an increasing interest in the use of sur-
prisal to account for a wide range of linguistic phe-
nomena, such as sentence processing (Wilcox et al.,
2018), utterance predictability (Giulianelli et al.,



2023), and discourse structure (Tsipidi et al., 2024).
In our study, we apply surprisal to investigate the
discourse function of an ambiguous adverbial.

Surprisal has also been used to test the effect
of discourse connectives on discourse coherence.
Zhou et al. (2010) constructed synthetic passages
by inserting a candidate implicit connective be-
tween a pair of arguments. A language model is
then used to calculate the perplexity of every token
in the constructed passage. The connective from
the passage with the lowest mean surprisal is cho-
sen as the best implicit connective for the argument
pair.

Cong et al. (2023) used controlled psycholinguis-
tic stimuli and calculated the surprisal of a critical
word to test the effect of discourse connectives
even so and however on reversing the expectations
about an event. Similarly, we measure how the
expectation for the continuation is influenced by
candidate discourse markers that disambiguate oth-
erwise functions, which may be coherent or not
depending on the context. The main differences
are that the discourse functions, discourse markers,
and the context we investigate are more diverse
and complex than those used in psycholinguistic
stimuli, which require the model to understand a
wider context.

3 Methodology

3.1 Revised Function Set of Otherwise

Rohde et al. (2018b) define three functions of oth-
erwise based on both the lexical semantics of other-
wise and the relation that humans infer between
two segments in the passage. They are shown
in Figure 1. One function is ARGUMENTATION,
where the clause to the right of otherwise, [RHS]
shows what the result will be if certain advice in
[LHS] is not followed, as in (a). Another func-
tion is ENUMERATION. When the speaker provides
two equally viable options to fulfill a shared goal,
[RHS] introduces an alternative option, as in (b).
A third function is EXCEPTION, where [RHS] ex-
presses what is usually the case, while [LHS] spec-
ifies an exception to it, as in (c).

However, we have encountered an additional
meaning of otherwise that does not fit into this
function set:

(d) I like you too. Otherwise, we wouldn’t be
friends.

(e) Of course I mean it. Otherwise, I wouldn’t
ask.

&3

For these passages, [RHS] doesn’t provide a reason
for the claim in [LHS], an equally viable option, or
a description of what generally holds. Instead, the
otherwise clause describes a logical conclusion if
the situation in the [LHS] doesn’t arise. We name
this new function CONSEQUENCE.

All ARGUMENTATION passages fulfill the defini-
tion of CONSEQUENCE, as their otherwise clauses
describe an undesirable or negative outcome that
can be avoided if the advice in the main clause is
followed. However, the opposite is not necessarily
true. Therefore, we define ARGUMENTATION as a
subordinate function of CONSEQUENCE. However,
when we mention CONSEQUENCE as a passage la-
bel in the following sections, we refer to passages
that are CONSEQUENCE but not ARGUMENTATION.

We provide definitions and examples of the re-
vised function set in Table 1.

3.2 The otherwise corpus

The otherwise corpus consists of 294 passages with
sentence-initial otherwise that are annotated for our
revised discourse functions in §3.1. These passages
are randomly sampled from the Corpus of Con-
temporary American English or COCA (Davies,
2008), and the British National Corpus or BNC
(BNC Consortium, 2007) and span a wide array of
sentence constructions (e.g., declarative, impera-
tive, question), genres and modalities (e.g., blogs,
academic, fiction, TV, movies). All passages are
contextually contained so that the context provided
in the passage is sufficient to infer the discourse
function.

To identify the discourse function that is opera-
tive in a passage, we use a paraphrase task: for each
passage, every function of otherwise is assigned a
paraphrase to convey the lexical semantics of that
function (Paraphrase in Table 1), and participants
infer a valid paraphrase.

The final dataset contains 294 human-annotated
otherwise passages and their discourse functions
(Table 2). Each passage was annotated by a re-
searcher. In addition, one-fifth of the dataset was
also labeled by four participants who are native
or near-native adult English speakers. The aver-
age inter-annotator agreement between researcher
and participant is K = 0.87. Details on dataset
construction and annotation are in Appendix A.

3.3 Function Signals

Our otherwise corpus contains naturally-occurring
passages that are useful for corpus study. Particu-



Function Definition Paraphrase Example
If the situation in [LHS] . . .
CONSEQUENCE doesn’t oceur, the situation [LHS] because if not LI like you too.] Otherwise,

in [RHS] would arise.

[LHST, [RHS]

[we wouldn’t be friends.]

[RHS] is undesirable and
can be possibly avoided
by following [LHS]

L, ARGUMENTATION

To avoid [RHS], [LHS].

[We have to operate
immediately.] Otherwise,
[she will die.]

It doesn’t take the failure

There is more than one

[1 like a nice curry.]

ENUMERATION of [LHS] to consider option for [goal]. They Otherwise, [I’1] nibble on
[RHS] as another option. are 1) [LHS] and 2) [RHS].  fruit.]
[LHS] is an exception Generally [RHS] [Some people are riding
EXCEPTION p Y i horses.] Otherwise, [people

to [RHS]

an exception is that [LHS].

are traveling on foot.]

Table 1: Revised otherwise function set, its description, the paraphrase used to identify a function, and examples
from the otherwise corpus. [LHS] and [RHS] correspond to the clause that is left and right of otherwise.

EXCPT.
26

ENUM.
13

ARG.
45

CONSQ.
.19

Table 2: Function Distribution of the Otherwise corpus.

larly, we are interested in finding the signals that
make a function available. We calculate point-
wise mutual information (Torabi Asr and Demberg,
2013) for each word token w and discourse func-
tion [,

p(w, 1)
p(w)p(l)

A high PMI score indicates that word token w is
highly associated with discourse function [, making
the token a strong candidate for a lexical signal for
that function. We only consider word tokens that
occur in more than 15 passages to avoid overfitting
the contents of the corpus (Zeldes and Liu, 2020).

Our results show that modals make up the largest
group of signals. The functions they co-occur with
depend on the modal type and its position: Priority
modals (e.g., need, must, should) indicate how
important and desirable an event is by the speaker
(Pyatkin et al., 2021) and often occur in [LHS] to
signal ARGUMENTATION:

pmi(w,l) = log

(1) Consumers should be told the whole truth.
Otherwise, it amounts to fraud (CONSEQUENCE).

Plausibility modals (e.g., could, can, may), on
the other hand, indicate how likely an event will
happen given assumptions in the context (Pyatkin
et al., 2021). Their appearance in [LHS] often indi-
cates viability of an option and signals ENUMER-
ATION, while might, would, may that appear in
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[RHS] often indicate the likelihood of an outcome
and signal CONSEQUENCE or EXCEPTION:

(2) The public can visit an exhibition to share
their feedback. Otherwise, the public can submit
feedback forms on the website. (ENUMERATION)

(3) It’s a good thing to ride horses at home and
not at the racecourse. Otherwise, you might have
been much more badly hurt. (CONSEQUENCE)

Other function signals include negation mark-
ers and downward-entailing predicates in either
[LHS] or [RHS] that indicate CONSEQUENCE and
ARGUMENTATION:

(4) She was nervous. Otherwise, she wouldn’t be
rambling. (CONSEQUENCE)

(5) You keep your mouth shut, you never con-
tact Nasry again, you don’t lawyer up, this af-
fidavit stays in a vault, and the video disap-
pears. Otherwise, the charge will be murder.
(ARGUMENTATION)

(6) Generally, eating problems can be avoided
by being flexible with your puppy from the start,
varying the eating location, alternating types of
dog food, and changing feeding times. Other-
wise, be prepared for your dog to become acci-
dentally conditioned by circumstances that lend
new significance to the sound of the dinner bell.
(ARGUMENTATION)

Focus particle only in either [LHS] or [RHS] that
indicates ARGUMENTATION and EXCEPTION:

(7) He spent only two years at school. Otherwise,
he was educated at home. (EXCEPTION)

*Downward entailing constructions support valid reason-
ing from a set to a member. For example, John doesn’t own a
dog to John doesn’t own a beagle (Webber, 2013).



Connectives that appear at in [LHS] and not at-
tached to otherwise®: or for ENUMERATION and
but for CONSEQUENCE.

(8) Treatment may also be available in a Young
Chronic Sick Unit or in a Geriatric Unit in a
hospital. Otherwise, the patient might spend some
time in a private nursing home. (ENUMERATION)

(9) Clearly, he resented Gavin but also had em-
pathy towards him. Otherwise, he wouldn’t
have lent him money in the first place.
(CONSEQUENCE)

We also found that several of these signals ap-
pear in function-bearing passages beyond those
with sentence-initial otherwise. We gathered a sub-
stantially larger sample of passages (n = 2656)
that contain because otherwise, alternatively, and
phrases with exception®, each marking distinct dis-
course functions—namely, CONSEQUENCE, ENU-
MERATION, and EXCEPTION. Across these pas-
sages, modal triggers, negation markers, and the
connective or remain function signals.

While our data-driven method extracts words
that co-occur with some otherwise functions, the
method falls short in identifying discourse signals
in the context that surrounds them, and establishing
whether a comprehender might actually use them
when inferring a function. To address this, we an-
alyze the linguistic characteristics of tokens that a
language model identifies as distinctive of a func-
tion (§4.3). As we will show, the model is sensitive
to the context of an otherwise passage. In inferring
the appropriate function, the model confirms the
utility of several lexical signals we have identified
in this section.

3.4 Metric: Continuation Acceptability

To study the capability of language models to distin-
guish otherwise functions, we propose a variant of
surprisal-based metric. Continuation acceptability
selects a discourse marker that indicates a distinct
function and makes a continuation, [RHS], more
likely given prior context, [LHS].

Definition Let D be a set of candidate discourse
markers that are distinctive of a discourse function,
(a1, az), the [LHS] and [RHS] clause (or continua-
tion) of a passage s in our otherwise corpus (with

*In our corpus, we only consider sentence-initial bare oth-
erwise without additional connective attached to it (e.g. or
otherwise).

“Phrases to mark EXCEPTION are: with the exception that,
except for the fact that, an exception is that, one exception is
that, as an exception.
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sentence-initial otherwise removed). We construct
{(a1 + d + a2)|d € D}, the set of variations of s,
where (a1 + d + a2) denotes string concatenation.
d is the most acceptable discourse marker if its
variation (a1 + d + az) has the lowest surprisal of
continuation in a language model 6:

argrdréi]gll[(al +d + az); 0]

where I is the surprisal of continuation:

1

I(s;0) :_|A\

> log py(tilt<i)

€A

with A the set of indices of tokens in continuation,
t; the tokens in passage s.

For example, consider the passage s, Take your
umbrella. Otherwise, you'll get wet. Suppose we
have candidate discourse markers because other-
wise for CONSEQUENCE and alternatively for ENU-
MERATION. Then the respective variations for s
are:

(1) Take your umbrella. Because otherwise, you’ll
get wet.

(2) Take your umbrella. Alternatively, you’ll get
wet.

The continuation acceptability for the first
variant is calculated as the surprisal of [RHS],
you’ll get wet, conditioned on [LHS], Take
your umbrella, and the candidate marker, Because
otherwise. We expect the model to assign lower
surprisal scores for the continuation when it is con-
ditioned on the candidate marker of the correct
function. Therefore, the model should assign lower
surprisal to variation (1) than (2).

Notice that in all variations constructed, both the
prior context and the continuation are kept the same.
The only change is the candidate marker, which
allows us to test its facilitating effect on the ex-
pectation for the continuation. Per-token surprisal
also allows us to examine how language models re-
spond to specific aspects of the continuation (§4.2,
§4.3), which are more difficult to capture through
mask-filling or prompting.

We use the average of per-token surprisal as in-
dicated by the formula, but we also consider other
aggregate functions for per-token surprisal in §4.2.

4 Experiments

In Rohde et al. (2018b), human participants infer
the discourse functions of an adverbial, which vary
across passages. We raise the question of whether a



Function Discourse Markers

CONSEQUENCE because if not

L, ARGUMENTATION  unless this is done

ENUMERATION alternatively as an alternative
EXCEPTION but mostly but usually
CONTROL otherwise

because [PRON] ~[AUX]
(when/ by) failing to do so

because otherwise
for fear that

in addition

but other than that

lest
on the other hand

Table 3: Candidate discourse markers and their corresponding function. [PRON] and =[AUX] correspond to the

pronoun and negated auxiliary verb of [LHS].

language model can also discern varied interpreta-
tions of otherwise and accept annotators’ assigned
function. The experiments below use continuation
acceptability (§3.4) to evaluate the capability of
language models to do so. First, we validate that
continuation acceptability captures the models’ un-
derstanding of otherwise (§4.1). Then, exploiting
per-token surprisal score, we explore what aspects
of the continuation are important to identify the
discourse function: we use alternative aggregate
functions for per-token surprisal (§4.2) and linguis-
tic annotations on tokens found to be distinctive of
a function (§4.3).

4.1 Can continuation acceptability identify
otherwise function?

Experimental setup. We used autoregressive lan-
guage models of increasing size without further
fine-tuning: GPT-2 Base (Radford et al., 2019),
with 124 million parameters, and GPT-Neo (Black
et al., 2021), with 1.3 billion parameters, and
Mistral-7B-v0.1 (Jiang et al., 2023). We selected
the GPT family because they are the standard mod-
els for testing psycholinguistic predictive power,
allowing for comparability with prior work. We
additionally included a newer open-weight model,
Mistral-7B-v0.1, to access per-token surprisal.

We applied continuation acceptability (§3.4) to
these models and our otherwise corpus.® Specifi-
cally, for a passage in the corpus and all candidate
discourse markers, we calculate the continuation
acceptability score of words in the continuation.

As shown in Table 3, we choose candidate dis-
course markers that are both relatively frequent and
generally successful at capturing a unique other-
wise function in naturally-occurring examples we
sampled from COCA and BNC, which are also
used for constructing the otherwise corpus. We
select three or more candidate markers for each oth-
erwise function to reduce the bias of syntactic con-

>We use the discourse function assigned by the researcher
as reference label.
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Researcher Label

Consq Arg Enum Excpt
GPT2 | .07 .11 .05 .04
GPT-Neo-1.3B | .16 .08 .05 13
Mistral-7B-v0.1 | .11 11 .08 21

Table 4: The proportion of passages predicting CON-
TROL (accept otherwise as Top 1 candidate discourse
marker), corresponding to the researcher label in bold.

straints and specificity of one discourse marker (Py-
atkin et al., 2023). We optionally allow otherwise
to be a candidate and label its function CONTROL.
When otherwise is chosen, the model doesn’t prefer
any marker that explicitly realizes a single function
that we defined, but prefers the adverbial as is, in
its original form.

For each candidate discourse marker [DM], we
allow both inter-sentential Argl. [DM] Arg2 and
intra-sentential concatenation Argl(,) [DM] Arg2
of a marker and optionally includes comma after
[DM] if suitable. We choose the concatenation that
is most accepted by the model for that marker.

Results and Discussion. We consider the func-
tion to be correctly identified if a candidate marker
of that function appears in the top & = {1, 3,5}
accepted discourse markers. For example, a best-
performing model will accept but mostly, but usu-
ally, and but other than that as top 3 markers for
an EXCEPTION passage.

We first show that using surprisal to identify the
otherwise function is not trivial. All models accept
candidate discourse markers that explicitly real-
ize a function more often than bare otherwise (i.e.,
without an additional conjunction before), which
is the original discourse marker that appears in the
passage (Table 4). The result suggests that these
models do not simply memorize the sentence-initial
otherwise, and that each model favors a distinct
function to be CONTROL except for ENUMERA-
TION. All models accept bare otherwise less fre-



k= 1 3 5

Majority 45

Mask Scoring T5-Base 45 76 .93

Continuation GPT2 S51 74 85

Accentabilit GPT-Neo-1.3B 56 .78 .88
PLADTILY  Mistral-7B-v0.1 .59 .80 .89

Table 5: Overall passage accuracy using top k
{1, 3,5} predictions of discourse markers. Majority
corresponds to assigning the majority function of the
dataset to all passages.

GPT2 GPT-Neo-1.3B  Mistral-7B-v0.1
k= 1 3 5|1 3 5|1 3 5
Conseq .36 .52 .61 | .39 .64 75| .41 .68 .84
Arg 45 75 89 | 44 71 94| 41 73 93
Emum 41 .68 .81 | 43 .78 .86 | .59 73 .84
Excpt 40 .65 77 | 43 .64 77 | 48 72 .79

Table 6: Per-function passage accuracy using top k =
{1, 3, 5} predictions of discourse markers.

quently for ENUMERATION than other functions.
In other words, they accept candidate markers that
explicitly indicate a function much more frequently
(e.g., alternatively or in addition) than otherwise.
As there currently exists no system for identify-
ing the discourse functions of otherwise, we use
the majority function of the corpus as a baseline.
In addition, we compare continuation acceptabil-
ity against a mask-scoring baseline®, defined as
the model probability of inserting the connective d
at the mask token between the arguments (a1, az)
(Kurfali and Ostling, 2021; Stodden et al., 2023):

P(d\al, ag)och([MASK] = d|a1 [MASK]CLQ)

We report accuracy where the function of any of
the top-k predicted discourse markers matches the
gold function. Table 5 and Table 6 show overall
and per-function accuracy. Models using continua-
tion acceptability outperform the majority baseline,
and also surpass mask-scoring at top-1 prediction.
Upon inspection, mask-scoring under-predicts EX-
CEPTION, achieving only 18.6% accuracy on EX-
CEPTION passages with top-1 predictions.” More-
over, in roughly 78% of cases, the model’s top-1
prediction is bare otherwise, suggesting that T5-
Base may have encountered and memorized these

5We keep the same experimental setup but use T5-Base
(Raftel et al., 2020), which is trained on a masked language
modeling objective. We select this model because it supports
multi-word predictions at the mask token, making it com-
patible with our candidate connectives. The top k candidate
connectives with the highest probabilities are selected.

"When calculating per-function accuracy, we disregard
predictions that are bare otherwise.
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examples during training. However, mask-scoring
achieves higher accuracy in identifying the gold
function with top-5 predictions.

We also observe that a larger model doesn’t guar-
antee better accuracy in prediction. Despite Mistral-
7B-v0.1 having 7 times more parameters than GPT-
Neo, its overall improvement is marginal. Addition-
ally, Mistral seems to be biased toward interpreting
otherwise as EXCEPTION at k = 1: we observe that
Mistral infers the most EXCEPTION passages than
other models (Table 7). It also most frequently in-
fers bare otherwise in EXCEPTION passages across
functions (Table 4).

Across all models, the most prevalent function
of the Top 1 scoring marker corresponds to the
researcher label (Table 7). Nevertheless, CONSE-
QUENCE passages are the most challenging of all
functions, as all models predict CONSEQUENCE
correctly less frequently at &k = 1 compared to
other functions. It is often confused with ARGU-
MENTATION, which is expected as ARGUMENTA-
TION is a subordinate function of CONSEQUENCE,
and they are semantically similar.

One concern is that a model may inherently pre-
fer specific candidate markers, regardless of the
passage, which would complicate our analysis of
model competence in inferring a discourse func-
tion. We demonstrate that this is generally not the
case in Appendix B.

Our results have shown that continuation accept-
ability can be used to identify otherwise function,
though the success varies across discourse func-
tions of the passage and models.

4.2 Are all tokens in continuation equally
important to identify otherwise function?

Fang et al. (2025) have shown that for long context
understanding, not all tokens are equally impor-
tant to identify the answer token. Similarly, our
corpus study (§3.3) finds that many lexical sig-
nals that help make functions available, such as
modals and negation markers, often appear before
the main verb. We hypothesize that not all tokens
in a continuation are equally important for identify-
ing the otherwise function and that mean surprisal
(i.e., token-level surprisal aggregate used in §3.4)
may not be representative enough in predicting dis-
course function.

Experimental setup. In this experiment, we ex-
plore alternative aggregates for per-token surprisal
and compare them with mean surprisal. We test



Researcher Label

Consq Arg Enum Excpt
Top 1 Label| Consq Arg Enum Excpt|Consq Arg Enum Excpt|Consq Arg Enum Excpt|Consq Arg Enum Excpt
GPT2| .36 32 14 18 21 45 22 12 .08 .35 41 .16 20 23 A7 .40
GPT-Neo-1.3B| .39 21 27 .12 29 44 17 10 | .16 24 43 .16 12 A9 27 43
Mistral-7B-v0.1| .41 30 20 .09 30 41 .23 .07 .03 27 .89 | .11 04 27 21 48

Table 7: The distribution of Top 1 predicted label. A green cell indicates that the predicted function is acceptable,
while a red cell indicates that it is unacceptable. We allow CONSEQUENCE candidate markers for ARGUMENTATION

passages.

both previously proposed aggregates in the litera-
ture (superlinear, maximum, variance, and differ-
ence; see Appendix C for full definitions) and new
aggregates designed for our task. Specifically, we
select key tokens using two criteria and average
their per-token surprisal: 1) Pre-root: consider
tokens up to the root (as defined in syntactic de-
pendency) or head verb of the continuation and
2) Most varied tokens (MVT): tokens with the
largest variance in surprisal across variations of
different discourse markers (that make a function
available). We believe MVT allows us to pinpoint
the exact location where the model diverges on its
interpretation of otherwise function, given that the
candidate marker is the only element that varies in
our experiment. We consider the Top 3 most varied
tokens. In addition to testing them separately, we
also combine these two criteria.

We use GPT-Neo-1.3B for subsequent experi-
ments, as it has comparable performance to Mistral-
7B in our previous experiment and is often used
in the psycholinguistic literature, which can shed
some light on token-level understanding of the con-
tinuation.

Results and Discussion. Giulianelli et al. (2023)
has shown that superlinear surprisal aggregate
highly correlates with human acceptability judg-
ments on an upcoming turn in dialogue from
Switchboard (Godfrey et al., 1992) and DailyDia-
log (Li et al., 2017). Besides just dialogues, our
results, which are tested on a wide range of genres
(§3.2), confirm that superlinear is the best perform-
ing aggregate among what has been proposed in
past literature, particularly in the context of con-
tinuation acceptability contingent on a function-
indicating discourse marker.

Additionally, our proposed aggregates, Pre-
ROOT or Top 3 MVT, obtain comparable or better
performance when compared to mean surprisal, de-
spite considering fewer tokens (around 3 tokens on

88

Avg #
Suprisal Metric Acc. Token
k= 1 3 5

Mean .56 .78 .88 13.45
Superlinear (n = 0.5) .63 .83 91
Maximum S1.73 .85
Variance 52 .72 .85
Difference 54 75 87
Ours
Pre-ROOT | Top 3 MVT

v .61 81 91 3.54

v 54 75 .88 3
N v .64 84 .93 2.73

Table 8: Passage Top k accuracy where k = {1, 3,5}
predictions of discourse markers with GPT-Neo-1.3B,
using various per-token surprisal aggregates

average as opposed to ~ 13 tokens). Particularly,
when combining Pre-Root and Top 3 MVT cri-
teria, the performance exceeds that of superlinear
(Table 8). We also see that Top 3 MVT criteria
itself doesn’t filter tokens in a way to better iden-
tify otherwise function compared to mean surprisal.
Upon examining the relationship between two crite-
ria, we have found that on average 48% of the Top
3 MVT appear pre-root, and more so for CONSE-
QUENCE and ARGUMENTATION (51% and 49%):
two functions that are associated with most types of
lexical signals. Thus, we hypothesize that combin-
ing criteria Pre-Root + MVT provides linguistic
cues to identify lexical signals that are predictive
of a function. In what follows, we test this hy-
pothesis by investigating linguistic information of
tokens that fulfill these two criteria and compare
their characteristics with those of function signals
found in our earlier corpus study (§3.3).



4.3 What lexical signals are predictive of
otherwise function?

We would like to assume that the key tokens se-
lected by our criteria are in fact relevant to the
model’s decision-making in predicting the other-
wise function. In this experiment, we analyze the
linguistic characteristics of tokens that the model
identifies as distinctive of a function. We observe
that some of these tokens confirm lexical signals we
previously identified in the corpus study (§3.3), and
they provide promising evidence on how model be-
havior, such as surprisal, can be useful for studying
discourse signals.

Experimental setup. For each passage, we ex-
tract the following linguistic annotation for each
token that is both Pre-Root and Top MVT (§4.2) 8,
1) word type, 2) part of speech, and 3) dependency
tag. For each type of linguistic annotation ¢, we
calculate PMI score pmi(i, 1) as in §3.3, but extend
¢ from word type to other linguistic information.
For example, given the token looking, we calculate
a score for its word type look, part of speech tag
gerund or present participle, and dependency tag
root.

A high PMI score indicates that the linguistic
information ¢ is highly associated with discourse
function [ as seen by the model.

Results and Discussion. We find that both word
types of modal tokens and part-of-speech tag
modal are high-scoring signals. PLAUSIBILITY
modals (as defined in §3.3) may, might, will as
a word type signal both CONSEQUENCE and AR-
GUMENTATION, while can and could signal AR-
GUMENTATION and ENUMERATION respectively.
PRIORITY modals need and must signal ENUMER-
ATION and EXCEPTION respectively. Interestingly,
modal as a part of speech tag is only high-scoring
for CONSEQUENCE and ARGUMENTATION.

We have found some other lexical signals that
confirm those from the corpus study: Negation as
a dependency tag signals consequence, while no
and nothing as a word type signal EXCEPTION, and
not signals CONSEQUENCE. Focus particle only
as a word type signals EXCEPTION.

We also found lexical signals that were not previ-
ously discovered in the corpus study. For instance,
the word type become is found to signal ARGU-
MENTATION, and there are eight of such instances

8with using spaCy en_core_web_sm pipeline, see https:
//spacy.io/usage/processing-pipelines
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where become occurs in [RHS] to express a new
state when the situation in [LHS] doesn’t arise:
(1) It was essential that people try to connect. Oth-

erwise, we would become a society of strangers.
(ARGUMENTATION)

Because the language model we have chosen
is auto-regressive (i.e., generates a continuation
that is conditioned on previous context), we are
unable to apply the same analysis on tokens in
[LHS]. Nevertheless, it is reassuring to see that
some key tokens extracted by the model confirm
lexical signals we found in the corpus study, espe-
cially given the model likely has been exposed to
far more otherwise passages than our corpus. More
importantly, we show that the model has learned
frequency-correlated cues during pre-training and
assigns more varied surprisal on these tokens across
candidate discourse markers that license a function.
These findings provide some promising evidence
that token-level surprisal may offer helpful infor-
mation for future pragmatic studies. As a next
step, stronger evidence for function signals could
be obtained by directly manipulating them in the
passage (e.g., ablation) while preserving the pas-
sage’s meaning.

5 Conclusion

In this paper, we study the discourse functions of
otherwise through language models. To do so, we
introduce a new dataset (the otherwise corpus) and
metric (continuation acceptability). With these
tools, we show that language models exhibit some
capability of inferring otherwise function, though
their extent to do so varies across functions of the
passage and the model. Additionally, we identify
the types of lexical signals that influence the avail-
ability of specific discourse functions and reveal
that the model attends to some of these signals
when inferring the discourse function. We hope
our findings open new doors for study on adverbial
and discourse coherence in both psycholinguistic
and computational research, and inspire developing
pragmatically competent models.

Limitations

We acknowledge that our study has some limita-
tions. First, our dataset only considers sentence-
initial otherwise. This helps us ensure the adverbial
serves a discourse function and simplifies our data
collection process. We recognize that this may not
represent all use cases of the adverbial. It may also


https://spacy.io/usage/processing-pipelines
https://spacy.io/usage/processing-pipelines

affect syntactic patterns and lexical signals of pas-
sages we have analyzed. For future research, we
plan to collect passages where otherwise within a
sentence serves a discourse function.

Second, our analysis was based on the assump-
tion that surprisal scores from language models
reflect human behavioral patterns such as reading
time. Recent work has shown that as the model
size of language models increases, when using sur-
prisal, their psycholinguistic predictive power de-
creases. This may be because these models are
exposed to much more data than humans are. We
have chosen models that are highly correlated with
human reading time in past studies (Cong et al.,
2023) or are of moderate size. Nevertheless, more
direct evidence for discourse coherence and sur-
prisal could be obtained by collecting reading time
data (with an emphasis on function signals and pre-
verbal tokens) or calibrating large-size models with
temperature-scaling (Liu et al., 2024), so that they
are more predictive of human behavioral patterns.

Lastly, although there is clearly value in study-
ing discourse functions of adverbials in the interest
of discourse parsing and other natural language un-
derstanding systems, we have not pursued other
potential roles of discourse function inferences. An
extended study may examine the influence of adver-
bials and their discourse functions on other seman-
tic and pragmatic phenomena such as conditionals,
anaphora resolutions, and presupposition, all of
which we believe to be relevant to otherwise.
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A Dataset Construction

Candidate passages When selecting the pas-
sages that contain a discourse adverbial, its occur-
rence is not sufficient. Sometimes, the adverbial
does not function as a discourse marker, and in-
stead modifies part of a syntactic matrix clause.
Thus, we select the sentence that starts with the
adverbial immediately after the previous sentence
(i.e., sentence-initial otherwise). We find this strat-
egy works quite well due to its syntactic conven-
tion. Our search patterns for COCA and BNC are

..Otherwise._, where _ indicates a blank space
9. In total, we have extracted 294 passages for func-
tion annotation from 7,770 passages in COCA and
1,014 passages in BNC.

Dataset annotation All candidate passages are
annotated by the researcher. One-fifth of the pas-
sages is additionally annotated by four native or
near-native adult English speakers.

For each candidate passage, the researcher pre-
pares a paraphrase for each function shown in Ta-
ble 1. The paraphrase selection is in two steps. A
participant first selects one of three paraphrases
for CONSEQUENCE, ENUMERATION, and EXCEP-
TION. If CONSEQUENCE is chosen, the participant
is asked to accept or reject the ARGUMENTATION
paraphrase to further distinguish this subordinate
function. We report inter-annotator agreement be-
tween researcher and participant in Table 9.

The annotation is completed on the Qualtrics
XM Platform.

Consq/ Arg Al
Enum/Excpt Yes/No
Participant 1 0.79 0.83 0.83
2 0.89 0.87 0.89
3 0.95 0.80 | 091
4 0.84 0.84 | 0.86
Average 0.87 0.83 | 0.87

Table 9: Inter-annotator agreement (Cohen’s Kappa)
of otherwise functions implied by paraphrases between
researcher and participant

We observe that the disagreements arise from
participant bias toward an otherwise function or
multiple interpretations of a passage. For example,
of four instances where participants infer EXCEP-
TION and the researcher infers CONSEQUENCE,

°COCA requires blank space between tokens.
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three instances come from Participant 1. The ex-
ample below shows that multiple interpretations of
a passage is possible:

(1) But the problem was that I wasn’t sure I could
make it back to the hotel to catch my flight. Oth-
erwise, I would have been game.

We believe this is one of the cases when both CON-
SEQUENCE and EXCEPTION may hold, as both
paraphrases below are valid:

(1a) But the problem was that I wasn’t sure I
could make it back to the hotel to catch my flight.
Because if I could have make it back in time, I
would have been game.

(1b) Generally, I would have been game. An
exception is that I wasn’t sure I could make it
back to the hotel to catch my flight.

Candidate Discourse Markers and
Their Continuation Acceptability
Scores

For each candidate discourse marker, we provide
the distribution of continuation acceptability scores
from all models in Figure 2. There is no signifi-
cant variation in the median, and this pattern is
consistent across models.

C Surprisal Aggregates

Given a passage s in the order of main clause
x, discourse marker d and otherwise clause y, a
language model returns token-level surprisal for
the continuation s(y¢) = — log p(y¢|y<t, z, d). We
then compare the predictive power of the following
surprisal aggregates (Giulianelli et al., 2023) in
inferring discourse functions:

Mean surprisal is the average of token-level
surprisal over all tokens in y:

1 N
Smean(y|x’d) = N Z S(yn)
n=1

Superlinear surprisal is the power sum of
token-level surprisal, which indicates that a super-
linear effect on y:

[S(yn)]k

3super1inear<y|x7 d) =

M=

1

We experiment with & = {0.5,0.75, ...

n

75}



Maximum surprisal is the maximum of token-
level surprisal. It indicates that the most surprised
token captures the overall surprisal of y:

Smax(y|x7 d) = max [S(yn)]

Surprisal variance is the variance of token-level
surprisal from the mean surprisal.

Svariance (y|ac d N 1 Z Smean(y)]2

Surprisal Difference is the sum of differences
between contiguous token-level surprisal:

N
Sdifference y|96 d 2 - yn 1)’
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Candidate Marker

because [PRON] —[AUX] A

because if not -

because otherwise -
unless this is done
failing to do so A

by failing to do so A

when failing to do so A

[TIT1I71111111]
J

for fear that 1 —
lest + —

alternatively - 4|

as an alternative | —

in addition —]

on the other hand - —
but mostly A 4|

but usually 1 —
but other than that 1 I —

-20 - ;I.O (I) 1|0 2|0 3|0 4|0 5|0

Conditional Acceptability

Figure 2: The distribution of continuation acceptability score of candidate markers
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Abstract

With the increasing use of generative Artifi-
cial Intelligence (AI) methods to support sci-
ence workflows, we are interested in the use of
discourse-level information to find supporting
evidence for Al generated scientific claims. A
first step towards this objective is to examine
the task of inferring discourse structure in scien-
tific writing. In this work, we present a prelimi-
nary investigation of pretrained language model
(PLM) and Large Language Model (LLM) ap-
proaches for Discourse Relation Classification
(DRC), focusing on scientific publications, an
under-studied genre for this task. We examine
how context can help with the DRC task, with
our experiments showing that context, as de-
fined by discourse structure, is generally help-
ful. We also present an analysis of which scien-
tific discourse relation types might benefit most
from context.

1 Introduction

Recent Artificial Intelligence (AI) advances cou-
pled with the agentic Al approach have seen a burst
of activity in the area of “Al for Science”, the appli-
cation of Al techniques to help accelerate scientific
discovery. Examples include usage of Google’s
Co-scientist (Penadés et al., 2025), OpenAl’s Deep
Research', NVidia’s foundation models for life sci-
ences” and the agentic Al platform Future House>.
Many of these tools offer an Al research assis-
tant that helps complex research information needs,
such as question answering and research planning.

Within these Al for Science applications, gen-
erative Al approaches based on Large Language
Models (e.g., Brown et al., 2020) are used to gen-
erate answers (novel text) to complex questions,
introducing the problem of addressing hallucina-

"https://openai.com/index/introducing-deep-research

*https://www.nvidia.com/en-au/use-cases/biomolecular-
foundation-models-for-discovery-in-life-science

3https://www.futurehouse.org/
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tions and lack of faithfulness (to source references)
(Fang et al., 2024).

A popular approach to these problems is to show
passages from the source material that supports the
generated answer. This approach, sometimes re-
ferred to as “contextualising scientific claims”, was
the focus of the Context24 shared task (Chan et al.,
2024). Interestingly, the leading contribution in the
Context24 shared task demonstrated the utility of
scientific discourse cues for detecting such justifi-
cation material (Béliicii et al., 2024).* This raises
an interesting question: can discourse information
be further employed to help in providing support-
ing evidence for generative Al answers to scientific
questions? A necessary precursor to such an ap-
proach would be the ability to infer the discourse
structure of a given paper. As a first step towards
a study of this topic, in this paper, we focus here
on studying the technical challenge of inferring the
discourse relations between passages of scientific
writing.

We focus on data from two discourse datasets
for scientific text, SciDTB (Yang and Li, 2018) and
CovDTB (Nishida and Matsumoto, 2021). Both
datasets follow the approach that annotates dis-
course structure as dependency trees, introduced in
the SciDTB approach (Yang and Li, 2018). To our
knowledge, these are the largest discourse datasets
currently available. An example of such a discourse
tree is presented in Figure 1.

We present an example from the SciDTB dataset
(Yang and Li, 2018) in Figure 2.° The figure shows
segmented elementary discourse units (EDUs) for
the arguments of the relation. The ground truth
relation between the two arguments was annotated
as condition.® This classification task is highly am-
biguous. We note that, in this dataset, the word

“Discourse cues are described as common expressions in
the original paper.

3SciDTB dataset, document ID:P14-1131.

®That is, a conditionality for a given situation.
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viral RNA extraction prior to RT-qPCR assay,

however recent studies support the elimination
of the extraction step.

arison
Herein, we assessed the RNA extraction necessity,
by comparing RT-qPCR efficacy in several direct
approaches vs. the gold standard RNA extraction,

in detection of SARS-CoV-2 from laboratory
samples as well as clinical Oro-nasopharyngeal ...

Manyier-Means|

me-Unit

Our findings show advantage for the extraction
procedure,

Findings

however a direct no-buffer approach might be an

Comparison 5
alternative,

C

Cause-Result

since it identified up to 70% of positive clinial
specimens.

Figure 1: An example of a dependency discourse struc-
ture for an abstract for COVID19-related science article.
Figure from (Nishida and Matsumoto, 2021)

EDU 1
EDU 2

because it can compute a single node similarity
(rel:condition) without having to compute the
similarities of the entire graph .

[ context | (rel:elaboration) that is efficient ... ]

Figure 2: An example of how contextual information
can help disambiguate which discourse relation holds
between two text fragments.

"without" that begins arg 2 is also associated with
two other relations such as contrast or manner.
This ambiguity can be alleviated with additional
context. In the example, arg I is annotated as being
preceded by the fragment that has an elaboration
relation and is about efficiency. Of the possible re-
lations, this context potentially provides additional
information that supports conditionality as a more
favourable interpretation compared to contrast or
manner.’

Inspired by examples such as this and also by re-
cent work in discourse analytics that examines the
role of context for DRC in other text genres (e.g.,
Zhang et al., 2021; see Section 2 for a comprehen-
sive survey), we are further interested in examining
the role discourse context for the DRC task. As
the majority of these studies have focused on the
Penn Discourse Treebanks (PDTB) (Webber et al.,
2019) and given that scientific writing (and the dis-
course relations therein) as notably different from
other genres (e.g., see Shi and Demberg, 2019),
our goal is to study how context affects DRC for
scientific writing. In particular, we are interested
in examining whether context selection informed
by discourse structure, which we refer to here as

"That is, in the example, computation is described as effi-
cient, not because of an explicit comparison (contrast) nor an
indication of how to perform a task (manner) but by virtue of
conditions, in this case, without the described expenses.
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discourse structured context, has advantages over
other methods, such as adjacent text spans.

This paper makes several unique contributions.
We show that structured context helps to improve
DRC for scientific writing, as represented by the
two datasets, finding that this approach benefits
both pre-trained language model and large lan-
guage model approaches. Furthermore, we present
an error analysis to explore the situations context
in which context is helpful, revealing some interest-
ing correspondences between scientific discourse
relations within the two datasets.

2 Related Work

2.1 Discourse Relation Classification

Discourse Relation Classification (DRC), the task
of inferring the relation type that holds between
two EDUs, has a rich history and is an actively
researched area (Pitler et al., 2009; Gessler et al.,
2021; Long and Webber, 2022; Zhou et al., 2022;
Liu and Strube, 2023a). The DRC task is typically
divided into two types, explicit and implicit (Pitler
et al.,, 2009). In the former, the two text spans
are connected by a discourse relation signalled by
an observable discourse connective. The latter is
termed implicit as there is an absence of such a
connective. The implicit variant is regarded as
much harder than the explicit variant (Pitler et al.,
2009).

In recent years, to facilitate DRC research,
shared tasks have been organised within the DIS-
RPT series (Zeldes et al., 2021; Braud et al., 2023).
These shared tasks had the benefit of broaden-
ing the datasets used to evaluate DRC approaches,
which has tended to focus on the PDTB (Prasad
et al., 2008). Notably, the two datasets used in
this paper were introduced in the 2023 shared task
(Braud et al., 2023), however, the submitted ap-
proaches at the time did not focus on analysing the
use of context for these datasets.

2.2 Context in DRC

The position survey article of Atwell et al. (2021)
notes that “most shallow discourse parsers use only
the argument pairs to determine the discourse sense
without considering ... context.” There have, how-
ever, been some exceptions. The effect of using
discursive context on DRC has been studied in the
context of annotation quality and annotator confi-
dence in (Atwell et al., 2022). This work examines
the role of context in the PDTB 2 (Prasad et al.,



2008) and 3 (Webber et al., 2019) datasets and
shows that annotation quality improves with con-
text (in this case, preceding text), particularly for
certain relationships. In that same work, Atwell
et al. translate the insights from human annotations
and context into modelling insights, exploring the
use of the XL.Net model for classification with con-
text, that incorporates some modelling of when
context is needed. Atwell et al. note the prior work
of Scholman and Demberg (2017) in examining
the linkage between pronoun use and the need for
context within PDTB, again from the perspective
of acquiring human annotations.

The sequential modelling of adjacent text spans
(and their relationships) has been studied by Dai
and Huang (2018), Shi and Demberg (2019) and
Zhang et al. (2021). These works generally evalu-
ate on PDTB data. The exception is Shi and Dem-
berg (2019), who also evaluate on biomedical data,
albeit by mapping biomedical relations to PDTB
discourse relations. Shi and Demberg also argue
that the Next Sentence Prediction (NSP) capability
of the the BERT model is particularly useful for
modelling discourse relations. This same approach
is used by Gessler et al. (2021), who also use BERT
specifically for its NSP capability but add features
relating to the surrounding context. This included
direction features and embeddings of the surround-
ing sentences (to the text spans being considered).
Zhang et al. (2021) model discourse structure as
a graph and use graph representations in a neural
network to capture discourse context, showing ben-
efits for discourse relation classification. These
investigations provide alternative representations
of context to our study, which does not use spe-
cific features or graph representations of context.
Our study differs in that we use various methods to
select context, including a consideration of the dis-
course dependency tree, and we prepend contextual
text to the EDUs being judged.

While prior treatments of context have shown
that it is useful for DRC, these studies generally
focus on non-scientific writing, like the PDTB. We
note that the approach of Gessler et al. (2021), and
the following work of Metheniti et al. (2024), is
evaluated on the DISRPT 2021 dataset. However,
while this dataset includes data a range of genres, it
does not include scientific articles. Indeed, Shi and
Demberg (2019) note that the discourse relations
are notably different in science literature compared
to relations from the PDTB. We argue that this dif-
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Dataset
CovDTB
SciDTB

Genres
Science (Biomed)
Science (NLP)

Train:Dev:Test size
(2400):2400:2587
6061:1935:1912

Table 1: Overview of the scientific discourse datasets
studied in this work.

ference thus merits a dedicated study of the effects
of context for science literature.

2.3 Other Discourse-level Analytics for
Scientific Writing

Related to the task of inferring discourse relations
for scientific writing are the tasks of argument zon-
ing (Teufel et al., 2009), citation function clas-
sification and classification (Teufel et al., 2006;
Wan et al., 2009), scientific argument mining (e.g.,
(Lawrence and Reed, 2019; Accuosto and Saggion,
2020; Binder et al., 2022; Fergadis et al., 2021)
and science communication sentence classification
(Louis and Nenkova, 2013; August et al., 2020); all
of which infer a discourse-level features relating to
argumentation or scientific writing structure. For
this body of work, we note that the use of context
has been studied has been studied within the topic
of sentence-level categorisation for scientific func-
tion (Kiepura et al., 2024). While these associated
fields can inform our work, in this paper, we focus
on discourse relations rather than argument zones,
single sentence classification, or discourse-level
relationships across citations.

3 Data

Here, we focus on data from prior work in dis-
course analysis that provides ground truth annnota-
tions for scientific discourse structure, namely the
the Covid (Discourse) Dependency Treebank (Cov-
DTB) (Nishida and Matsumoto, 2021), and the Sci-
ence (Discourse) Dependency Treebank (SciDTB)
(Yang and Li, 2018).

3.1 Discourse Dependency Representations

The SciDTB and CovDTB datasets use the depen-
dency discourse structure (DDS) introduced in the
SciDTB work (Yang and Li, 2018). Here, struc-
tures are directed acyclic graphs, specifically trees.
An example of a DDS is shown in Figure 1. In this
structure, nodes are EDUs and edges represent the
labelled relations between EDUs. The DDS will
be used to help select relevant contexts for relation
classification. In the DDS, each directed edge (ar-
rows) is a dependency. The figure shows name of



the relation as the text in red. The direction of the
relation indicates the importance of the information,
with the arrowhead indicating the less important
information. By following the links back through
the tree towards the root, one can select the relevant
context for the classification task, which often is
associated with information of greater importance.

3.2 Context Selection Schemes

A context selection scheme relies on two sub-steps:
segmentation and filtering preceding text. For this
study, for a given EDU in the datasets, there are
several options to select context. The simplest fil-
tering method is a null method, where no context
is used. Alternatively, one can include a preced-
ing text window of some size s. For example, we
can also always select the previous sentence for a
given argument. However, just because some text
precedes an argument does not necessarily mean it
is relevant context that impacts text understanding.
Thus, we also explore a discourse-oriented method
where a discourse structure is employed to iden-
tify other text (EDUs) that are linked via discourse
relations (referred to here as structured context).
This gives rise to the following schemes for context
selection:

Default This baseline is a null context (that is, no
context is used).

(ADn) Add-n This approach will add n sentence
that precede the first argument.

(ORn) Oracle-n This scheme relies on the
ground truth annotations to select the preceding
context.® We use the following algorithm. For a
pair of arguments considered for DRC, we find the
parent node of the first argument as defined by the
dependency discourse tree. By chaining together
the preceding context, in principle, we can vary the
amount of context to include. The intuition is that
the discourse context, generally represented by a
chain of EDUs following a path to the root, indi-
cates which context is important enough to extract.

4 Models

We focus on two general neural network language
models approaches, both based on the Transformer

8For our motivating example of contextualising claims,
in practice we would need an initial method to compute a
discourse graph connecting EDUs. We leave this to further
work but note that prior work explores this task (e.g., Jeon and
Strube, 2020).
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architecture (Vaswani et al., 2023). The first ap-
proach employs the RoOBERTa model (Liu et al.,
2019), an example of a non-auto-regressive (pre-
trained) language model which one can finetune for
classification. The second approach uses large lan-
guage models to perform prompt-based inference,
typically used for generative Al.

4.1 PLM-finetuning with RoOBERTa

Our RoBERTa-based approach is based on an ap-
proach that jointly models discourse connective
generation and DRC (Liu and Strube, 2023a). This
RoBERTa-based model performs training that com-
bines two tasks: (1) the generation of a discourse
connective that would link two arguments; and (2)
the classification of the relation given the three
pieces of information (argument 1, argument 2,
and a connective). As such, this model is extremely
flexible and can be applied to both implicit and
explicit DRC.

In this study, we generate variants of the data
sets, subject to the preprocessing outlined in Sec-
tion 3, that differ by the amount and type of contex-
tual information that is inserted before the first ar-
gument (of the relation classification task). That is,
context added as per the selection schemes above.
The datasets are split into training and testing sub-
sets to train and evaluate the RoBERTa model.

We experimented with the full joint model de-
scribed here and a simpler version that focuses
just on classification.’ The latter was found to
perform the best and so we report only these re-
sults. We used the default training setup and pa-
rameters, following the documentation in Liu and
Strube (2023b).10

4.2 LLM-based Inference

Prompt-based generative Al approaches using
Large language models (LLMs) have been revo-
lutionary in providing new baseline solutions for
many tasks that apply across domains. A key
feature of LLMs are the comprehensive training
regimes that potentially captures different kinds of
knowledge, including common sense knowledge
and linguistic capability (e.g., Brown et al., 2020).
In this work, we examine two classes of LLMs for
this inference approach: open and closed weight
approaches. For the former, we use Meta’s LLaMA

°This is achieved by setting the connective to a constant
value for all data.
1%For computing environment, see Appendix A.



Replace the MASK token (a discourse
relation) by selecting only one of the
following labels: [ labell, label2,

, labeln] Examples: Passage
1: <argley1>, Passage 2: <arg2ez1>,
connective: <connectiveez1> | labell EOL
<further examples for remaining labels>
EOL
Passage 1:
connective:

<argl>,
<connective> |

Passage 2: <arg2>,
[MASK]

Figure 3: GPT4 Prompt template for discourse relation
classification

model (et al., 2024). For the latter, we use Ope-
nAl’'s GPT4 (OpenAl, 2024).

LLaMA 3.1 In this work, we use a locally hosted
version of the LLaMa-3.1-70b-Instruct model,
hosted on a server with 16 CPU cores, 128GB
memory, and three A6000(48GB) which host the
Llama 3.1 70B model.

GPT4 For the GPT4 model, we use OpenAl’s
API with the chatcompletion endpoint, using the
gpt-4-0613 model.

For both models, for classification, we use In-
Context Learning (ICL), widely acclaimed as hav-
ing the ability to surpass supervised machine learn-
ing on many NLP tasks as a so-called “few-shot
learner” (Brown et al., 2020). This model helps us
estimate how context impacts the current methods
for LLM-based inference. For this work, tempera-
ture was set to zero.

An example of prompt template for GPT4 is
presented in Figure 3. This frames the relation
classification task as a MASK replacement gen-
eration task. The prompt issues an instruction to
replace the [MASK] token with one of the class
labels provided in list format. ICL "training" ex-
amples are provided, where we randomly sample
one training data point from the data set for each
class label. The two arguments, the connective, and
the [MASK] token are then added. The Llama 3.1
prompt is similar.

5 Experiment Results

We conduct an empirical study using ground truth
linguistic data to examine the role of discourse
structure in inferring discourse relations. We de-
ploy the described models in two conditions: a
control condition without discourse context and an
experiment condition that includes context.

In the case of PLM-finetuning, for each pair of
conditions, we run 10 different trials (that is, neu-

ral network training and testing with 10 different
random seeds). We report macro-F1 classification
results averaged over the 10 trials. For significance
testing, we used the Wilcoxon Signed Ranked Test
(WSRT) (Wilcoxon, 1945) and corrected for multi-
ple comparisons using Bonferroni correction.

We first examine if any use of context leads to
an improvement in the discourse classification task
performance. For this investigation, we use n=1 for
the context selection schemes.

[ Approach | CovDTB | SciDTB ]
default 75.54 (1.11) | 57.42(0.65)
ADI 73.45 (2.26) | 57.75 (1.08)
ORI 75.78 (1.52) | 58.33 (0.77)F

Table 2: Classification with a fine-tuned RoBERTa
model. Macro-F1 scores (averaged over 10 runs) with
standard deviations in parentheses. Bolded values indi-
cate improvements above the default. Daggers indicate
statistical significance improvement using the Wilcoxon
Signed Rank Test (f : o = 0.05).

5.1 Context and PLM Fine-Tuning

Table 2 shows the results of including context for
the PLM-finetuning approach using the RoOBERTa
model. The table presents macro-F1 scores to give
some indication of performance across the unbal-
anced dataset.!! We find that context generally
helps for DRC when using a fine-tuned PLM, par-
ticularly when context is defined using discourse
structure (OR1). This improvement is statisti-
cally significant for the SciDTB dataset (WSRT
p < 0.05). The ADI context does not lead to
strong performance improvements in comparison.
However, we note that the AD1 text window vari-
ant of context also helps mildly for the SciDTB but
not for CovDTB.

Across the two datasets, we observe that the per-
formance results are higher in the CovDTB dataset
compared to the SciDTB dataset. This could be due
to conventions in scientific writing for biomedical
literature which may be more homogenous than the
data from NLP domain found in SciDTB.

""Here we report results for n = 1 as our experiments
showed that for larger values, adding more context confused
the models. Similarly, while we explored variants of the
context representations that additionally utilised the relation
class (for the linked context), the results were comparable to
reported the OR1 variant, from which we conclude that the
extra information did not help.
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[ Approach | CovDTB [ SciDTB |

default 32.07 22.06
AD1 26.19 19.28
OR1 49.07 52.61

Table 3: GPT4 model: Classification macro-F1 scores.

[ Approach | CovDTB [ SciDTB |

default 11.20 07.71
AD1 10.04 05.15
OR1 10.36 11.15

Table 4: Llama 3.1 model: Classification macro-F1
scores.

5.2 Context and LLM Prompt-based
Inference

Table 3 presents the corresponding results for the
GPT4 model.'? The results indicate a poor perfor-
mance by the LLM for DRC under the default set-
ting (with no context), even when using in-context
learning. Performance improves when discourse
structure is used to provide context, as opposed to
the adjacent text. Indeed, performance drops when
the adjacent sentence is used as context. In the
case of SciDTB, this brings performance closer to
the PLM-finetuning result, within a margin of 5
F1 points. However, while the DRC performance
on CovDTB increases with discourse structure con-
text, the macro-F1 scores still remain far behind the
fine-tuned PLM, by a margin of over 25 F1 points.

In Table 4, we see a similar story, although
Llama 3.1 performance is much lower than GPT4.
We suspect that this is primarily due to the size
of the model; the Llama model used here has or-
ders of magnitude fewer parameters than the GPT
model. Again, using the adjacent sentence leads
to a drop in performance. Consistent with other
results, an improvement in DRC performance was
observed for SciDTB when using context defined
by discourse structure. Here, we failed to detect
any improvement with the CovDTB dataset.

We note that, while our focus is on comparison
against our default baseline and the relative dif-
ference in performance with and without context,
the models described in this paper are competitive
with the reported performance in the literature. We
report these values for completeness in Table 5,
which lists comparisons with literature, with the
metrics generally reported by convention. With the
RoBERTa model and the “oracle” use of the ground

2Given the cost of using the commercial GPT LLM, we
report results on single trials for the datasets.
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truth discourse annotations used here, the measured
accuracy of 83.63 represents an estimate of an im-
provement over the prior state-of-the-art (SOTA)
result for the CovDTB that could be obtained if we
were to employ a fully automated version of the
inference.

[ Approach [ CovDTB [ SciDTB ]
Performance | 70.03 Acc. | 75.30 Acc.
OR1 model 83.03 Acc. | 74.81 Acc.

Table 5: A comparison with performance reported in
the literature. Bolded values indicate where our best
RoBERTa model surpasses previous results. Reported
performance from: covdtb and scidtb (Liu et al., 2023).

To summarise, the results show positive trends
for using discourse context for the DRC task. Gen-
erally, discourse context can help with the PLM-
finetuning approach and LLM-inference. When
applying the text window context (AD1) results
are mixed; the method does not work all the time
and can decrease performance. However, when
using discourse structure to determine relevant con-
text (OR1) we generally see improved performance,
with stronger gains demonstrated with the SciDTB
dataset. This indicates that not all preceding text is
useful for classification and that indiscriminately
adding more context (without filtering) can make
performance worse.

5.3 A Reflection on Datasets

We speculate that one reason why we do not see a
bigger effect from the inclusion of discourse con-
text is that our datasets may be limited to relatively
short length of the text data. Indeed, Yang and Li
(2018) note a related issue when studying news
articles: discourse relations do not cross paragraph
boundaries further making structures shallow. '3

In this regard, the CovDTB and SciDTB datasets,
as examples of short text data (i.e., abstracts) may
also have simpler discourse structures than longer
texts. We further investigated the nature of the
discourse structures and found that, in the case of
the SciDTB dataset, the structures were generally
short-distance dependencies: 61% of relationships
are adjacent, with 10% of relations separated by
a gap of 3-5 sentences. We posit that when con-
sidering longer documents, the effect of structured
context in DRC may be more pronounced.

BThis is presumably due to journalistic writing style.



6 Error Analysis: DRC for Scientific
Discourse Relations

In the experiments presented above, we observed
that providing context, particularly structured con-
text generally helps with DRC. In this section, we
perform an error analysis to better understand when
context helps, analysing performance per relation
type. Here, we focus on the fine-tuned PLM ap-
proach as it yielded the highest macro-F1 scores.
For each of the 10 seed runs, we used predictions
from the best models for the default (no context)
and the OR1 (structured context) conditions. Cases
where the OR1 prediction was correct and the de-
fault was not was considered a win. The converse
case was considered a loss. Where both approaches
agreed, this was considered a tie. Margins for wins
and loss were averaged over the 10 runs.

Table 6 provides a list of the scientific discourse
relation types in the winning outcome for both data
sets that benefited (overall) from OR1 context and
their average win margins. We can see that elabo-
ration, comparison, attribution, and temporal rela-
tions were common to both datasets.

CovDTB

elaboration (A = 5.7)
enablement (A = 1.2)
cause-result (A = 0.8)
condition (A = 0.4)
attribution (A = 0.4)
comparison (A = 0.3)
temporal (A = 0.1)

SciDTB

elab-addition (A = 1.5)
elab-aspect (A = 0.8)
temporal (A = 0.77)
bg-compare (A = 0.66)
joint (A = 0.44)
contrast (A = 0.33)
progression (A = 0.22)
exp-reason (A = 0.22)
elab-enum (A = 0.22)
comparison (A = 0.11)
attribution (A = 0.11)

Table 6: Winning relations: Discourse relations who
DRC performance improved with the inclusion of struc-
tured context. A = indicates the average win/loss mar-
gin. Bolded text indicates potential correspondences
across datasets.

Table 7 presents the corresponding table for the
losing outcome. Here we see that, both data sets
have background relations in common for this out-
come. If we assume findings and results are related
relations, then we can consider this a further poten-
tial alignment.

Table 8 shows the relations that had an equal
number of wins and losses. We present these for
completeness. However, it may be the case that, for
these datasets, there is insufficient data to assign
these to either the winning or losing outcomes.

There were some differences between datasets

CovDTB
findings (A = 0.9)
background (A = 0.3)

SciDTB

bg-goal (A = 0.44)
manner-means (A = 0.44)
enablement (A = 0.44)
evaluation (A = 0.22)
result (A = 0.22)
bg-general (A = 0.22)
condition (A = 0.11)
exp-evidence (A = 0.11)

Table 7: Losing relations: Discourse relations who DRC
performance suffered with the inclusion of structured
context. A = indicates the average win/loss margin.
Bolded text indicates potential correspondences across
datasets.

CovDTB
textual-organisation
manner-means

SciDTB
elab-definition
elab-process-step
cause

Table 8: Tied relations: Discourse relations who DRC
performance remained the same with the inclusion of
structured context.

for a subset of relations, which were placed in dif-
ferent outcomes (winning, losing). These included
enablement and condition. In CovDTB, a single
relation is used for cause-result which was in the
winning outcome. For the SciDTB dataset, the
result relation was in the losing outcome. Simi-
larly, while most background relations were in the
losing outcome for both datasets, bg-compare was
in the winning outcome for SciDTB; though this
could be because the winning outcome contained
more comparison-related relations. We treat these
divergences as interesting outcomes to investigate
further, noting that some of these may be due to
annotation differences between the datasets.

In Table 9, we present some examples of data
as assigned to the winning and losing outcomes.
For the winning outcomes, the high-level statement
of the research activity as context may contribute
positively to the DRC task. For the losing outcome,
we note that in the SciDTB example, the high-level
context may simply be too broad. For the CovDTB,
we note that both findings and background relations
tended to be at the beginning of the text and so no
prior context exists, explaining why these relations
are in the losing outcome.

To dive deeper into what might potentially ex-
plain the difference between winning and losing
outcomes, we examined the first word of the sec-
ond argument, checking for a match against a list
of known discourse connectives.'* Here, we make

“This list was based connectives from PDTB data
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[ Condition | Dataset [ Relation | Example

|

winning scidtb | comparison

of predicting facts ,

Context: We propose a novel method of jointly embedding entities and words into
the same continuous vector space .
Argl: that jointly embedding brings promising improvement in the accuracy

Arg2: compared to separately embedding knowledge graphs and text .

losing scidtb result

Context: We describe a search algorithm
Argl: Our results show
Arg2: parsing results significantly improve

winning covdtb | comparison

Context: Herein we discuss application of the Collaborative Cross ( CC ) panel of
recombinant inbred strains

Argl: Although the focus of this chapter is on viral pathogenesis ,

Arg2: many of the methods are applicable to studies of other pathogens ,

as well as to case-control designs in genetically diverse populations .

losing covdtb findings

Context: ROOT (no context)

Argl: In this work , we demonstrate a design of meta - holography

Arg2: that can achieve 2 28 different holographic frames and an extremely high
frame rate in the visible range .

Table 9: Examples of discourse relations in the winning and losing outcomes for both the SciDTB and CovDTB

datasets.

Relation Category Percentage of connective matches
CovDTB SciDTB
Losing Relations 7.8% 25.0%
Winning Relations 16.6% 28.2%

Table 10: Percentage of matches to a list of explicit
connectives across the positive, neutral and negative
relations.

the simplifying assumption that the discourse con-
nective is found between the two arguments.

Table 10 shows the percentage of instances
where, for relations in either the winning or los-
ing outcome, the first word of the second argument
was a known discourse connective. We observe
that, for both datasets, winning outcomes exhibit
a higher percentage of matches for connectives.
We take the matches as a potential indicator of the
higher proportion of explicitly marked discourse
relations. This raises the potential hypothesis that
perhaps context may be more beneficial for DRC
of certain explicitly marked relations.

7 Future Work

Our preliminary investigation here on the role of
context for DRC in scientific writing highlights
two potential avenues for future research. Our er-
ror analysis suggests that structured context may
potentially be more beneficial the DRC for cer-
tain explicit relations (for scientific writing). We
intended to further investigate this.

We note that our investigation here is limited

sets (2 and 3) and the collated connectives from the
DiscoGEM dataset (Scholman et al., 2022). URL:

to dependency discourse structures and the repre-
sentation of context as string concatenations. In
subsequent work, we aim to explore different au-
tomatically inferred graph representations of text
structure, particularly longer text documents.

Our experiments were also limited to two cate-
gories of LLM-based inference, namely In-Context
Learning (ICL) for closed and open weight LLMs
(or proprietary and so-called "open-source" LLMs).
In the future, we intend to include LLMs that in-
clude some reasoning capability, such as the recent
GPT-o01 and DeepSeek models, as well as tech-
niques like chain of thought, to see if these infer-
ence methods help with DRC. In this work, we
also used one example of a transformer network
for PLM fine-tuning. In future work, we aim to
experiment with the model of (Gessler et al., 2021)
as an alternative competing transformer model.

Finally, returning to our motivating example, we
intend to examine the role of discourse relations in
identifying relevant supporting source material to
validate generative Al output. We intend to conduct
qualitative and quantitative user studies to better
understand the potential for discourse information
to help with these goals.

8 Conclusions

In this work, we showed that adding discourse con-
text, particularly structured context, helps with Dis-
course Relation Classification for scientific writing.
We demonstrated this using two dominant neural
language modelling methods: finetuning using a
pre-trained language model, and inference with

https://github.com/merelscholman/DiscoGeM/tree/main/Appendix large language models using in-context learning.
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The analysis presented here focuses on two scien-
tific discourse datasets, CovDTB and SciDTB, rep-
resenting biomedical and computer science disci-
plines. We found that, for the science discourse re-
lations represented in these datasets, context might
help for specific relations, such as with elaboration,
attribution, comparison and temporal relations.
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A Appendix: Computing Environment

Experiments for training and evaluating the Con-
nRel model (RoBERTa-based, 82M parameters)
were conducted on a server with 1 node (4x
NVIDIA A40; 2x Intel(R) Xeon(R) Gold 6330
CPU @ 2.00GHz; 32GB RAM). Each of the 3
approaches tested was trained and evaluated with
5 datasets, over 10 trials. Each trial ranged from
between 30 minutes to 1.5 hours, depending on
the dataset. Estimated GPU time per approach is
36 hours. Experiments were also repeated at least
twice to test for replicability. This results in ap-
proximately, 432 hours of GPU time (single jobs).
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Abstract

We present two LLM-based approaches to zero-
shot source-and-target belief prediction on Fact-
Bank: a unified system that identifies events,
sources, and belief labels in a single pass, and
a hybrid approach that uses a fine-tuned De-
BERTa tagger for event detection. We show
that multiple open-sourced, closed-source, and
reasoning-based LLMs struggle with the task.
Using the hybrid approach, we achieve new
state-of-the-art results on FactBank and offer
a detailed error analysis. Our approach is then
tested on the Italian belief corpus ModaFact.

1 Introduction

The term “belief” (interchangeably referred to as
“event factuality” in NLP) refers to the extent an
event mentioned by the author or by sources in a
text is presented as being factual. While this task
has received attention over the years, no zero-shot
experiments have been performed. We show that
this task remains a hard task for LLMs.

Our major contributions are as follows:
(1) We present unified and hybrid zero-shot frame-
works for the source-and-target belief prediction
task (i.e., who has what belief towards what). We
test our approach on various LLMs.
(2) Our hybrid approach achieves new state-of-the-
art results (SOTA) on the FactBank corpus, but the
problem is far from solved.
(3) We are the first to evaluate FactBank on Nested
belief, revealing that LLMs perform particularly
poorly on this task. We perform an error analysis
showcasing where LLMs fail.
(4) We validate the transferability of our approach
by testing on the Italian ModaFact belief corpus.

This paper is organized as follows: we provide
an overview of the belief detection task in Sec-
tion 2. We follow by detailing our methodology in
Section 4 and discuss our results and analysis for
FactBank and ModaFact in Section 5.

2 Related Work

Corpora Many corpora explore the notion of be-
lief on the sentence level. FactBank is one of
the first corpora to do this, annotating source-and-
target belief: both the belief presented by the author
towards an event and the belief towards events by
sources mentioned inside of the text (Sauri and
Pustejovsky, 2009). Other corpora annotate only
the author’s belief towards events: these corpora in-
clude LU (Diab et al., 2009), UW (Lee et al., 2015),
LDCCB (Prabhakaran et al., 2015), MEANTIME
(Minard et al., 2016), MegaVeridicality (White
et al., 2018), UDS-IH2 (Rudinger et al., 2018),
CommitmentBank (De Marneffe et al., 2019), and
RP (Ross and Pavlick, 2019). Two recent corpora
for event factuality are Maven-Fact (Li et al., 2024)
which contains a large-scale corpus of event and
supporting evidence annotations, and ModaFact
(Rovera et al., 2025), which is an Italian author
belief corpus that annotates in a similar style and
inspiration as FactBank.

Methods Previous methods for author belief pre-
diction mainly involve fine-tuning: Rudinger
et al. (2018) fine-tune multi-task LSTMs; Pouran
Ben Veyseh et al. (2019) fine-tune a graph convolu-
tional network with BERT (Devlin et al., 2019)
representations; Jiang and de Marneffe (2021);
Murzaku et al. (2022) fine-tune RoBERTa (Liu,
2019) with span representations; Li et al. (2024)
fine-tune RoBERTa and Flan-TS5 (Chung et al.,
2024), and also explore four LLMs predictions
using few-shot learning; Rovera et al. (2025) fine-
tune BERT, mT5-XXL (Xue et al., 2021), Aya23-
8B (Aryabumi et al., 2024), and Minerva-3B (Or-
lando et al., 2024).

There has been much less focus on the com-
plete source-and-target belief task: Murzaku et al.
(2023); Murzaku and Rambow (2024) both fine-
tune a Flan-T5 model, with the latter optimizing
for the structure of belief represented as a tree.
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3 Preliminaries

Consider this sentence: Trurit Inc. said it is phas-
ing out legacy routers. This sentence reports on
two events: a “said” event and a “phasing” event.
Author Belief The definition of author belief (also
called event factuality) is how committed is the
author of the text (the source) to the truth (or fac-
tuality) of an event. In this sentence, the author
is presenting the “said” event as factual, i.e., they
are committed to the “said” event having happened.
On the other hand, the author is presenting the
“phasing” event as having an unknown factuality;
the author is not directly committing to the truth of
the event, rather they are reporting on what “Trurit
Inc.” said.

Nested In nested belief, we report the belief to-
wards events according to nested sources inside of
a text. The task can be split into three steps: (i)
identifying the nested or attributed source in the
text; (ii) linking the source to the events (i.e., which
events does the source commit to); (iii) labelling
the belief of the event according to that source. In
our example, the source is “Trurit Inc.” Once the
source is introduced (i), we then link the source to
the events in the text (ii): in this case, Trurit Inc.
is reportedly committing to the event “phasing”,
and asserting it as true (iii). Since the source is
reporting about this event, and directly committing
to the event happening, it is therefore true in Trurit
Inc.’s perspective as reported by the author, and
unknown in the author’s perspective.

4 Methodology

We use the test set of the source-and-target (au-
thor and nested sources) projection of FactBank
released by Murzaku and Rambow (2024). Further
dataset details are in Appendix D.

4.1 Zero-Shot

Unified Our Unified approach provides a single
end-to-end zero-shot prompt to the LL.M with the
input text, a high-level descriptions of the task, the
three main steps in the annotation process in de-
tail, special cases guidelines, and the output format.
We end the prompt with a summary of the specific
steps on how to produce the final answer in a chain-
of-thought format (CoT) (Wei et al., 2022), which
has proven to work well for author event factuality
(Li et al., 2024). The three steps are: (1) Label all
events according to the FactBank annotation guide-
lines, which we provide. (2) Identify all nested

sources in the text. (3) Assign factuality labels
for each event, according to that source. We leave
all model details, API parameters, and our exact
prompts in Appendix A.

Hybrid For our Hybrid zero-shot approach, we
first extract events in a sentence using a DeBERTa
(He et al., 2021) based tagger. After extracting the
events, we prompt an LLLM with the sentence and
the list of events. We then follow the exact steps
(minus event detection, since we provide events)
as our Unified prompt: we instruct the LLM to
identify all nested sources, ask the LLLM to assign
factuality labels for the events, according to the
identified sources, and finish with instructions for
answering with CoT. See Appendix B for further
details on our Hybrid experiments and our exact
prompts.

Event Tagger The FactBank corpus has a complex
definition of what exactly is an annotatable event.
Murzaku et al. (2023) found that annotating Fact-
Bank events is non-trivial, even with a specialized,
generative fine-tuned model achieving only 85.4%
F1 on event identification. We therefore choose
to fine-tune a DeBERTa model for event token de-
tection, and then pass the events to our Hybrid
prompts.

4.2 Models

We perform experiments on a variety of LLM
types: open LLMs, specifically LLaMA-3.3-70B
(Meta, 2024), DeepSeek-v3 (Liu et al., 2024), and
DeepSeek-r1; closed LLMs, specifically GPT-40
(OpenAl, 2024a), newly released reasoning models
ol (OpenAl, 2024b) and 03-mini (OpenAl, 2025),
and Claude 3.5 Sonnet (Anthropic, 2025); and rea-
soning LLMs, DeepSeek r1 (henceforth R1), ol,
and o03-mini.

4.3 Evaluation: Metrics

We evaluate on three F1 metrics: Full where we
perform an exact match evaluation on all generated
(source, event, label) annotations; Author where
we perform an evaluation on all generated annota-
tions where the source is the author of the text; and
Nest where we perform an exact match evaluation
on all generated annotations where the source is a
nested source.

4.4 Evaluation: FactBank Sources

FactBank has specific conventions about annotating
sources. Consider the example “Trurit Inc. shares
rose by 5% today”. FactBank annotates on the
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Model

Unified

Hybrid

| A Hyb.-SOTA |

A Hyb.-Unif.

Full Author Nest‘ Full Author Nest ‘ Full Author ‘Full Author Nest

Previous / Fine-Tuned SOTA (Murzaku and Rambow, 2024)

GPT-3 (Fine-tuned) 65.8 76.0 - | 658 76.0 - - - - - -
Flan-T5-XL 69.5 76.6 - 1695 76.6 - - - - - -
Zero-Shot LLM Systems
GPT-40 60.2 659 202|687 732 229|-0.8 34 |485 +7.3 427
ol dp 650 732 189|703 789T 192 |+08 423 |+53 457 +0.3
DeepSeek r1 4@ 66.1 71.1 24.1[72.00 77.6 2537|425 +1.0 [+59 +65 +12
03-mini b 624 709 156655 752 17.0]-4.0 -1.4  |+3.1 +43 +14
Claude 3.5 632 69.7 197,704 776 214 +09 +1.0 [+7.2 479 +1.7
LLaMA 33 & 53.1 604 144|588 660 199 |-10.7 -10.6 |+57 +56 +5.5
DeepSeek-v3 & 563 614 17.1160.5 653 182 ]-90 -11.3 |+42 439 +1.1

Table 1: Unified vs. Hybrid approaches with different LLMs. We report Micro F1 (Full), Author Micro F1 (Author),
and Nested Micro F1 (Nest) scores (in %). A Hyb.-SOTA denotes the difference between the Hybrid result vs. the
fine-tuned SOTA. The best scores are highlighted in bold and new state-of-the-art (SOTA) results are denoted by f.
A Hyb.-Unif. highlight the Hybrid-Unified difference for Full, Author, and Nest F1s. & indicates open models and

4b indicates reasoning models.

token level, and the source is “Inc.”. We do not
wish to penalize LLMs for not knowing this con-
version, and therefore propose a few-shot normal-
ization technique for postprocessing. We perform
all source normalization experiments with GPT-40
(OpenAl, 2024a). Exact prompts for our source nor-
malization methods and a detailed ablation study
are shown in Appendix E.

Our task setup is as follows: Given a predicted
source, we prompt GPT-40 to transform the pre-
dicted source into a FactBank-compliant version.

5 Results and Analysis
5.1 FactBank

Main Results Our main results for FactBank are
shown in Table 1. We compare all our results to the
previous fine-tuned SOTA from Murzaku and Ram-
bow (2024), evaluating on exact match F1 (Full)
and author exact match F1 (Author) as described
in Section 4.3. We add one more metric: nested ex-
act match F1 (Nest), where we evaluate on nested
sources only.

Our Unified zero-shot results (column Unified)
achieve competitive performance compared to fully
fine-tuned models, with R1 (66.1% for Full) and
ol (73.2% for Author). We outperform the fine-
tuned GPT-3 model from Murzaku and Rambow
(2024) on Full, but do not outperform the Flan-T5-
XL system.

We achieve new SOTA on FactBank with our
Hybrid systems. Our R1 Hybrid system achieves
Full of 72.0%, outperforming the previous state
of the art by 2.5% (column A vs. SOTA). Similar
to the Unified results, ol excels in Author, achiev-
ing 78.9% Author and outperforming the previous
SOTA by 2.3%. We also note that GPT-40 and
Claude-3.5 also achieve competitive performance,
with Claude-3.5 outperforming the previous SOTA
on Full and Author by 0.9% and 1.0% respec-
tively. We hypothesize that these models excel due
to CoT prompting.

Nest F1 We are the first to provide Nest F1 met-
rics on FactBank. Our top performing model is
rl, which achieves a nested F1 of 25.3%. For rea-
soning models o1, 03-mini, and r1, we notice that
going from Unified to Hybrid does not increase
Nest F1 dramatically (0.3% for ol, 1.4% for 03-
mini, and 1.2% for rl), showcasing the models’
lack of capabilities for nested belief predictions.
We note that these results are low, and believe mod-
elling of nested beliefs is essential future work and
a challenging task for reasoning LLMs.

Zero vs. Hybrid We quantify the exact difference
(in %) between our Unified and Hybrid models
in Table 1 (column A (Hyb.-Unif.)). We see im-
provements in every model, with the greatest im-
provements occuring in GPT-40 and Claude-3.5 for
Full and Author. On average, our Hybrid models

109



Model Type F1
DeBERTa Fine-tuned 89.0
Zero-shot  82.0
DeepSeek R1 ~ Few-shot  76.4
Zero-shot  78.2
GPT-40 Few-shot 81.1
Zero-shot  83.3
Claude 3.5 Few-shot  81.8

Table 2: Event detection performance (in % F1) of
various language models. The fine-tuned DeBERTa
model outperforms all major LLMs in zero-shot and
few-shot settings.

outperform our Unified models by 5.7% for Full,
5.9% for Author, and 2.0% for Nest. Our results
emphasize the need for a specialized event tagger
and hybrid approach, allowing the LLLM to focus
on linking sources and tagging belief labels.

Event Detection We investigate how LLMs per-
form on event tagging. We show these results in
Table 2. We compare three LLMs (r1, GPT-4o,
and Claude-3.5) to the fine-tuned DeBERTa event
tagger used in the Hybrid system. For our LLMs,
we try two configurations: zero-shot and few-shot
(5 examples). We find that a fine-tuned DeBERTa
outperforms all LLMs in all settings, emphasiz-
ing that event detection is still a difficult task. We
leave further experimental details and prompts in
Appendix F.

Error Analysis We perform an error analysis on
the top-performing model (R1, Hybrid) on nested
beliefs (F1 of only 25.3%). We categorize errors
as follows: (1) Source mismatch, often labeling
the author instead of the nested source or failing to
classify pronoun sources such as “it” correctly (123
errors); (2) FN (false negatives on events), where
context-dependent event nouns or verbs are missed
(e.g., “acquisition,” “construction”) (77 errors);
(3) FP (false positives on events), over-predicting
event nouns (73 errors); (4) Label errors, notably
predicting True or Probable instead of Unknown
for future/uncommitted events (e.g., “Mary offered
to buy an apple”, where the buy event should be
Unknown ) (53 errors). We note that the FN errors
are consistent with findings from prior FactBank
studies: Murzaku et al. (2022) also found similar
errors. More detailed results and analysis of our
error analysis are in Appendix G.

Model Method Bel.+Pol.
mT5 XXLL  Fine-tune 64.4
DeepSeek r1  Hybrid 63.6
03-mini Hybrid 62.61
GPT-40 Hybrid 61.2
GPT-40 Unified 42.9
03-mini Unified 40.8
DeepSeek r1 Unified 38.6

Table 3: Model performance on Belief+Polarity
(Bel.+Pol.) F1. Rovera et al. (2025) mT5-XXL baseline
is shown in bold . Results on Bel.+Pol. metric within
5% of the SOTA are marked with a .

5.2 Multilingual Belief

The ModaFact Italian corpus (Rovera et al., 2025)
annotates the author’s belief, polarity, and modality
towards events and temporal information. We only
use the belief and polarity annotations and combine
these to tags similar to those of FactBank (and per-
form an exact match evaluation on Belief+Polarity
F1). This is different from how Rovera et al. (2025)
evaluate, but they kindly shared their raw results so
that we could apply our evaluation.

Results We perform our ModaFact experiments
with three cost-effective models that performed
well for FactBank: GPT-40, 03-mini, and R1. Our
results are shown in Table 3. Unlike our FactBank
results, we fall short of the fine-tuned SOTA for our
Hybrid system (by 0.8%). Similar to our FactBank
results, Hybrid strongly outperforms Unified in
all settings. Finally, we see that R1 and 03-mini
(both reasoning models) come very close to the
fine-tuned SOTA. GPT-40 also proves competitive,
but falls short of the reasoning models by 2.4%. We
note that while we do not beat the SOTA, the LLMs
we use are not explicitly trained for multilingual
data (in contrast with mT5-XXL). For example, R1
is specifically optimized for English and Chinese
data (Guo et al., 2025). We hypothesize that fu-
ture multilingual optimizations for these reasoning
LLMs would in fact lead to a new SOTA for the
ModaFact corpus.

6 Conclusion

We show that belief detection from text remains a
challenging problem for LLMs. This is particularly
true for nested beliefs, which the author ascribes to
other sources. Our new SOTA system includes a
distinct fine-tuned event detection component.
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Limitations

While our model achieves a new state-of-the-art
on the English only FactBank, our results, while
still competitive, do not perform as well for the
Italian ModaFact corpus. We acknowledge this as
a shortcoming and aim to work towards broader
multilingual generalization for this task.

We note that our LLM approach yields poor re-
sults on the nested F1 metric, indicating a large
gap and potential for future improvement. We will
explore improving these results in future work and
believe this to be a gap for all major open, closed,
and reasoning LL.Ms.

Finally, we note that our top performing LL.M
approach, while using the open DeepSeek r1 model,
is reliant on API calls for the source normalization
technique. We attempt to minimize costs by using
GPT-40, but note that we can (i) achieve better
performance using a larger, reasoning model (more
cost) or (ii) switch to an open model. We will
explore both techniques.

Ethics Statement

We note that our paper is foundational research and
we are not tied to any direct applications. We do not
foresee any potential risks with our work. We do
not perform any annotations or human evaluation
as we use the already existing FactBank dataset and
ModaFact dataset.

References

Anthropic. 2025. Claude 3.5 sonnet. https://www.
anthropic.com/news/claude-3-5-sonnet.

Viraat Aryabumi, John Dang, Dwarak Talupuru,
Saurabh Dash, David Cairuz, Hangyu Lin, Bharat
Venkitesh, Madeline Smith, Jon Ander Campos,
Yi Chern Tan, et al. 2024. Aya 23: Open weight re-
leases to further multilingual progress. arXiv preprint
arXiv:2405.15032.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1-53.

Marie-Catherine De Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Inves-
tigating projection in naturally occurring discourse.
In proceedings of Sinn und Bedeutung, volume 23,
pages 107-124.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

111

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Mona Diab, Lori Levin, Teruko Mitamura, Owen Ram-
bow, Vinodkumar Prabhakaran, and Weiwei Guo.
2009. Committed belief annotation and tagging. In
Proceedings of the Third Linguistic Annotation Work-
shop (LAW III), pages 6873, Suntec, Singapore. As-
sociation for Computational Linguistics.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. arXiv preprint arXiv:2111.09543.

Nanjiang Jiang and Marie-Catherine de Marneffe. 2021.
He thinks he knows better than the doctors: BERT
for event factuality fails on pragmatics. Transac-
tions of the Association for Computational Linguis-
tics, 9:1081-1097.

Kenton Lee, Yoav Artzi, Yejin Choi, and Luke Zettle-
moyer. 2015. Event detection and factuality assess-
ment with non-expert supervision. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1643—1648, Lisbon,
Portugal. Association for Computational Linguistics.

Chunyang Li, Hao Peng, Xiaozhi Wang, Yunjia Qi, Lei
Hou, Bin Xu, and Juanzi Li. 2024. MAVEN-FACT:
A large-scale event factuality detection dataset. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2024, pages 11140-11158, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report.  arXiv preprint
arXiv:2412.19437.

Yinhan Liu. 2019. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364.

Meta. 2024. Llama-3.3. https://www.1llama.
com/docs/model-cards-and-prompt-formats/
1lama3_3/.

Anne-Lyse Minard, Manuela Speranza, Ruben Urizar,
Begofia Altuna, Marieke van Erp, Anneleen Schoen,
and Chantal van Son. 2016. MEANTIME, the
NewsReader multilingual event and time corpus. In
Proceedings of the Tenth International Conference


https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/W09-3012/
https://doi.org/10.1162/tacl_a_00414
https://doi.org/10.1162/tacl_a_00414
https://doi.org/10.18653/v1/D15-1189
https://doi.org/10.18653/v1/D15-1189
https://doi.org/10.18653/v1/2024.findings-emnlp.651
https://doi.org/10.18653/v1/2024.findings-emnlp.651
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://aclanthology.org/L16-1699/
https://aclanthology.org/L16-1699/

on Language Resources and Evaluation (LREC‘16),
pages 4417-4422, Portoroz, Slovenia. European Lan-
guage Resources Association (ELRA).

John Murzaku, Tyler Osborne, Amittai Aviram, and
Owen Rambow. 2023. Towards generative event
factuality prediction. In Findings of the Association
for Computational Linguistics: ACL 2023, pages 701—
715, Toronto, Canada. Association for Computational
Linguistics.

John Murzaku and Owen Rambow. 2024. BeLeaf: Be-
lief prediction as tree generation. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 3: System
Demonstrations), pages 97-106, Mexico City, Mex-
ico. Association for Computational Linguistics.

John Murzaku, Peter Zeng, Magdalena Markowska,
and Owen Rambow. 2022. Re-examining FactBank:
Predicting the author‘s presentation of factuality.
In Proceedings of the 29th International Confer-
ence on Computational Linguistics, pages 786—796,
Gyeongju, Republic of Korea. International Commit-
tee on Computational Linguistics.

OpenAl. 2024a. Gpt-4o.
index/hello-gpt-4o0/.

https://openai.com/

OpenAl. 2024b. ol. https://openai.com/o1/.

OpenAl. 2025. 03-mini.
index/openai-o03-mini/.

https://openai.com/

OpenRouter. 2025.
openrouter.ai/.

Openrouter api. https://

Riccardo Orlando, Luca Moroni, Pere-Lluis Huguet
Cabot, Edoardo Barba, Simone Conia, Sergio Or-
landini, Giuseppe Fiameni, Roberto Navigli, et al.
2024. Minerva llms: The first family of large lan-
guage models trained from scratch on italian data.
In Proceedings of the Tenth Italian Conference on
Computational Linguistics (CLiC-it 2024).

Amir Pouran Ben Veyseh, Thien Huu Nguyen, and De-
jing Dou. 2019. Graph based neural networks for
event factuality prediction using syntactic and seman-
tic structures. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4393-4399, Florence, Italy. Associa-
tion for Computational Linguistics.

Vinodkumar Prabhakaran, Tomas By, Julia Hirschberg,
Owen Rambow, Samira Shaikh, Tomek Strzalkowski,
Jennifer Tracey, Michael Arrigo, Rupayan Basu,
Micah Clark, Adam Dalton, Mona Diab, Louise
Guthrie, Anna Prokofieva, Stephanie Strassel, Gre-
gory Werner, Yorick Wilks, and Janyce Wiebe. 2015.
A new dataset and evaluation for belief/factuality.
In Proceedings of the Fourth Joint Conference on
Lexical and Computational Semantics, pages 82-91,
Denver, Colorado. Association for Computational
Linguistics.

Alexis Ross and Ellie Pavlick. 2019. How well do NLI
models capture verb veridicality? In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 2230-2240, Hong Kong,
China. Association for Computational Linguistics.

Marco Rovera, Serena Cristoforetti, and Sara Tonelli.
2025. ModaFact: Multi-paradigm evaluation for
joint event modality and factuality detection. In
Proceedings of the 31st International Conference on
Computational Linguistics, pages 6378—-6396, Abu
Dhabi, UAE. Association for Computational Linguis-
tics.

Rachel Rudinger, Aaron Steven White, and Benjamin
Van Durme. 2018. Neural models of factuality. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 731-744, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Roser Sauri and James Pustejovsky. 2009. Factbank:
a corpus annotated with event factuality. Language
resources and evaluation, 43:227-268.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Aaron Steven White, Rachel Rudinger, Kyle Rawlins,
and Benjamin Van Durme. 2018. Lexicosyntactic
inference in neural models. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 4717-4724, Brussels,
Belgium. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483—-498, On-
line. Association for Computational Linguistics.

112


https://doi.org/10.18653/v1/2023.findings-acl.44
https://doi.org/10.18653/v1/2023.findings-acl.44
https://doi.org/10.18653/v1/2024.naacl-demo.10
https://doi.org/10.18653/v1/2024.naacl-demo.10
https://aclanthology.org/2022.coling-1.66/
https://aclanthology.org/2022.coling-1.66/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/o1/
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
https://openrouter.ai/
https://openrouter.ai/
https://doi.org/10.18653/v1/P19-1432
https://doi.org/10.18653/v1/P19-1432
https://doi.org/10.18653/v1/P19-1432
https://doi.org/10.18653/v1/S15-1009
https://doi.org/10.18653/v1/D19-1228
https://doi.org/10.18653/v1/D19-1228
https://aclanthology.org/2025.coling-main.425/
https://aclanthology.org/2025.coling-main.425/
https://doi.org/10.18653/v1/N18-1067
https://doi.org/10.18653/v1/D18-1501
https://doi.org/10.18653/v1/D18-1501
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41

A Unified Experiments

Details For all Unified zero-shot experiments,
we use a temperature of 0.0 where applicable
(all models besides ol and 03-mini). For ol
and o3-mini, we use the default reasoning setting
(Medium). To prompt all other models (LLaMA-
3.3, DeepSeek-v3, DeepSeek-r1, and Claude-3.5-
Sonnet), we use the OpenRouter API (OpenRouter,
2025). The open models are ran at full precision
(henceforth why we used the OpenRouter API and
external providers).

Prompt Our zero-shot Unified prompt is shown
in Figure 1.

B Hybrid Experiments

Details For all Hybrid zero-shot experiments,
we use a temperature of 0.0 where applicable
(all models besides ol and o03-mini). For ol
and o3-mini, we use the default reasoning setting
(Medium). To prompt all other models (LLaMA-
3.3, DeepSeek-v3, DeepSeek-rl, and Claude-3.5-
Sonnet), we use the OpenRouter API (OpenRouter,
2025).

Prompt Our Hybrid zero-shot prompt is shown
in Figure 2.

C LLM Experiment Details

For all our FactBank experiments, we report a sin-
gle run, especially due to cost. We note that ol
experiments cost up to $75 per run on the FactBank
test set. To minimize randomness, we set the tem-
perature to 0.0 where applicable (besides ol and
03-mini). For ol and 03-mini, we use the default
reasoning setting (Medium). For our ModaFact ex-
periments, we report the average over all five folds.
Due to API costs and performing five-fold cross
validation, we limit all ModaFact experiments to
GPT-40, 03-mini, and DeepSeek r1, which are the
most cost effective models.

D Dataset Details

FactBank We use the author and source-and-
target projection of FactBank from Murzaku and
Rambow (2024), who follow the article split from
Murzaku et al. (2022). We use their provided code
for data extraction and follow their exact article
split. The release of the FactBank corpus that we
use can be found at the Linguistic Data Consor-
tium, catalog number LDC2009T23. The test set
contains 280 sentences and 1,326 examples.

ModaFact We use all five-folds of the test set
of the ModaFact corpus from Rovera et al. (2025),
which is publicly available. All results we report
are averages over the five folds. To get the events
from ModaFact for our Hybrid zero-shot experi-
ments, we use the author’s provided prediction files
and inference script with mT5-XXL.

Fold Sentences Examples
Fold 1 646 2098
Fold 2 605 2097
Fold 3 606 2096
Fold 4 626 2094
Fold 5 601 2090

Table 4: Dataset details for the ModaFact test set.

E Source Normalization

We propose two source normalization prompts: a
few shot source normalization prompt and an oracle
source normalization prompt. For these prompts,
we use GPT-4o, with temperature 0.0. We prompt
GPT-40 using the OpenAl API. Our exact few shot
source normalization prompt is shown in Figure 4.
Our exact oracle normalization prompt is shown in
Figure 3.

We perform an ablation analysis of our few-shot
and oracle normalization techniques described in
Section 4.4. We showcase these results for our top
performing system (DeepSeek r1, Hybrid) in Ta-
ble 5. Without any normalization, we achieve a Full
F1 of 68.9% and Nest F1 of 17.5%. Our few shot
normalization technique improves us 2.1% for Full
F1, and more notably by 7.8% for Nest F1. Our
oracle method, as expected (since we provide gold
sources), performs even better than our few shot
method, achieving a Full F1 of 72.7% and 27.1%.
However, we choose to perform all experiments
with our few shot normalization method instead of
our oracle method to truly showcase LLMs capabil-
ities for belief detection without any gold sources
as input.

F Event Tagger

DeBERTa Tagger We use DeBERTa-large for
token classification, setting the number of labels
to 2 (O vs. EVENT). We use the following hyper-
parameters: Epochs: 5; Batch Size: 16; Learning
Rate: le-4; Max Sequence Length: 128. We do not
perform any hyperparameter optimization or tun-
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Norm. Full Nest
None 689 17.5
Few Shot 72.0 25.3
Oracle 727 27.1

Table 5: Performance of DeepSeek r1 (Hybrid) under
three source normalization settings. “None” denotes no
normalization, “Few Shot” applies few-shot normaliza-
tion, and “Oracle” uses ground-truth for normalization.
Bold values indicate the best results for each test set.

Category Count \ Breakdown Count
Source 123 | Gold=AUTHOR 50
Gold="it” 13
FN 77 | Missed Noun 38
Missed Verb 30
Label 73 | Pred:CT+ — Gold:UU 28
Pred:PR+ — Gold:UU 22
FP 53 | Predicted Noun 33
Predicted Verb 10

Table 6: Error analysis for our Hybrid DeepSeek rl
system on nested predictions, showing counts of each
error type relative to its category total count.

ing. The model is trained using the HuggingFace
Transformers library (Wolf et al., 2020).

LLM Event Tagging We perform event tagging
on multiple LLMs. We set the temperature to 0.0.
We use the OpenRouter API (OpenRouter, 2025)
for DeepSeek r1 and Claude 3.5, and the OpenAl
API for GPT-40. We do not perform experiments
with ol to avoid high costs. Our zero-shot event
detection prompt is shown in Figure 5. Our few-
shot event detection prompt is shown in Figure 6.

G Nested Error Analysis

We expand our error analysis on the nested sources.
Table 6 shows our error counts and error types.
We specifically analyze the errors for nested be-
liefs, which is where all LLMs fail on (our top
performing model achieving F1 of only 25.3%).
We showcase the error category, and then the top
two error types by count. We use the following
labels: Source indicates a source mismatch error;
FN indicates a false negative, where the LLM did
not generated a certain event type; Label indicates
a label error where the LLM had the source and
event correct, but inorrectly labeled the event. FP
indicates a false positive, where the LLM overpre-
dicted (that is, it generated an event that was not

actually an event).

Our most notable error is Source, where 123
errors are made. The most common error is the
model predicts the author is the source instead of
the correct nested source. Another notable error
is where the model does not classify the source as
it, but rather predicts the name of the entity. Next,
we see a repeating of similar errors that Murzaku
et al. (2022) discovered. Specifically, event nouns
can be hard to determine (e.g. nouns like “con-
cerns”, “acquisition”, “construction”). Our FN and
FP errors showcase that LLMs simultaneously over
predict event nouns, while also missing both event
nouns and verbs. Finally, we notice two notable
label flips for our Label error category: the LLM
predicts CT+ (the event happened/is true) when
the gold label is UU (unknown), and PR+ (pos-
sibly true) when the gold is UU. This is due to
FactBank’s definitions of nested sources and future
events: when a reporting of a future event happen-
ing (e.g. “Mary said it will happen”), the factuality
of the event according to the source is UU (the
source is not committing to the event; rather, the
author is commiting to it).

Our analysis emphasizes that despite our source
normalization method and use of strong reasoning
LLMs, there is much room for improvement. Our
error analysis findings are further supported with
similar errors that have been reported in previous
works on FactBank (Murzaku et al., 2022).

H Code Release

We will release all of our code. We will provide
the full pipelines, datasets, and model checkpoints
where applicable.
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Figure 1: Instruction for our zero-shot Unified Belief Annotation. The instruction for FactBank-style event
factuality annotation consists of three parts: a brief task description, detailed step-by-step instructions, and the
formatting structure. Our CoT instructions are shown in the end of the prompt (Step-by-Step Output).

You are an annotation assistant trained to process sentences according to a FactBank-style event factuality framework.
Given a sentence (or short text), your task is to analyze and annotate events by:
* Event Identification: Finding and listing all event-denoting predicates (verbs, event nouns, state-denoting adjectives)
* Source Analysis: Identifying who is expressing or committing to each event
* Factuality Assessment: Determining how certain each source is about the events
Nested Attribution: Managing multiple layers of reporting and belief
* Special Cases: Handling future events, negation, modality, and hedging

Follow these steps precisely for annotation:

STEP 1: Event Identification
 Find all event-denoting predicates in the text
» Each predicate must be a single token
¢ Include verbs, event nouns, and state-denoting adjectives
STEP 2: Source Identification
e Start with "AUTHOR" as the root source (text narrator)
¢ Identify source-introducing predicates (SIPs) like "said," "believed," "reported"
» For new sources (e.g., "Apple officials"), normalize to single-token labels (e.g., "officials")
¢ Format as "AUTHOR_<ShortLabel>" (e.g., "AUTHOR _officials")
» For nested sources, add additional levels with underscores (e.g., "AUTHOR _officials_spokesperson")
* Handle negated sources (e.g., "did not say") at the higher level
STEP 3: Factuality Labeling Assign one of these labels for each event-source pair:
¢ true: Certainly factual (e.g., "confirmed," "knew")
« false: Certainly counterfactual (e.g., "denied," "did not happen")
¢ ptrue: Probably true (e.g., "might," "could," "likely")
 pfalse: Probably false (e.g., "doubted")
¢ unknown: Non-committal or unspecified stance
Special Cases Guidelines
» Future/prospective events: Label as unknown unless probability indicated (then ptrue)
* Negative statements: Use false for explicit denials
* Modality/hedging: Use ptrue for "might," "could," "suspected"”
¢ Uncommitted author: Use unknown for purely reported events

Your annotation should be formatted as a JSON-style list of dictionaries:

[
{
"source": "<source_label>", // e.g., "AUTHOR" or "AUTHOR_<source>"
"event"”: "<event_token>", // exact predicate from text
"label”: "<factuality_value>" // true/false/ptrue/pfalse/unknown
Do
]

Step-by-Step Output Process:
» Walk through each event in the sentence
 Identify and explain all sources and their nesting
* Justify each factuality label from each source’s viewpoint
¢ Produce the final JSON-style output

- /
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Figure 2: Instruction for our Hybrid Belief Annotation. The instruction for FactBank-style event factuality
annotation consists of three parts: a brief task description, detailed step-by-step instructions, and the formatting
structure. Our CoT instructions are shown in the end of the prompt (Step-by-Step Output).

You are an annotation assistant trained to process sentences according to a FactBank-style event factuality framework.
Given a sentence (or short text) and a list of event predicates marked in that sentence, your task is to analyze and annotate
events by:

* Source Analysis: Identifying who is expressing or committing to each event

¢ Factuality Assessment: Determining how certain each source is about the events

* Nested Attribution: Managing multiple layers of reporting and belief

Follow these steps precisely for annotation:

STEP 1: Source Identification
e Start with "AUTHOR" as the root source (text narrator)
* Identify source-introducing predicates (SIPs) like "said," "believed," "reported," "estimated,
» For new sources (e.g., "Apple officials"), normalize to single-token labels (e.g., "officials")
¢ Format as "AUTHOR_<ShortLabel>" (e.g., "AUTHOR __officials")
 For nested sources, add additional levels with underscores (e.g., "AUTHOR _officials_spokesperson")
* Handle negated sources (e.g., "did not say") at the higher level
STEP 2: Factuality Labeling Assign one of these labels for each event-source pair:
¢ true: Certainly factual (e.g., "confirmed," "knew")
« false: Certainly counterfactual (e.g., "denied," "did not happen")
e ptrue: Probably true (e.g., "might," "could," "likely")
 pfalse: Probably false (e.g., "doubted")
¢ unknown: Non-committal or unspecified stance
Special Cases Guidelines
» Future/prospective events: Label as unknown unless probability indicated (then ptrue)
* Negative statements: Use false for explicit denials
* Modality/hedging: Use ptrue for "might," "could," "suspected"”
¢ Uncommitted author: Use unknown for purely reported events

"non non

argued"

Your annotation should be formatted as a JSON-style list of dictionaries:

[
{
"source": "<source_label>", // e.g., "AUTHOR" or "AUTHOR_<source>"
"event"”: "<event_token>", // exact predicate from text
"label”: "<factuality_value>" // true/false/ptrue/pfalse/unknown
Do
]

Step-by-Step Output Process:
* Walk through each event in the sentence
 Identify and explain all sources and their nesting
* Justify each factuality label from each source’s viewpoint
¢ Produce the final JSON-style output

- /

Figure 3: Oracle Source Normalization Prompt

~

You are determining if two source names refer to the same entity. Consider company abbreviations, common variations,
and parent/subsidiary relationships. Also consider the context of the sentence and entity coreference.

Answer only YES if these definitely refer to the same entity, NO if they are different or if you’re unsure. Include a brief
explanation of your reasoning.

Sentence: {Sentence}
Predicted Source: {Predicted Source}
Gold Source: {Gold Source}

N %
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Figure 4: Few Shot Source Normalization Prompt

4 N

You are a FactBank-style source normalization assistant.

Your task: Identify and normalize the subject (speaker/thinker/etc.) of each source-introducing predicate (SIP) in a
sentence. The normalized form must be a short, single-token label following “AUTHOR_”. If nested sources appear (i.e.,
one speaker quotes another speaker), nest them by appending an underscore plus the new label.

Use these rules and guidelines:
1. Source-Introducing Predicates (SIPs):

* Common SIP verbs: “said,” “reported,” “believed,” “estimated,” “argued,” “announced,” “denied,” “claimed,” etc.
« If an entity is repeated (the same subject for multiple SIPs), reuse the same label.

2. Normalization:

* Reduce corporate entities to “Corp.” or “Inc.” instead of the full name. E.g.:
— “Marathon Widget Corp.” — AUTHOR_Corp.
— “Skyline Media Inc.” — AUTHOR _Inc.
e Ifit’s just “the company,” consider normalizing to AUTHOR_company only if no more specific corporate form (like
“Corp.”) is available.
» For people:
— “He,” “she,” “they” — AUTHOR_he, AUTHOR _she, AUTHOR_they
— “Mr. Alvarez,” “Ms. Hurt,” or “Dr. Kim” — AUTHOR_Alvarez, AUTHOR_Hurt, AUTHOR_Kim
— If the sentence says “I stated...” — AUTHOR _I
e For large institutions:
— “Ministry of Defense” — AUTHOR_ministry
— “Police Department” — AUTHOR _police
— “officials” — AUTHOR_officials
— “board” — AUTHOR _board

« If you have a nested quote, e.g., “AUTHOR _officials_spokesperson” if the spokesperson is quoting officials.
3. Polarity:

* Even if the SIP is negated, you still label that source. (e.g., “he denied...” is valid.)
4. Output:

¢ Output only the normalized label(s). If no new source is introduced, or if you’re uncertain, you can leave the text
unchanged or indicate “No SIP found.”

Few-Shot Examples (truncated for space; we use 10 few shot examples)

1. Sentence: Alpha Widget Corp. said it is launching a new product line.
Predicted: AUTHOR_Alpha_Widget_Corp.
Corrected: AUTHOR_Corp.
2. Sentence: “I believe the results speak for themselves,” he announced.
Predicted: AUTHOR _he
Corrected: AUTHOR_I
(Because “1” is the direct speaker—if the text clearly attributes the quote to the first person.)
3. Sentence: In its quarterly filing, LRS Acquisition stated it expects higher revenue.
Predicted: AUTHOR_LRS
Corrected: AUTHOR_Acquisition
4. Sentence: A portfolio unit of Greenbank Corp. reported continued growth this year.
Predicted: AUTHOR _portfolio unit
Corrected: AUTHOR _unit
5. Sentence: The foreign minister declared that cooperation would improve global stability.
Predicted: AUTHOR _foreign minister
Corrected: AUTHOR _minister

Return:

¢ Return the final normalized label(s) if a new source arises from the SIP.
* If none or unclear, output “No SIP found” or leave the text as is.

N %
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Figure 5: FactBank Single-Token Event Identification Prompt

-

You are an expert at identifying single-token events in text following FactBank guidelines.
Find ALL single-token predicates that:

Criteria:

1. Are ONLY ONE of:

* Reporting verbs (communication)
* Cognitive verbs (mental states)
* Action verbs (physical/abstract actions)
* Event nouns (occurrences/happenings)
* State adjectives (temporary states)
2. Must represent:
» Something that happened/happens/will happen
» Something that can be assessed as true or false
* Something with a temporal dimension
3. Critical Distinction for Nouns/Nominalizations:
* INCLUDE only nouns that refer to specific instances of events with:
— Concrete temporal bounds
— Specific participants
— Ability to be assessed as having occurred or not
* DO NOT include nouns that refer to:
— General concepts or types of events
Abstract categories
Topics or subjects of discussion
Generic processes
Institutional practices

Key rules:

» Extract SINGLE tokens only

¢ Include all verbs from source-introducing predicates
 Include nested events

¢ Include events under modals or negation

¢ Include events in complement clauses

Do NOT include:

* Multi-word phrases

* Generic nouns

¢ Auxiliary verbs

* Articles, prepositions, or conjunctions

» References to event types without specific instances

Output Format:
Your output is a JSON-style list of dictionaries. Each dictionary has:

* "event": The exact event token or predicate from the sentence.

Output Example:

L
{"event”: "EVENT1"},
{"event"”: "EVENT2"},
{"event”: "EVENT3"}
]

N
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Figure 6: FactBank Few-Shot Single-Token Event Identification Prompt.

-

You are an expert at identifying single-token events in text following FactBank guidelines.
Find ALL single-token predicates that:

1. Are ONLY ONE of:

* Reporting verbs (communication)

* Cognitive verbs (mental states)

* Action verbs (physical/abstract actions)
* Event nouns (occurrences/happenings)
 State adjectives (temporary states)

2. Must represent:

* Something that happened/happens/will happen
* Something that can be assessed as true or false
* Something with a temporal dimension

3. Critical Distinction for Nouns/Nominalizations:

* INCLUDE only nouns that refer to specific instances of events with:

— Concrete temporal bounds

— Specific participants

— Ability to be assessed as having occurred or not
* DO NOT include nouns that refer to:

— General concepts or types of events
— Abstract categories

— Topics or subjects of discussion
Generic processes

Institutional practices

Key rules:

¢ Extract SINGLE tokens only

¢ Include all verbs from source-introducing predicates
¢ Include nested events

¢ Include events under modals or negation

¢ Include events in complement clauses

Do NOT include:

¢ Multi-word phrases

* Generic nouns

¢ Auxiliary verbs

* Articles, prepositions, or conjunctions

* References to event types without specific instances

Output Format:
Your output is a JSON-style list of dictionaries. Each dictionary has:

* "event": The exact event token or predicate from the sentence.

Examples: (we truncate the examples omit 3 examples here for brevity)
1. Sentence: In composite trading Friday on the New York Stock Exchange, BellSouth shares fell 87.5 cents.
Output:

L
{"event”: "trading"},
{"event": "fell"},

]
2. Sentence: Many local residents denounced the bigotry.
Output:
L
{"event"”: "denounced"},
{"event": "bigotry"}
]

N
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Abstract

Understanding and interpreting culturally spe-
cific language remains a significant challenge
for multilingual natural language processing
(NLP) systems, particularly for less-resourced
languages. To address this problem, this pa-
per introduces PRONE!, a novel dataset of
2,830 Nepali proverbs, and evaluates the per-
formance of various language models (LMs)
in two tasks: (i) identifying the correct mean-
ing of a proverb from multiple choices, and (ii)
categorizing proverbs into predefined thematic
categories. The models, including both open-
source and proprietary, were tested in zero-
shot and few-shot settings with prompts in En-
glish and Nepali. While models like GPT-40
demonstrated promising results and achieved
the highest performance among LMs, they still
fall short of human-level accuracy in under-
standing and categorizing culturally nuanced
content, highlighting the need for more inclu-
sive NLP.

1 Introduction

Language is a powerful medium for conveying
culture, traditions, and shared human experiences.
Training language models (LMs) to learn multiple
languages and contexts can significantly enhance
their ability to understand diverse human perspec-
tives and communicate across cultural boundaries
(Lietal., 2024; Hu et al., 2020; Thapa et al., 2025).
While this can enable more inclusive and globally
aware Al systems, it also presents substantial chal-
lenges in accurately capturing the unique nuances,
idioms, and culturally specific references that vary
widely between languages and societies (Liu et al.,
2025; Agarwal et al., 2025; Aleem et al., 2024; Tao
etal., 2024; Myung et al., 2024; Pawar et al., 2025).
For instance, what is considered common knowl-
edge in one culture may not hold the same rel-
* These authors contributed equally to this work and are

listed as joint first authors.
"https://github.com/therealthapa/prone

evance in another. A phrase like “watching the
ball drop' immediately invokes the image of New
Year’s Eve in Times Square for those familiar with
American culture. At the same time, it may mean
nothing to someone from a different cultural back-
ground. Similarly, in Japan, a Hanami or ~flower-
viewing party' carries deep cultural significance as-
sociated with cherry blossoms in spring. In con-
trast, it might simply be interpreted as a generic
gathering in other parts of the world. Proverbs
are another prime example of how deeply lan-
guage is intertwined with culture. Unlike gen-
eral phrases or idioms, proverbs frequently rely
on metaphors, analogies, and references unique to
their origin (Kordoni, 2018; Qiang et al., 2023;
Verma and Vuppuluri, 2015; Abebe Fenta and
Gebeyehu, 2023). They are not just linguistic ex-
pressions but also cultural artifacts that reflect the
lived experiences and shared understanding of a
community.

For example, the proverb 'Tgx HSRIAT ‘TE§7[ d
ISR F fOR' (If Shankar is helpful, then what
is there to fear?), reflects a deeply rooted cultural
belief in divine protection and faith. In Hinduism,
Shankar (name for Lord Shiva) is revered as a pow-
erful god, and the proverb suggests that if a di-
vine force is on one's side, there is no need to
worry about any dangers or challenges. For a lan-
guage model unfamiliar with Hindu deities or the
cultural context of Nepal, the significance of this
proverb would likely be misunderstood or lost. For
instance, the model might interpret “Shankar' as a
common proper name for a person rather than rec-
ognizing it as a reference to Lord Shiva. Thus,
it is crucial to develop language models that are
not only proficient in multiple languages but also
attuned to the cultural contexts and nuances that
shape the meaning of expressions, idioms, and
proverbs. While recent advancements in multilin-
gual NLP for cultural understanding have focused
on major languages like Hindi, Chinese, and Span-
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ish (Hu et al., 2020; Kakwani et al., 2020; Bau-
cells et al., 2025), there remains a considerable gap
when it comes to less-resourced languages such as
Nepali (Thapa et al., 2024; Rauniyar et al., 2023).
To address this gap, we introduce PRONE, a novel
dataset of 2,830 Nepali proverbs and evaluate the
performance of large language models (LLMs) in
interpreting and categorizing them accurately. Our
contributions are:

* We introduce PRONE, a manually curated
novel dataset of 2,830 PROverbs in NEpali,
reflecting diverse cultural expressions and
wisdom unique to Nepali.

* We manually classify the proverbs into five
broad categories, capturing key themes and
contextual nuances.

* We benchmark the performance of LLMs
on two specific tasks: Task A: Evaluating
the ability of LLMs to correctly identify the
meaning of a proverb from a set of options
consisting of one correct and three incorrect
choices. Task B: Assessing the capacity of
LLMs to accurately categorize the proverbs
into predefined categories.

By focusing on Nepali proverbs, our study sup-
ports the United Nations Sustainable Development
Goal (SDG) of "Leave No One Behind' by promot-
ing linguistic inclusivity and cultural representa-
tion in Al

2 Related Works

Prior research in figurative languages, such as
metaphor detection, generation, and interpreta-
tion, has employed various approaches, includ-
ing linguistic and visual embeddings, context-
based analysis, and paraphrasing tasks, which are
also relevant to understanding proverbs (Praman-
ick et al., 2018; Chakrabarty et al., 2021; Biz-
zoni and Lappin, 2018; Wachowiak and Gromann,
2023; Liu et al., 2022). Goren and Strapparava
(2024) examine GPT-3.5's ability to detect word-
level metaphors in proverbs using different prompt-
ing strategies. They expand the PROMETHEUS
dataset (Ozbal et al., 2016) with hypothetical con-
texts and test three prompting approaches. The re-
sults show that the model performs best with hy-
pothetical context, followed by first providing the
proverb's meaning. Similarly, there have been ef-
forts to enhance language models' understanding

of cultural and linguistic nuances, such as the work
by Wibowo et al. (2024), who developed COPAL-
ID, a dataset tailored for commonsense reason-
ing in Indonesian. They experiment with differ-
ent LLMs, including open-source models such as
XLM-R (Conneau et al., 2020), BLOOMZ (Muen-
nighoff et al., 2023b), and PolyLM (Wei et al.,
2023), as well as proprietary models such as Chat-
GPT and GPT-4, to evaluate their ability to handle
the cultural and linguistic nuances embedded in the
COPAL-ID dataset. Their findings indicate that
while proprietary models like GPT-4 achieve rel-
atively higher accuracy, they still fail human-level
performance in understanding local nuances.

Expanding on the theme of evaluating the under-
standing of language models of culturally nuanced
language, Liu et al. (2024) investigated the abili-
ties of various language models, such as BLOOMZ
(Muennighoft et al., 2023b), LLaMA-2 (Touvron
et al., 2023), XGLM (Lin et al., 2022), XLM-R
(Conneau et al., 2020), and mTO (Muennighoff
et al., 2023a), in reasoning with proverbs and say-
ings across different cultures. They evaluated these
models using culturally diverse proverbs in six lan-
guages (English, German, Russian, Bengali, Man-
darin Chinese, and Indonesian). Their findings
showed that while these models could memorize
proverbs to some extent, they often struggled to
understand them in conversational contexts, par-
ticularly when dealing with figurative language
and cross-cultural translations. However, these
studies have primarily focused on high-resource
languages, leaving less-resourced languages like
Nepali largely unexamined. Our work is the first
to address this gap, introducing a novel dataset of
2,830 Nepali proverbs and evaluating the ability of
LLMs to interpret and categorize them effectively.

3 Dataset

We created a dataset of 2,830 Nepali proverbs
collected from various sources, including online
databases, literature, and local cultural reposito-
ries. The primary collection relied on three sub-
ject matter experts (SMEs), each with at least a
master's degree in fields related to Nepali language,
literature, or culture. The collected proverbs were
checked among the SME:s to filter out any proverbs
that were deemed irrelevant.

121



Proverb Initial Duplicate
Sourcing Review Identification

Thematic
Categorization

Meanings of Proverbs
(Correct + Incorrect)

Model
Benchmark

Final
Dataset

Human
Evaluation

Figure 1: Overview of the End-to-End Pipeline for Annotating and Evaluating Nepali Proverbs

3.1 Deduplication

For deduplication, we used NepBERTa (Timilsina
et al., 2022), a pre-trained language model, to
generate embeddings, which capture the semantic
meaning of each proverb. We then compute the co-
sine similarity between these embeddings to mea-
sure the similarity between pairs of proverbs. Us-
ing this approach, we identify semantically simi-
lar proverbs and treat them as near-duplicates. We
manually visit the near-duplicates and remove if
there are redundant proverbs.

3.2 Thematic Categorization

To categorize the proverbs, we manually annotated
them into five categories: (i) Social Behavior and
Relationships, (ii) Fate and Caution, (iii) Hard
Work and Perseverance, (iv) Wisdom and Knowl-
edge, and (v) Nature and Environment; using a
rigorous annotation criterion (Appendix A). Each
proverb was annotated by three annotators, and the
final category was determined by majority agree-
ment; in cases where all three annotators assigned
different categories, the disagreement was resolved
through a consensus Zoom meeting.

3.3 Final Dataset

For each proverb, as shown in Figure 1, we as-
signed one correct meaning and three plausible but
incorrect meanings to test the interpretative capa-
bilities of language models. The final dataset thus
consists of proverbs categorized into five thematic
groups (Table 1) and accompanied by multiple-
choice options for their meanings.

Category Proverbs
Social Behavior and Relationships 1274
Fate and Caution 1177
Hard Work and Perseverance 200
Wisdom and Knowledge 157
Nature and Environment 22
Total 2830

Table 1: Distribution of Nepali Proverbs.

4 Experimental Setup

4.1 Language Models

To evaluate the understanding and categorization
of Nepali proverbs, we employed a range of lan-
guage models, including open-source and pro-
prietary ones. We conducted experiments in
both zero-shot and few-shot settings for all mod-
els, prompting the models in both English and
Nepali languages (prompts in Appendix B). The
models evaluated included: BERT-based LMs:
DistillBERT-Ne (Shrestha, 2023), RoBERTa-Ne
(Chaudhary, 2023), NepBERTa (Timilsina et al.,
2022), NepaliBERT (Ghimire, 2023), NepNews-
BERT (Pudasaini, 2023). Closed/ Proprietary
Models: GPT-3.5, GPT-4, GPT-40 (OpenAl,
2023), Gemini Pro 1.5, Gemini Flash 1.5, Mistral
Medium (Mistral Al, 2024). Open-sourced Mod-
els: LLaMA-2 (7B) (Touvron et al., 2023), Mistral
(7B) (Jiang et al., 2023), Gemma (7B) (Mesnard
et al., 2024).

4.2 Evaluation Metrics

For Task A, we used accuracy to measure the
proportion of correct selections by the LLMs
from a set of options (one correct and three
incorrect) as it directly reflects the models' ability
to identify the correct meaning. Similarly, for
Task B, we employed the F-score to evaluate the
models' performance in categorizing proverbs into
predefined categories, as it balances precision and
recall, addressing the imbalanced distribution of
categories.

5 Results and Discussion

Table 2 shows the performance of language mod-
els in Task A. Among all the models used, GPT-
40 consistently performs the best across all the
settings. The results show that across all model
types, performance in the few-shot (FS) setting is
consistently higher than in the zero-shot (ZS) set-
ting, reflecting the benefit of additional context or
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Model ZS-En ZS-Ne FS-En FS-Ne Model ZS-En ZS-Ne FS-En FS-Ne
" DistillBERT-Ne | 33.72 26.19 40.56 43.16 " DistillBERT-Ne | 31.87 21.05 32.05 34.09
= E RoBERTa-Ne 3597 2845 43.19 44.05 —~ E RoBERTa-Ne 33.86 23.74 3298 3522
% '§ NepaliBERT 36.41 29.71 45.87 4587 % § NepaliBERT 3591 2456 36.71 36.73
a NepBERTa 38.67 32.84 4534 47.64 a NepBERTa 36.24 26.73 38.56 39.67
NepNewsBERT | 4041 3576 50.23 50.18 NepNewsBERT | 38.17 2842 40.37 40.02
= 8 LLaMA-2 57.33 4891 6520 6246 o 8 LLaMA-2 46.88 37.76 4537 41.59
% E Mistral 58.87 4642 6490 61.52 g ;g) Mistral 44,61 3574 4423 40.38
Gemma 60.19 5274 6895 66.36 Gemma 49.87 39.04 4537 4242
GPT-3.5 1488 15.62 22.14 25.09 GPT-3.5 26.02 9.18 4273 31.23
B GPT-4 68.57 59.58 76.54 79.65 B GPT-4 5095 4390 4953 47.29
E g GPT-40 80.92 7463 86.19 87.99 § ‘3 GPT-40 84.52 5322 74.66 63.90
8 % Gemini Pro 1.5 79.93 75.02 83.72 83.75 8 ;‘* Gemini Pro 1.5 | 47.40 6.68 31.77 20.50
A GeminiFlash 1.5 | 66.25 6293 83.72 85.12 A~ GeminiFlash 1.5 | 58.18 1269 55.67 52.93
Mistral Medium | 17.14  53.57 2439 50.99 Mistral Medium | 28.67 11.57 23.50 34.51

Human Annotator 95.17 Human Annotator 88.74

Table 2: Accuracy of Different Language Models on
Task A (Proverb Meaning Identification) Across Zero-
Shot (ZS) and Fine-Tuned (FS) Settings in English (En)
and Nepali (Ne).

examples. For example, the accuracy of BERT-
based models improves from 26.19%-40.41% in
the zero-shot setting to 43.16%-50.23% in the few-
shot setting. Open-source models also show no-
table improvements with fine-tuning, where ac-
curacy increases from 46.42%-60.19% in zero-
shot to 61.52%-68.95% in few-shot. Similarly,
closed/proprietary models such as GPT-4 and GPT-
40 achieve much higher accuracy in few-shot set-
tings, with GPT-4o0 reaching 87.99% compared to
74.63% in the zero-shot setting.

Table 3 presents the performance of various lan-
guage models on Task B. The results indicate vary-
ing levels of performance across models and set-
tings. BERT-based models show modest F-scores,
ranging from 21.05% (DistillBERT-Ne, ZS-Ne) to
40.37% (NepNewsBERT, FS-En), with a slight im-
provement observed in the few-shot setting com-
pared to zero-shot. Open-source models demon-
strate moderate performance, with F-scores rang-
ing from 35.74% (Mistral, ZS-Ne) to 49.87%
(Gemma, ZS-En), indicating some capacity to han-
dle the proverb categorization task. However, they
do not reach the highest scores. Closed/proprietary
models exhibit a wider range of F-scores, from as
low as 6.68% (Gemini Pro 1.5, ZS-Ne) to as high
as 84.52% (GPT-40, ZS-En). Among these, GPT-
4o consistently achieves the best performance, with
the highest F-scores across all settings, particularly
in the zero-shot English setting (84.52%) and the
few-shot English setting (74.66%).

Table 3: Performance (F-score) of Various Language
Models on Task B (Proverb Categorization) in Zero-
Shot (ZS) and Few-Shot (FS) Settings for English (En)
and Nepali (Ne).

5.1 Human Evaluation

We also performed a human evaluation on both
Tasks A and B to compare the performance of
LLMs against human understanding. We em-
ployed a different set of three native Nepali speak-
ers as annotators, each with at least a school-level
education in Nepali. In Task A, human annotators
achieved an accuracy of 95.17%, while in Task B,
they obtained an F-score of 88.74%. These high-
performance metrics indicate that these tasks are
relatively straightforward for native speakers.

6 Conclusion

We evaluated various LLMs' abilities to under-
stand and categorize Nepali proverbs using a novel
dataset of 2,830 proverbs. While some models,
such as GPT-40, showed promising results, their
performance still lags behind human annotators,
who achieved the highest F-score of 95.17% and
88.74% in task A and task B, respectively. The
gap highlights the need for further improvement
in handling culturally specific content, particularly
for less-resourced languages like Nepali. Future
research should enhance models' understanding of
diverse linguistic contexts to achieve more cultur-
ally inclusive NLP systems.

Limitations

While our study offers valuable insights into the
performance of language models on the PRONE
dataset, several limitations must be addressed.
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First, the dataset, though substantial with 2,830
Nepali proverbs, may not encompass the full spec-
trum of cultural and contextual nuances inherent
in Nepali language use. The limited scope of
proverbs may restrict the models' ability to gen-
eralize across a broader range of culturally spe-
cific expressions. Second, despite promising re-
sults from models like GPT-40, a noticeable gap
remains compared to human annotators, highlight-
ing challenges in achieving full cultural compre-
hension and accurate categorization. This indi-
cates a need for enhanced training methods, pos-
sibly involving more diverse cultural data and im-
proved model adaptation techniques. Additionally,
our evaluation using English and Nepali prompts
in zero-shot and few-shot settings may not fully
capture the models' potential in varied real-world
applications. Future work should explore alterna-
tive approaches, such as fine-tuning culturally rich
datasets and developing hybrid models, to improve
understanding and performance in less-resourced
languages.

Ethics Statement

Data Collection and Privacy: The PRONE
dataset of Nepali proverbs was created using
publicly available sources, ensuring no personal
or sensitive data was involved. We complied with
all relevant data protection guidelines and model
usage terms, focusing solely on non-commercial
research. While the dataset aims to advance cultur-
ally inclusive NLP, we acknowledge the potential
for biases in model outputs and caution against
misuse that could reinforce cultural stereotypes.
Comprehensive documentation is provided, but
researchers should be aware of the dataset's limi-
tations and apply it responsibly in diverse contexts.

Annotators Recruitment: The human annotators
for this study were recruited at the local prevailing
rate, ensuring fair compensation for their contribu-
tions. We adhered to ethical recruitment practices,
and there were no ethical issues identified in this
process. The annotators’ native proficiency and
cultural understanding were essential to the study,
enhancing the quality and accuracy of the evalua-
tions conducted.
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A Annotation Details

To categorize the proverbs, we followed the follow-
ing definitions and criteria:

1. Social Behavior and Relationships:
Proverbs that focus on human interactions,
social conduct, community norms, and
interpersonal relationships. This category
includes proverbs that highlight themes such
as trust, deceit, friendship, love, and societal
roles.

Criteria: The proverb must relate to behav-
iors, expectations, or dynamics between indi-
viduals or groups within a social context.
Examples: "SI PIX, S geer|” ("Like
the dog, like its tail") — emphasizes consistent
behavior or traits, and " T 3
AT 3TUT BR GRI&T B1" (When a neigh-
bor's house is on fire, your own house is not
safe') — reflects interdependence in commu-
nity relations.

2. Fate and Caution: Proverbs that deal with
themes of destiny, luck, and the importance
of caution or mindfulness in life. This cate-
gory encompasses advice on being prudent,
prepared, or aware of one’s circumstances and
external forces.

Criteria: The proverb must convey messages
related to fate, destiny, or the necessity of be-
ing cautious or aware in various situations.
Examples: "aaeT Ugs, ST AN 1" CIf I fall,
I fall on a rock’) — suggests the inevitabil-
ity of misfortune, and "GUT SRt Trj AT
g0 " (‘Friendship with a snake is dangerous’)
— emphasizes the need for caution in relation-
ships.
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Proverb

True Meaning

Incorrect Meaning

Note

g T T Ffolell TR

3T DI AHI B T T

g el eR

In Nepali culture, 31§ (Shraddha) refers to an

ﬁ%ﬂgm‘wm@‘r g9 | (It is easier to do big HTEFHWTQC important ritual to honor deceased ancestors,
things when smaller things are W (You where the ceremony may seem straightforward,
in place.) have to call a lot of but strict attention to every detail is vital and of-
people in funeral). ten more challenging.
PTHPRI thll%(, QChII'a«hI Tliﬁ HMH el HIfNGew GF N Thimi is a town in Nepal, and in this context, it
37’?*?[ i) fofifor|  SrpffoR @@ =met (Neglecting CIE] (ivRW*l'I—sC T%?B":[ represents a place that is irrelevant to the original
task that needs to be done (People alwaystendto task or goal.
and instead tending toward give their burden to
something else.) others.)
[Epical 3 ufthd! WI a1 HecaTdien  eNfie doed o7 T The use of fBRIT (Miyan), a respectful term for
Afeeq g erRmT 99 Siftd Bl Eﬁ@‘gq e (To actively a Muslim man, and Afese (mosque), denotes a
(Person's efforts or ambitions run around to fulfill routine or habitual practice.
are limited to a narrow range or the religious duties)
familiar routine)
TSR TERIAT TH d IS a1l s - sl i} arefiel A=d T8 "91$R" (Shankar) can be both a common proper
TIZRD! P R’ ﬁ PR B (If Lord is on 9+ S T | (If a name for a person and a reference to Lord Shiva

your side, there is no reason to
fear.)

friend helps, there is
no need to be afraid.)

in Hinduism; thus, without context, the proverb
could be mistakenly interpreted as referring to

an ordinary person's help rather than invoking di-
vine protection.

3. Hard Work and Perseverance:

Proverbs
that highlight the value of diligence, effort,
endurance, and resilience in overcoming chal-
lenges or achieving goals. These proverbs of-
ten carry motivational or inspirational mes-
sages.

Criteria: The proverb should focus on themes
of hard work, persistence, or the rewards of
sustained effort and commitment.

Examples: "goll S ﬂ_\ﬁ heD, g1 EEIN me
qs" ("Plowing the field yields a harvest; eat-
ing the grass kills the ox') — underscores the
benefits of hard work, and "&R Hg-id TR ﬁ
T T gé'_ﬂ (" Without much effort, noth-
ing is obtained') — stresses the necessity of
perseverance.

4. Wisdom and Knowledge: Proverbs that offer

guidance or insights about life, learning, and
understanding. These proverbs often reflect
collective wisdom, experience, or philosophi-
cal reflections on human behavior or morality.

Criteria: The proverb should convey a lesson
or insight related to knowledge, learning, or
the deeper understanding of life.

Examples: "$TT = <RAI 811" (Knowledge is
power') — emphasizes the importance of wis-

dom, and "HIed! A Y g1" (A bull’s

Table 4: Examples of Nepali Proverbs with Their True and Incorrect Meanings, Along with Notes on Potential
Misinterpretations

tears are not milk') — encourages recognizing
reality and not being swayed by appearances.

5. Nature and Environment: Proverbs that
use elements of nature (such as animals,
plants, weather, or landscapes) to convey
lessons or truths. These proverbs employ nat-
ural metaphors to illustrate human behavior,
morality, or life lessons.

Criteria: The proverb must use imagery from
the natural world to communicate its message
or lesson.

Examples: "8l @T@ff S TS, Ul R
S NS | (It moves like the wind, wets
like the rain') uses elements of nature to de-
scribe inevitability or impact, and "3TIRgT
St <l &7, T @M A M §B1" (The
more bitter the medicine, the better the cure')
draws on natural elements to illustrate a life
lesson.

Using these definitions and criteria, we ensured
that each proverb was categorized accurately, re-
flecting its central theme and underlying cultural
context. This approach allowed us to create a well-
defined dataset that can be effectively used to eval-
uate the performance of large language models in
understanding culturally specific content.
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B Prompt Templates

Example of Zero-shot Prompt in English for Meaning

Select the correct meaning for the given proverb among given options: Proverb:
Options: A. B. C. D. Only output the correct option as
“A',"B', "C' or "D'. Explanations are not needed.

Example of Zero-shot Prompt in Nepali for Meaning

Tt fegUe! SEH! Tel IR g | PUAT A", "B, “C' a1 °D' Heg He! f[ddheuss 914 SR gy |
IR e IS9OH: _ fddeuss: A. B. C. D.

Example of Few-shot Prompt in English for Meaning

Select the correct meaning for the given Nepali proverb among the given options. Only output the
correct option as “A', "B', "C', or "D'. Explanations are not needed. Example 1: Proverb: 3fd¥X
GHUTS &b B, HIGMI 7 B TJU6| Options: A. IR IHISY H &6, B. AR IS o]
HhefdTe! Hehd &I, C. WWWWW D. T = & TJUE Correct Option:
D; Example 2: Proverb: 'SIST YSRIT, IRAT SERNT Options: A. Fel HTOM ST AT ST
e8I, B. WST X I Hiecd W 97 FFT, C. Wl I IRID! T TSI §, D. Hel 3
CICICIRCERIRSE] Flﬁ'\cq‘él'f?@ Correct Option: A; Example 3: Proverb: CHESCH] Qetl, W@W'
Options: A. SIS T b YTSTEAT R HehT fOhaie |, B. STfRR ¥ ¥ R f97 AR, C. STfex
et R O TR, D. IR e =T R 95 SI=, Correct Option: B; Example 4: Proverb: aitweft
R Il HI3T §1 | Options: A. ST TUTS TR AT §IE8, THIEDR! FeTd X FHIHERD 4!
a1 |l Ty e, B. et ¥ Sucer 9 il §75, C. e ¥ Sy 98 9PR &7, D. JAivel
Y IUSTY Bfecd B T Correct Option: A; Example 5: Proverb: afger e @s1 | Options: A.
R YT &7 |, B. el TH GFT W] T GRS Forre] &1, C. ufeell TR g1 Jia! 9l

HheT §F &, D. Ufgar e il 1! SH1 9rg 8l Correct Option: A; Now, select the correct
meaning for the given Nepali proverb. Proverb: Options: A. B. C.
D.

Example of Few-shot Prompt in Nepali for Meaning

ST uTell IEHS! dd gl fdacuse Jea Hat aref My ey B=EN | $uT ‘A’ ‘B!, 'C
a1 'D' &g e fAdheuss A SR e | SIRET ey | SeERUl 9: IWH: ¥R Jhus &
B, DT = B TS | [Adeuss: A. R IHISY ! §79, B. AR IHISY Hh! Theldd]
Hohd B, C. JNTER UM 3Tl TR 3MSa, D. HIBHT 7 HM TS Fel [ddbed: D; IaTex
R SEM: ‘IS VSN, IR IRIRFT fadhedss: A, T9 IOt SITHFT—3ToHT ST e, B. 9eT
R g1 Pfecd {1 97 Haar, C. Wl I IRID] FEH SIS §, D. Wl I IRITD! foreT Fef
gfceaet g5 Fal fdhed: A; SSTERU 3: IGM: TIfe’eDT gel, 3! Jell' fddbeugs: A, Sl
q b USTET TR HepT fOheiet |, B. d1feR Ml <f TR 99 AR, C. q1feR &+t R 93 R,
D. STfeR &l Haw TR 97 S, el fdped: B; SRV 8: I@M: 3fveft X Sucer Hisl §7 |
fapedse: A 99 qUTS TR UM §I578, UHEDR! Jd I FHTEMes 1 a1 Jiowel! el
FFB |, B. Huel I Juaer 9 A1l §78, C. vl I Iucer Y 9BR g7, D. AWl I Iucerel Hieed
B oA Fel fdeped: A SeERUY: IWF: Ufeell T g1 | fddeuss: A TRE goard &5 |, B.
iR T GeT 9! W UHIS Fore] 81, C. Ufeell T g1 Hrie! J¢ 31%hal g9 81, D. ufeal!
T gFT YD gFT WY & Wl fAdew: A; 39 Rgum SEHe! ¥al fAeed St RN | SEM:
C. D.

__ fawouss: A. B.
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Example of Zero-shot Prompt in English for Proverb Category

Classify the following Nepali proverb into one of the five categories: {"Wisdom and Knowledge',
“Hard Work and Perseverance', “Social Behavior and Relationships', “Nature and Environment', “Fate
and Caution'} Proverb: . Provide only the category name that best fits the meaning of the
given proverb. No explanation is needed.

Example of Zero-shot Prompt in Nepali for Proverb Category

e faTep! uTel SWMTS TraHed] Gori Teb SHHT aliehe THB; 'S R i, Wed I 94T, ol
FAER I F-ge%, TPIA I IAER, IFG X FEGHT. I IJEHD! 7R T
RERIT e el A AT U T | P FUEIDRU AP B |

Example of Few-shot Prompt in English for Proverb Category

Classify the following Nepali proverb into one of the five categories: “Wisdom and Knowledge',
“Hard Work and Perseverance', “Social Behavior and Relationships', “Nature and Environment', “Fate
and Caution'. Provide only the category name that best fits the meaning of the given proverb. Example
1: Proverb: 49 %’\ﬂﬁlﬁ INSH Category: Fate and Caution ; Example 2: Proverb: 3IT¢T TN Bafch B
Category: Wisdom and Knowledge; Example 3: Proverb: qrfevent Qel, IEEED] <efl Category: Social
Behavior and Relationships; Example 4: Proverb: a1 foen, e fors Category: Hard Work and
Perseverance Example 5: Proverb: IIPT TRY T FHRSH Category: Nature and Environment Now,
classify the following proverb: Proverb:

Example of Few-shot Prompt in Nepali for Proverb Category

e fgen! -TuTelt IS UleMed P Teb auiHT ARt e ‘o X g, ‘Hed < R, qrifoe
IIBR R FHIHER, "UP(cl I ATAEAR, TR R HEGLT . I@HD! T FelHwaT IFRT e arfep!
T A T TR SSTERU 9: SEH: U GRISIE IRINSS o I X Fag! SeeRy R S
3T T Bafedhr® o S R i SIS0 3: IEM: FNexal gofl, H7wT gofl Ff: FHIforDh FaeR
R FEHEH SRV 8 SEM: 31ew A, T s ot Hea ¥ ST SR 4: S@H: aFa! -
T THASS ;. Uil R AERT| 376, TAD] STTATS qiipd TRy S :

129



Measuring Sexism in US Elections:
A Comparative Analysis of X Discourse from 2020 to 2024

Anna Fuchs®

Elisa Noltenius®

Caroline Weinzierl®

Bolei Ma*®" Anna-Carolina Haensch® "+

*LMU Munich “Munich Center for Machine Learning
¢University of Maryland, College Park

{anna.fuchs,elisa.noltenius,caroline.weinzierl}@campus.lmu.de, {bolei.ma,c.haensch}@lmu.de

Abstract

Sexism continues to influence political cam-
paigns, affecting public perceptions of candi-
dates in a variety of ways. This paper exam-
ines sexist content on the social media plat-
form X during the 2020 and 2024 US election
campaigns, focusing on both male and female
candidates. Two approaches, single-step and
two-step categorization, were employed to clas-
sify tweets into different sexism categories. By
comparing these approaches against a human-
annotated subsample, we found that the single-
step approach outperformed the two-step ap-
proach. Our analysis further reveals that sexist
content increased over time, particularly be-
tween the 2020 and 2024 elections, indicating
that female candidates face a greater volume of
sexist tweets compared to their male counter-
parts. Compared to human annotations, GPT-4
struggled with detecting sexism, reaching an
accuracy of about 51%. Given both the low
agreement among the human annotators and
the obtained accuracy of the model, our study
emphasizes the challenges in detecting com-
plex social phenomena such as sexism.

Disclaimer: This paper contains content that
can be offensive or upsetting.

1 Introduction

Sexism is defined as prejudice, stereotyping, or
discrimination based on sex, typically against
women (Oxford English Dictionary, 2023). Despite
progress toward gender equality, it remains preva-
lent in many areas of society, from workplaces and
education to the media, shaping perceptions and
limiting opportunities for women. One area where
sexism is particularly prominent is politics, where
women are underrepresented and often unfairly
judged compared to their male counterparts (Fox
and Lawless, 2004; Lovenduski, 2014). Female
candidates often face scrutiny over their leadership
and competence abilities simply because of their
gender. The media further intensifies these biases

by focusing on their looks and personal lives in-
stead of their political views. As social media plays
an important role in shaping voters’ opinions, it re-
inforces existing gender biases and gender-based
criticism, particularly affecting female politicians
(Tromble and Koole, 2020).

Detecting sexism and understanding the inten-
tions behind it are essential steps in overcoming
deeply embedded gender norms and biases, espe-
cially in contexts where women seek leadership
positions, such as presidential candidacy in politics.
However, sexist comments do not always exhibit
obvious negative emotions (Becker and Wright,
2011). Sexism can be subtle, often unnoticed, mak-
ing it challenging to identify since it is embedded
in cultural and societal norms (Swim and Cohen,
1997). Therefore, it becomes crucial to investigate
these implicit forms of sexism and their impact on
individuals and society.

The 2020 and 2024 US election cycles present
a unique opportunity for researchers to examine
whether gender continues to influence the chances
of presidential candidates. The 2020 presidential
election featured Joe Biden and Donald Trump as
primary candidates. In contrast, the 2024 election
was remarkable for a candidate switch during the
campaign, as Joe Biden announced his resigna-
tion on 21 July, with Kamala Harris subsequently
launching her campaign (CNN Politics, 2024).

Our paper analyzes X (formerly Twitter) data
using tweets sampled from three time frames over
two election periods (2020 and 2024). These pe-
riods represent two different candidate scenarios:
male vs. male and female vs. male. The selected
tweets were chosen based on election-specific key-
words, from the data source publicized by previous
research (Balasubramanian et al., 2024).

We use GPT 4.0 (OpenAl, 2024) to categorize
these tweets, setting up two different approaches.
The first approach directly classifies tweets into
non-sexist and more granular sexist categories. The
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second approach involves a two-step process: ini-
tially identifying tweets as either non-sexist or
sexist, followed by categorizing the sexist tweets
into finer-grained categories. A consistent set of
prompts is applied to compare the two approaches,
while a small subsample dataset with manually an-
notated data is used as a reference for evaluating
GPT’s annotation capabilities.

Using this set-up, we address the following re-
search questions (RQs):

* RQ1: How do two-step and single-step GPT-
4-based categorization approaches compare for
identifying and classifying sexist tweets?

* RQ2: Have sexist patterns and categories of sex-
ist content in US election-related discourses on
X changed over the three election time frames?

2 Literature Review

This review offers an overview of sexism in politi-
cal discourse, discussing approaches for classifying
sexist content, with a focus on methods that use
generative Al, and prompting techniques for the
automated detection of sexist language.

Sexism in Politics. Literature on sexism in poli-
tics often focuses on the gender-biased representa-
tion of female politicians and the undermining of
women’s leadership roles, highlighting how such
biases influence public opinion and election out-
comes. Systematic marginalization and societal
structures within political institutions contribute
to underrepresentation and limited political partic-
ipation of women (Lovenduski, 2014). Despite
similar qualifications, women express less political
ambition due to lack of encouragement to run for
office and a lower self-perception of qualifications
(Fox and Lawless, 2004). The 2016 US presiden-
tial election between Hillary Clinton and Donald
Trump served as a crucial case for studying gender
dynamics in politics. Research shows that sexism
played a substantial role in Hillary Clinton’s defeat,
as women candidates face challenges and unequal
evaluations compared to their male counterparts
(Knuckey, 2019).

Sexism also shaped voter favorability: men
showed a much stronger preference for Trump than
women, while attitudes toward Clinton were similar
between genders (Glick, 2019; Ratliff et al., 2019).
Political sexism, defined as the belief that men are
better suited emotionally for politics than women,
strongly predicted support for Trump, especially

among white voters (Bracic et al., 2019). Hostile
sexism, defined as having negative views towards
individuals who defy traditional gender stereotypes,
emerged as a key factor benefiting Trump’s candi-
dacy, while benevolent sexism, which is positive in
tone but yet connotes inferiority to men, increased
support for Clinton without affecting Trump (Glick
and Fiske, 2001; Ratliff et al., 2019). From a
broader point of view, Falk (2010) examines nine
female political campaigns, uncovering how media
portrayals often frame female candidates as unvi-
able or incompetent. Analyzing political sexism in
social media, particularly using X data, has already
been addressed by Tromble and Koole (2020). This
study reports no clear differences in the tone of mes-
sages directed at male and female politicians across
three countries, including the US.

Sexism Classification. Lots of research on sex-
ism in social media has focused primarily on de-
tecting misogyny and hateful language directed at
women (Guest et al., 2021; Pamungkas et al., 2020).
However, sexism often operates in more nuanced
ways. To capture its complexity, researchers have
developed various classification frameworks. A
common method is a two-step approach: first iden-
tifying sexist tweets, then categorizing them into
more granular categories (Jiang et al., 2022; Plaza
et al., 2023). These finer-grained categories can be
defined from multiple perspectives. According to
ambivalent sexism theory (Glick and Fiske, 2001),
sexism can be hostile (overtly negative) or benevo-
lent (seemingly positive but reinforcing inferiority).
Other studies classify the degree to which sexism
manifests itself - blatant, subtle, or covert (Swim
et al., 2004). Studies also explored multi-label clas-
sification, with varying granularity. For instance,
Rodriguez-Séanchez et al. (2021) define five cate-
gories, while Parikh et al. (2019) define 23. Some
approaches incorporate cultural perspectives (Jiang
et al., 2022), focus on specific forms of harassment
(Sharifirad et al., 2018), or distinguish sexism by
target (individual or generic) (Jiang et al., 2022)
and intention (Plaza et al., 2023). These different
classification frameworks highlight the complexity
of sexism and the need for approaches to success-
fully recognize its various forms.

Large Language Models and Prompt Design.
Generative Al is emerging as a powerful tool for
annotation and is being extensively researched as a
substitute for human-annotated data, due to the hu-
man annotation challenges associated with the lat-
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ter (Kern et al., 2023). Studies comparing human-
annotated data with annotations using the ChatGPT
show promising results in detecting hateful, offen-
sive, and toxic (HOT) language (Li et al., 2024),
with high accuracy. However, some highlight the
persisting presence of additional bias in LLM anno-
tations, given different contextual variations (Das
et al., 2024; Okpala and Cheng, 2025). Huang
et al. (2023) emphasize that hate speech detec-
tion is subjective and context-dependent, yet Chat-
GPT performs well even with identifying implicit
hate speech. Maximizing the performance of an
LLM relies on using qualitative prompts. Few-shot
prompting, where the model is asked to perform a
task with a few examples, generally performs better
than zero-shot prompting, where no examples are
given (Brown et al., 2020). Prompt engineering
strategies, such as those introduced by White et al.
(2025), offer adaptable structures for better results.
Despite advancements, the use of LLMs as an anno-
tation tool for sexism-related data remains sparsely
researched. Given the widespread and evolving
nature of sexism on social media, particularly in
political discourse, further research is essential.

3 Research Design and Methodology

In this section, we provide an overview of the data
used for this analysis, how we define the sexism cat-
egories, and the methodology we apply to answer
our research questions.

3.1 Data

The data for this analysis consists of three distinct
periods from US presidential election cycles:

 Biden vs. Trump 2020 (12 - 20 July 2020)
* Biden vs. Trump 2024 (12 - 20 July 2024)
* Harris vs. Trump 2024 (22 - 30 July 2024)

We will refer to these time frames as BT2020,
BT2024, and HT2024, respectively, throughout the
remainder of this paper.

The time frames BT2020 and BT2024 allow for
a year-on-year comparison, providing insights into
shifts in sexism in political discourse over time.
The HT2024 time frame additionally allows for
an analysis of sexism across different candidate
scenarios, as it includes not only an election with
two male candidates (Biden vs. Trump) but also a
race featuring a female vs. male candidates (Harris
vs. Trump). Including the two male vs. male
candidacies aims to provide a clearer understanding

of whether sexist content has increased over time
alone while keeping the candidates constant.

To extract tweets for these three different time
periods, we made use of two public GitHub reposi-
tories from previous research capturing discourse
on X related to the US presidential elections (Chen
et al., 2022; Balasubramanian et al., 2024).

Filtering for Relevant Tweets. Political dis-
course on social media covers a range of topics.
To limit the tweets to more relevance regarding sex-
ism, we filtered the tweets for specific keywords.
The keywords used were: she, her, woman, women,
men, man, female, girl, girls, lady, feminism, fem-
inist, gender, sex, sexism, and sexist. This allows
us to pre-filter the tweets for relevancy.

Data Retrieval for BT2020. Chen et al. (2022)
provide a publicly available repository containing
tweets from January 2020 to June 2021. These
tweets were extracted using 227 different keywords
and account references. The repository consists of
several . txt files, organized by year, month, date,
and hour, with each . txt file containing multiple
tweet IDs. The .txt files covering our selected
time frame, BT2020, were merged together, to then
randomly select a sample of tweet IDs. To retrieve
the actual tweet content corresponding to the IDs,
access to the X API is required. For this analysis,
we used the Basic version of the X API v2 (X De-
veloper Platform, 2025) and extracted tweet texts
and the creation date using the tweepy package in
Python (Roesslein, 2020). Our access period for the
Basic version spanned from January 20 to February
23, 2025. The sample size for this time frame was
set to 15,000 since the Basic X API version allows
retrieval of up to 15,000 tweets per month. Of the
sampled tweet IDs for which requests were sent
via the X API, we ultimately obtained 6,316 tweets
for this analysis. Several factors contributed to this
reduction in available data.

First, we restricted our data set to English-
language tweets, meaning that any non-English
tweets were automatically excluded. Additionally,
a noteworthy number of tweet IDs belong to already
deleted tweets, making it impossible to retrieve
their content. Furthermore, the retrieved tweets
included both original tweets and retweets. Due to
a limitation of the X API and the tweepy package,
the full text of the retweets cannot be retrieved. In-
stead, only a truncated version is available, making
such data unsuitable for this analysis. Since the X
API registers each request - regardless of whether
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the tweet text is available, deleted, truncated, or
not in English - this leads to a considerably lower
number of tweets retrieved than originally antic-
ipated. The implications of these limitations are
discussed further in section 7. The tweets were
categorized into two groups, according to the key-
words mentioned in the previous paragraph. All
tweets containing a keyword (172) were used and
a sample was chosen from tweets not containing
the keywords, resulting in 431 tweets. The reason
for the difference in sampled tweets arises from
the piecewise approach to the OpenAl limit (see
subsection 3.3).

Data Retrieval for BT2024 and HT2024. For
the two election time frames in 2024 (BT2024 and
HT2024) the data used for this analysis was previ-
ously extracted by Balasubramanian et al. (2024)
using 44 different keywords. The correspond-
ing public GitHub repository contained tweets
from May until July 2024 and provided multiple
.csv. gz files consisting of tweets related to the US
election and information such as the tweet ID, text,
url, date, number of retweets, view count, etc. For
our analysis, we kept the tweet ID, the text, and the
date of the tweet. After selecting the tweets that cor-
respond to our two time frames, that is, July 12-20
and July 22-30, 2024, the tweets were filtered into
two groups, according to previously mentioned key-
words with relevance to sexism (see subsection 3.1),
one group with tweets containing the keywords and
the other group without containing them. For the
BT2024 time frame, 3,000 tweets were randomly
sampled per group, resulting in 6,000 tweets to-
gether. For the HT2024 time frame, 1,000-2,000
tweets were sampled per group, resulting in 3,000
tweets together. As for BT2020, the number in
final categorized tweets per group differ slightly
due to the piecewise approach to the OpenAl limit.

The final data used for the analysis consisted of
8,870 tweets, whose statistics are shown in Table 1.

BT2020 | BT2024 | HT2024
Total Number 431 5,630 2,809
With keywords 172 2,788 930
Without keywords 259 2,842 1,879

Table 1: Statistics of the final dataset.

3.2 Sexism Categories

We classify sexism into distinct categories using
definitions similar to those of other studies (Glick,

2019; Jiang et al., 2022; Rodriguez-Sanchez et al.,
2021; Sharifirad et al., 2018; Swim et al., 2004).

The sexism categories were defined as follows:
¢ Sexist: Tweets that discriminate, demean, or re-

inforce stereotypes based on gender, including
offensive language, objectification, slurs, or pre-
serving harmful gender roles. Tweets that discuss
the topic of sexism but not in a way that is offen-
sive towards people of certain genders.

* Non-Sexist: Tweets unrelated to gender bias,
respectful or inclusive in tone, and free of gender-
based stereotypes or discrimination.

For the finer-grained categories, the following were

chosen:

* Covert and Subtle Sexism: Tweets that show
unequal treatment that is not overtly hostile but
reinforces systemic inequality. Masking sexism
as a positive sentiment, depicting women as in-
competent or unsuited for specific roles.

* Discrediting: Tweets that undermine women’s
competence, achievements, or worth without
meaningful critique, often dismissing them out-
right or marginalize women from decision-
making and public discussions.

¢ Objectification and Sexual Harassment:
Tweets that reduce women to their physical
appearance, treating them as objects of desire
rather than individuals with agency or intellect.
Tweets that use sexualized language to intimidate
women in the political sphere.

* Remarks - Awareness and Advocacy: Remarks
or information highlighting sexism or advocating
for gender equality in a way that is not offensive
or derogatory. These kind of tweets often aim to
expose, discuss, or address sexism constructively.

* Stereotyping: Tweets that enforce traditional
gender roles or suggest that women should oc-
cupy lower social, economic, or political statuses
due to traditional or ideological beliefs.

These finer-grained categories were chosen be-
cause they capture types of sexism that are par-
ticularly relevant within the context of political
discourse. The category Remarks - Awareness
and advocacy was specifically included to analyze
whether informative discussions about sexism in-
crease over time and whether a female presidential
candidate leads to more public discussions, aware-
ness, and potentially more positive narratives about
sexism in politics.

For a more detailed overview of the categories,
including the complete definitions and correspond-
ing examples, refer to the prompts in Appendix A.
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3.3 Methods

Classification Approaches. To classify tweets
into defined sexism categories, we compare two
classification approaches using GPT-4. The first
approach follows a single-step categorization, in
which GPT-4 directly categorizes each tweet as ei-
ther Non-Sexist or into one of the finer-grained cate-
gories. The second approach consists of a two-step
categorization process: First, GPT-4 classifies the
tweets as either Sexist or Non-Sexist; all tweets that
were classified as Sexist are further categorized into
finer-grained categories.

To compare the two-step and single-step GPT-
4-based classification approaches, we begin by ad-
dressing RQ1. As metrics for overall comparison of
the prompting approaches for RQ1, we used accu-
racy and Cohen’s Kappa index; for category-wise
comparison, we used recall and precision.

Tweet examples illustrating the alignment and
difference between single-step and two-step cate-
gorization are provided in the Appendix B.

Human Annotation. For the comparison of the
two classification approaches, a subsample data set
of 300 tweets was selected and manually annotated.
To ensure that the annotated tweets represent differ-
ent cases, the selected 300 tweets are composed as
follows: 25% of the tweets were labeled as Sexist
but classified into different finer-grained categories
by both approaches. 25% of the tweets were la-
beled as Sexist by one approach but Non-Sexist by
the other approach. 40% of the tweets were clas-
sified as the same finer-grained Sexist category by
both approaches. 10% of the tweets were labeled
Non-Sexist by both approaches. This selection guar-
antees the representation of cases where the two
approaches differed or aligned. The 300 tweets
were then manually annotated by three annotators.
First, two annotators independently annotated all
300 tweets. For these two annotators, the agree-
ment on the 300 selected tweets, which included
both the Sexist category (subdivided into the five
fine-grained categories) and the Non-Sexist cate-
gory, resulted in a Cohen’s Kappa score of 0.394.
This score is generally considered minimal agree-
ment (McHugh, 2012). Because of this low agree-
ment, a third annotator reviewed the annotations. If
both of the first two annotators assigned the same
category to a tweet, that category was retained. In
cases where their categorization differed, the third
annotator reviewed the tweet and either chose the
more appropriate category or accepted both if either

categories were deemed valid. This serves as the
final human annotation, used for the analysis. The
purpose of this annotation was to determine which
of the GPT-4-based approaches better aligned with
human judgment, used as the ground truth in this
analysis.

4 Results

In this section, the results obtained from the an-
notated tweets are presented. First, the prediction
quality of the different categorization approaches is
evaluated by comparing them to the human annota-
tions (RQ1). Then, the change in the frequency of
the sexism categories over time is analyzed (RQ2).

In total, 8,870 tweets were annotated by both
single-step and two-step categorization: 430 tweets
for the time frame BT2020, 5,630 tweets for
BT2024, and 2,809 tweets for HT2024.

4.1 Comparison of Single- and Two-Step
Categorization

When comparing the human annotation with GPT-4
categorization, a tweet is counted as correctly anno-
tated by GPT-4 if the given category corresponds to
one of the final human-annotated categories. In the
following results, we refer to the human annotation
as the ground truth.

[ Metric | Single-Step | Two-Step |
Accuracy 0.510 0.503
Confidence Interval | [0.452,0.568] | [0.445,0.561]
Cohen’s Kappa 0.416 0.380

Table 2: Classification metrics for single- and two-
step categorization, taking human-annotated data as the
ground truth. The square brackets show the confidence
interval: [lower bound, upper bound].

In Table 2, the classification metrics chosen
to compare the categorization approaches are de-
picted. The GPT-4 predictions for the single-step
categorization have an accuracy of 51.0%, which
means that 51.0% of the tweets were assigned to
the correct category. Two-step categorization at-
tained a similar accuracy of 50.3%. The accuracy
confidence intervals for both approaches overlap,
meaning there is no statistical significant difference
between the two approaches. Cohen’s Kappa lies at
0.416 for the single-step process, which is consid-
ered weak agreement, and at 0.380 for the two-step
process, which is considered minimal agreement
(McHugh, 2012).

To get a better impression of how well the two
approaches categorize the tweets, it is useful to
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additionally look at classification metrics per finer-
grained sexism category. Figure 1 depicts two
confusion matrices, one for each categorization
method, showing the agreement (in %) between
the GPT-4 categorization and the human annota-
tions. Darker fields indicate higher percentages and,
therefore, higher agreement, while lighter fields
represent lower agreement.

NonfSexis. 2 . 233 2 2
5 433 067 1

Covert and Subtle Sexism 0 2.67

Discrediting- O 1.33 1.67

Objectification and 0.67 1
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Stereotyping 0 1.33 1 0 0.33 2

I, I 1
O - )
ot o e (&
«® ’&‘\Q&” @0“‘Q
¥ a®

Human Annotation

Non—Sexis. 1 6.33 167 0 2.67
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Objectification and
Sexual Harassment 1.33 0.33 | 433 9 0.33 0.67

Remarks -,
Awareness and Advocacy 3.67 133

Two-Step Categorization

Stereotyping 0 167 0.67 0 0 2.33

Human Annotation

Figure 1: Confusion matrix of agreement between
single-step (top) and two-step (bottom) categorization
and human annotation

In the confusion matrices for single-step cate-
gorization (top) and two-step categorization (bot-
tom), the off-diagonal elements for the single-step
approach are slightly lighter, indicating fewer mis-
classifications. Additionally, the diagonal values
for the single-step classification are mostly higher
than those of their corresponding cells in the two-
step matrix, suggesting that the single-step cate-
gorization achieves greater overall agreement with
human annotations.

To further compare how the approaches per-
formed, we looked at the precision and recall for
each finer-grained category (see Table 3).

For single-step categorization, recall is highest
for Remarks - Awareness and Advocacy (0.754),
Discrediting (0.727), and Objectification and Sex-

ual Harassment (0.596). The remaining categories
have a recall below 0.5. For the two-step catego-
rization, the highest recall is for Non-Sexist (0.667),
which in the single-step categorization has the low-
est recall. The categories Objectification and Sex-
ual Harassment and Stereotyping achieve a similar
recall in the single-step and two-step categorization.
However, all other categories have a recall below
0.5 in the two-step categorization, which is lower
than for the single-step categorization.

The precision in single-step categorization is
highest for Non-Sexist (0.875), followed by Re-
marks - Awareness and Advocacy (0.812) and Ob-
Jjectification and Sexual Harassment (0.737). The
other categories have a precision below 0.5. In two-
step categorization, precision is higher for Remarks
— Awareness and Advocacy (0.938) but lower for
Non-Sexist (0.680) compared to single-step cate-
gorization. The precision for Objectification ans
Sexual Harassment remains similar for both ap-
proaches. The other categories have a precision
below 0.3. Table 3 also confirms the results seen
in Table 2, where we assessed overall performance
of the two approaches: better values are achieved
for single-step categorization compared to two-step
categorization.

Overall, single-step categorization outperformed
two-step in most categories, as both recall and pre-
cision are higher. The accuracy is similar for both
approaches, but Cohen’s Kappa is higher for single-
step categorization. However, despite the higher
Kappa for single-step categorization, it remains
quite low, indicating only minimal agreement with
human annotations. Consequently, these results
should be interpreted with caution.

In the remainder of this section, where the cat-
egory distribution is analyzed over time, and to
answer RQ2, only the results for the single-step
categorization are reported. All corresponding anal-
yses for two-step categorization can be found in
Appendix A.

4.2 Relative Frequencies of Categories

In Table 4, the relative frequencies of sexism cate-
gories are presented for different time frames, deter-
mined by single-step categorization. Since we have
different numbers of tweets per time frame, the rela-
tive frequencies are assessed instead of the absolute.
Table 4 shows that the relative frequency is highest
for the Non-Sexist category across all three time
frames: 90.72%, 85.22%, and 58.70% for BT2020,
BT2024, and HT2024, respectively. When compar-
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Single-Step Two-Step

Recall Precision | Recall Precision
Non-Sexist 0.292 0.875 | 0.667 0.680
Covert and Subtle Sexism 0.366 0.417 | 0.128 0.250
Discrediting 0.727 0.240 | 0.444 0.162
Objectification and Sexual Harassment | 0.596 0.737 | 0.562 0.794
Remarks - Awareness and Advocacy 0.754 0.812 | 0.448 0.938
Stereotyping 0.429 0.200 | 0.500 0.189

Table 3: Classification metrics per sexism category for single- and two-step categorization.

Non-Sexist
Covert and Subtle Sexism
Discrediting

Remarks - Awareness and Advocacy
Stereotyping

Objectification and Sexual Harassment

BT2020 BT2024 HT2024
90.72 85.22 58.70
0.70 1.55 3.06
5.80 9.01 2791
1.16 1.17 1.32
1.62 242 8.22
0.00 0.64 0.78

Table 4: Relative frequency of sexism categories according to single-step categorization by time frame

ing BT2020 with BT2024 - the two election time
frames where we had male vs. male candidates -
single-step categorization suggests that Non-Sexist
tweets decreased slightly (-5.50%). Whereas, when
the election periods where two males were candi-
dates, BT2020 and BT2024, are compared to the
time frame HT2024 (female vs. male), we can see
that Non-Sexist tweets became increasingly less
prevalent (-32.02% and -26.52%, respectively).

The relative frequency of sexist tweets addition-
ally increases when comparing male vs. male with
female vs. male election periods, especially for the
sexism categories Covert and Subtle Sexism, Dis-
crediting, and Remarks - Awareness and Advocacy.
The category Discrediting has the highest relative
frequency (27.91%) for the election period HT2024
compared to the other categories and the election
periods BT2020 and BT2024. In Appendix C, Ta-
ble 6 the additive and multiplicative changes be-
tween the three time frames are displayed.

When looking at the multiplicative change in
relative frequency, we can observe the following.
Comparing BT2020 with BT2024, single-step cat-
egorization suggests that sexist tweets became in-
creasingly prevalent. Covert and Subtle Sexism had
the largest relative increase, more than doubling in
prevalence. Discrediting and Remarks - Awareness
and Advocacy each increased by about 50%.

Comparing BT2020 to HT2024, these three cat-
egories (Covert and Subtle Sexism, Discrediting,
and Remarks - Awareness and Advocacy) showed
an even greater increase — up to 5 times as much.
Meanwhile, Non-Sexist tweets decreased by 35%.
The category Objectification and Sexual Harass-
ment exhibited the least change in time frames. In

particular, in the first time frame, no tweets were
classified as Stereotyping, though it is essential to
consider that fewer tweets were classified in this
period, which may have affected the results.

These results indicate that sexist tweets seem to
have slightly increased between 2020 and 2024 and
increase even more when a female is running for
presidency. These results will be discussed in more
detail in section 6.

It is important to keep in mind that these inter-
pretations are based on single-step categorization,
which, as shown earlier in this section, has only
limited reliability. In Appendix C, Table 5 show
the category distribution according to two-step cat-
egorization and its changes over time. However, it
is crucial to note that the two-step approach per-
formed comparatively poorly, making its distribu-
tion and observed changes over time less reliable.

In Figure 2, the distribution of sexist categories
over time is shown for the year 2024. The fig-
ure reveals that shifts in the distribution occurred
suddenly rather than gradually, particularly when
the presidential candidates changed and Harris
replaced Biden. When looking at the shift for
each sexism category, Discrediting and Remarks -
Awareness and Advocacy have the steepest increase.
This also reflects the results seen in Table 4.

In Appendix C in Figure 3 the same figures can
be seen for two-step categorization. Also, in Ap-
pendix C, Figure 4 the distribution for all categories
(Sexist and Non-Sexist), according to single-step
and two-step categorization, can be seen for each
of the three time frames.
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Figure 2: Distribution of sexist categories according to
single-step categorization over time (gray area separat-
ing the two time frames BT2024 and HT2024)

5 Discussion

The results for RQ1 show that single-step catego-
rization outperforms the two-step approach. The
findings indicate a higher Cohen’s Kappa, as well
as better precision and recall for most sexist cat-
egories. However, the single-step categorization
approach achieved weak agreement with human
annotations, indicating that GPT-4 struggles to cat-
egorize finer instances of sexism. Although GPT-
annotation has demonstrated promising results in
the identification of hateful, offensive, and toxic
language on social media (Li et al., 2024), these
results contradict our findings. This could be due to
the complexity of sexist language, making it harder
for GPT-4 to detect, or the differences in methodol-
ogy and the limitations presented in section 7. The
minimal inter-annotator agreement additionally in-
dicated that sexist content is complex and can be
perceived differently by individuals. This shows
that the challenge lies not only in the limitations
of GPT-4 but also in the subjective nature of sex-
ism classification itself. In contrast to Plaza et al.
(2023) and Jiang et al. (2022), where classifying
content as sexist or non-sexist before classifying
it into finer categories proved more effective, our
findings suggest the opposite.

The results for RQ2 show a shift in sexist con-
tent across the three election periods. The relative
frequency of sexist tweets increased from 2020 to
2024, with a particularly higher rise during the Har-
ris vs. Trump 2024 election. These findings align
with the previous research, showing that female
candidates face increasing sexism in political dis-
course online (Bracic et al., 2019; Knuckey, 2019).

As seen in section 4, Covert and Subtle Sex-
ism became increasingly more prevalent from 2020

Stereotypin

to 2024, suggesting that sexist comments are be-
coming less explicit and more complex over time.
The frequency of tweets that exhibited Remarks -
Awareness and Advocacy regarding sexism particu-
larly increased between the two male vs. male elec-
tions and HT2024. This indicates that a female can-
didate contributes to more discussions surrounding
information about sexism or advocating for gender
equality. The category Discrediting also had one
of the highest relative frequency changes between
elections with male vs. male candidates and female
vs. male candidates. This increase in Discredit-
ing tweets observed during HT2024 aligns with
research by Falk (2010), which found that female
politicians are often portrayed as less competent or
natural compared to male candidates. However, the
findings contradict Tromble and Koole (2020), who
found no clear differences in the tone of messages
directed at female and male politicians. This dis-
crepancy could be explained due to the increasing
polarization of US politics in recent years, espe-
cially on the platform X.

6 Conclusion

This research aimed to investigate sexist content
in political discourse on social media during the
2020 and 2024 US election campaigns, comparing
different time frames and candidate gender scenar-
ios. Two approaches were used to detect sexism,
and GPT-4’s role as a data annotation tool was
evaluated. For RQ1, the results showed that the
single-step categorization outperformed the two-
step approach, but both had limited reliability and
low agreement with human annotations. This high-
lights GPT-4’s limitations in sexism detection and
the need for improved classification methods for
social phenomena such as sexism. For RQ2, sexist
discourse increased between 2020 and 2024, with
a notable rise when Kamala Harris was a presi-
dential candidate. These findings suggest female
candidates continue to face gender-based discrim-
ination in political discussions. At the same time,
the challenges of detecting sexism are reflected
both in the low human inter-annotator agreement
and the model’s accuracy. This underlines the need
for further research on capturing complex social
phenomena such as sexism in computational re-
search and emphasizes the importance of refining
LLM-based sexism detection to support research
on gender bias.
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7 Limitations

This additional section points out several key limi-
tations, which could potentially pave the way for
future research.

Data Retrieval and API Constraints. A major
limitation in the BT2020 timeframe is the avail-
ability and retrieval of tweets. Since data retrieval
relied on tweet IDs from an existing dataset (Chen
et al., 2022), many tweets were no longer accessi-
ble at the time of retrieval. Tweets that had been
deleted by users or removed by the platform could
not be retrieved, yet they still counted as requests
due to the X API’s limitations. As controversial
or highly offensive tweets may be more likely to
be deleted, this introduces a potential bias. The
BT2020 timeframe could underrepresent more ex-
treme and offensive types of sexism, as tweets that
provoked backlash or violated platform policies
could have been removed. Additionally, the X API
does not provide full-text access to retweets. Since
retweets were included in the tweet ID dataset from
Chen et al. (2022), when retrieving them, we ob-
tained a truncated text, making them unsuitable
for this analysis. Since the API does not allow
pre-filtering based on whether a tweet is an origi-
nal post or a retweet, extensive computational time
was spent obtaining tweets that were not usable.
The Basic X API version also limits the number of
queries to 15 requests per 15 minutes, resulting in a
long data collection period. Future research could
explore alternative data retrieval methods, such as
higher-level API access or pre-filtered data sets
such as the data set for 2024 (Chen et al., 2022), to
minimize data loss and computational time. Other
research ideas for the future could expand the analy-
sis beyond X. With the increasing role of platforms
like TikTok, future research could use the TikTok
API - which allows for quick keyword-based data
collection without high computational time or ma-
jor limitations - to reproduce this analysis. This
would also enable researchers to examine sexist
discourse across multiple social media platforms,
providing a more comprehensive picture of sexism
in online political discourse.

Annotation Bias. The annotation procedure po-
tentially introduces a source of bias due to the
limited number of annotators and their sociode-
mographic diversity. All three annotators in this
study are white females with a shared social and
cultural background, potentially influencing the

perception of sexist content. More diverse anno-
tators, including individuals of different genders,
ethnicities, and political perspectives, could pro-
vide a broader, less biased understanding of how
to define sexist language in political debate. Addi-
tionally, the very low level of agreement between
the first two annotators indicates that classifying
sexism into fine-grained categories is a challenging
and subjective task, even among individuals with
similar backgrounds. As a result. the reported ac-
curacy scores of GPT-4 should be interpreted with
caution. Future research could focus on extending
the annotation process in order to improve the clas-
sification reliability and strengthen the results of
the research questions.

Keyword Discrepancies Between Time Frames.
The 2020 data set was created using 227 keywords
and account references (Chen et al., 2022), while
the 2024 data sets are based only on 44 keywords
(Balasubramanian et al., 2024). When comparing
these, we found that only 10 keywords were iden-
tical in both data sets. Although some differences
in the keywords are obvious, e.g., election-specific
keywords such as "Trump2020" or "Harris2024,"
the overall difference in keyword quantity may
have influenced the comparability of sexist content
between the three time frames. A potential exten-
sion of this paper could be to reproduce the analysis
by first generating a new list of keywords and ex-
tracting new tweets for each election time frame.
This approach would address the issue of keyword
discrepancies and also resolve the challenge of re-
trieving previously deleted tweets, as described in
the Data Retrieval and API Constraints paragraph.

Platform Evolution. An important limitation
when comparing 2020 and 2024 is the change in the
social media platform X. Following Elon Musk’s
acquisition of Twitter in October 2022, there were
significant shifts in content moderation policies
(Conger and Hirsch, 2022). While some previously
suspended right-leaning accounts were restored,
many left-leaning users left the platform (Barrie,
2023). As a result, the user base between 2020
and 2024 changed, which may have influenced the
types of content shared and the tone of political dis-
course. This implies that the results should be inter-
preted within the context of X specifically, rather
than as representative of the general population in
the US. Future research could address this limi-
tation by incorporating data from other platforms
(e.g., TikTok or Reddit) or modeling changes in the
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platform’s user base over time. Despite this limita-
tion, the results still indicate a notable increase in
sexist content from the BT2024 time frame to the
HT2024.

Candidate-Specific Factors. Sexist language is
rarely isolated from other forms of marginaliza-
tion. For instance, Kamala Harris is biracial, a
stepmother, and a female candidate in a male-
dominated office. This study centers on sexism
and does not take other factors such as race, re-
ligion, or family structures into account. Conse-
quently, some tweets labeled as sexist may be inter-
sectional, while other tweets motivated by sexism
but amplified by race or parental status could be
under-captured. A better picture of online hostil-
ity might come from extending the taxonomy to
include overlapping categories to control for other
candidate-specific factors.

Contextual Differences Between Election Peri-
ods. Finally, when analyzing the results, the po-
litical context surrounding the 2020 and 2024 elec-
tions must be considered. The 2020 election pe-
riod occurred during the COVID-19 pandemic. Al-
though the 2020 election was dominated by online
discussions and political discourse surrounding the
pandemic, the 2024 election took place after the
pandemic, which could lead to different discussion
topics and a greater focus on other time-relevant
topics. The presence or absence of major external
events may have changed the way sexism mani-
fested in online political discourse, making direct
comparisons between time frames more complex.
To account for this limitation, the tweets for both
time frames were already filtered by specific key-
words that could potentially be linked to sexism,
as described in subsection 3.3. One approach to
further extend this analysis could focus on longitu-
dinal tracking of sexist discourse beyond election
cycles. Instead of focusing on a short 9-day elec-
tion period, future research could analyze sexism
in political discourse during a broader time period.
This could help better understand whether the in-
crease or decrease in sexist content in political dis-
cussions is temporary and event-driven or whether
it indicates a broader societal trend.
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A  GPT-4 Prompts

A.1 Single-Step Approach

Single-Step Approach

I want you to perform a data annotation task. In your output, I want you to categorize a tweet into
one of the following categories, considering the respective enclosed definition and three examples:
A tweet belongs to the category Non-Sexist if it is neutral or unrelated to sexism and it does not
contain any discriminatory or gendered undertones. Examples for this category would be:
- "She gave a great speech on climate policy!"
- "We need more candidates like her!"
- "He would be better president."
A tweet belongs to the category Remarks - Awareness and Advocacy if it includes a remark or
information highlighting sexism or advocating for gender equality in a way that is not offensive
or derogatory. These comments often aim to expose, discuss, or address sexism constructively.
Examples:
- "We need more women in leadership roles—diversity strengthens democracy."
- "It’s disheartening to see how women candidates are treated differently from men in this election."
- "She’s breaking barriers and paving the way for future generations—proud of her resilience in the
face of sexism."
A tweet belongs to the category Discrediting if it attempts to undermine women’s competence,
achievements, or worth without engaging in meaningful critique, often dismissing them outright
(explicit negative sentiment targeting women, often demeaning their character, intentions, or
abilities), or if it is an attempt to preserve male control or marginalize women from decision-
making and public discussions. Examples:
- "What does she know about politics?"
- "She’s only there to meet diversity quotas, not because she’s actually qualified."
- "Politics is no place for a woman—Ieave it to the men."
A tweet belongs to the category Stereotyping if it enforces traditional gender roles or suggests that
women should occupy lower social, economic, or political statuses due to traditional or ideological
beliefs. Examples:
- "She’s just another angry feminist, probably can’t even cook."
- "Her place is to support men, not lead."
- "She’s just overreacting, like all women do."
A tweet belongs to the category Objectification and Sexual Harassment if it reduces women to
their physical appearance, treats them as objects of desire rather than individuals with agency or
intellect, or uses sexualized language or harassment to intimidate or silence women in the political
sphere. Examples:
- "Politics is for people with brains, not just pretty faces."
- "She needs to get laid, maybe she’ll calm down."
- "She’s asking for it, dressing like that in public."
A tweet belongs to the category Covert and Subtle Sexism if it shows unequal treatment that is
not overtly hostile but perpetuates systemic inequality through normalized attitudes and actions, or
if it masks sexism as positive sentiment, often portraying women as needing protection, incapable
of independence, or inherently suited for specific roles. Examples:
- "She should smile more if she wants to connect with people."
- "It’s surprising how well she handles tough questions for a woman."
- "We need women in politics to bring a softer touch."
Your answer should only contain the name of the given category. Do not provide any other
L outputs or any explanation for your output.

J
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A.2 Two-Step Approach

Two-Step Approach: First Step Prompt

I want you to perform a data annotation task. In your output, I want you to categorize a tweet into
one of the following categories, considering the respective enclosed definition and three examples:
A tweet belongs to the category Sexist if it discriminates, demeans, or reinforces stereotype based
on gender. This includes offensive language, objectification, gender-based slurs, or preserving
harmful/negative gender roles. A tweet also belongs to this category if it discusses the topic of
sexism, gender discrimination, or stereotypes but not in a way that is offensive towards people of
certain gender. Examples for this category would be would be

- "It is insulting to women to have the obey-clause remain in the marriage service",

- "Girls shouldn’t be allowed to be commentators for football games",

- "who asked you? Stupid bitch"

A tweet belongs to the category Non-Sexist if it is not related to sexism and do not contain any
form of gender-based bias, discrimination, or stereotyping. The tweet is neutral, respectful, or
positively inclusive in tone and content regarding gender. Examples for this category would be

- "We need more women in leadership roles—diversity strengthens democracy.",

- "It’s disheartening to see how women candidates are treated differently from men in this election.",
- "She’s breaking barriers and paving the way for future generations—proud of her resilience in the
face of sexism."

Your answer should only contain the name of the given category. Do not provide any other

outputs or any explanation for your output.
. W,
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Two-Step Approach: Second Step Prompt

I want you to perform a data annotation task. In your output, I want you to categorize a tweet into
one of the following categories, considering the respective enclosed definition and three examples:
A tweet belongs to the category Remarks - Awareness and Advocacy if it is/includes a remark or
information highlighting sexism or advocating for gender equality in a way that is not offensive or
derogatory. These kind of comments often aim to expose, discuss, or address sexism constructively.
Examples for this category would be

- "We need more women in leadership roles—diversity strengthens democracy.",

- "It’s disheartening to see how women candidates are treated differently from men in this election.",
- "She’s breaking barriers and paving the way for future generations—proud of her resilience in the
face of sexism.".

A tweet belongs to the category Discrediting if it is/includes an attempt to undermine women’s
competence, achievements, or worth without engaging in meaningful critique, often dismissing
them outright (explicit negative sentiment targeting women, often demeaning their character,
intentions, or abilities), or if is an attempt to preserve male control or marginalize women from
decision-making and public discussions. Examples for this category would be

- "What does she know about politics?",

- "She’s only there to meet diversity quotas, not because she’s actually qualified.",

- "Politics is no place for a woman-leave it to the men.".

A tweet belongs to the category Stereotyping if it is enforcing traditional gender roles or suggesting
that women should occupy lower social, economic, or political statuses due to traditional or
ideological beliefs. Examples for this category would be

- "She’s just another angry feminist, probably can’t even cook.",

- "Her place is to support men, not lead.",

- "She’s just overreacting, like all women do.".

A tweet belongs to the category Objectification and Sexual Harassment if it is reducing women
to their physical appearance, treating them as objects of desire rather than individuals with agency
or intellect, or if it using sexualized language or harassment to intimidate or silence women in the
political sphere. Examples for this category would be

- "Politics is for people with brains, not just pretty faces.",

- "She needs to get laid, maybe she’ll calm down.",

- "She’s asking for it, dressing like that in public.".

A tweet belongs to the category Covert and Subtle Sexism if it shows unequal treatment that is
not overtly hostile but perpetuates systemic inequality through normalized attitudes and actions,
or if it is masking sexism as positive sentiment, often portraying women as needing protection,
incapable of independence, or inherently suited for specific roles. Examples for category would be
- "She should smile more if she wants to connect with people.",

- "It’s surprising how well she handles tough questions for a woman.",

- "We need women in politics to bring a softer touch.".

Your answer should only contain the name of the given category. Do not provide any other

outputs or any explanation for your output.
\_ J
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B Alignment and Differences between Single-Step and Two-Step Approach

Alignment between Approaches

Tweet

The first female president should be honorable and should not have slept her way to the top.
Categorization for both Single-Step and Two-Step Approach

Discrediting

Difference between Approaches

|
L

Tweet

She has no skills. So maga it is
Categorization for Single-Step Approach
Discrediting

Categorization for Two-Step Approach
Non-Sexist
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C Additional Results

BT2020 BT2024 HT2024

Non-Sexist 98.144 95.702 88.501
Covert and Subtle Sexism 0.232 0.320 0.570
Discrediting 0.696 2.007 5.732

Objectification and Sexual Harassment | 0.000 0.675 0.783
Remarks - Awareness and Advocacy 0.000 0.711 3.667
Stereotyping 0.928 0.586 0.748

Table 5: Relative frequency of sexism categories according to
two-step categorization by time frame

Category
Covert and . - Objectification and Remarks - -
Subtle Sexism * DISCrediing === g 2l Harassment” Awareness and Advocacy Stereoyping
0.20
015

Proportion per Day
5

0.05

S 9 6
1 A3 4 4] & Ee.
X g =< —_— \é
——
0.00

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Day in July 2024

Figure 3: Distribution of sexist categories according to two-step prompting over time in 2024
(gray area separating the time frames BT2024 and HT2024)
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Change from BT2020 to BT2024

BT2020 to BT2020 to
BT2020 BT2024 BT2024 BT2024
(additive) (multiplicative)
Non-Sexist 90.72 85.22 -5.50 0.94
Covert and Subtle Sexism 0.70 1.55 +0.85 2.22
Discrediting 5.80 9.01 +3.21 1.55
Objectification and Sexual Harassment 1.16 2.42 +0.01 1.01
Remarks - Awareness and Advocacy 1.62 2.42 +0.80 1.49
Stereotyping 0.00 0.64 +0.64 Inf
Change from BT2020 to HT2024
BT2020 to BT2020 to
BT2020 HT2024 HT2024 HT2024
(additive) (multiplicative)
Non-Sexist 90.72 58.70 -32.02 0.68
Covert and Subtle Sexism 0.70 3.06 +2.36 4.40
Discrediting 5.80 27.91 +22.11 4.81
Objectification and Sexual Harassment 1.16 1.32 +0.16 1.14
Remarks - Awareness and Advocacy 1.62 8.22 +6.60 5.06
Stereotyping 0.00 0.78 +0.78 Inf
Change from BT2024 to HT2024
BT2024 to BT2024 to
BT2024 HT2024 HT2024 HT2024
(additive) (multiplicative)
Non-Sexist 85.22 58.70 -26.52 0.69
Covert and Subtle Sexism 1.55 3.06 +1.51 1.98
Discrediting 9.01 2791 +18.90 3.10
Objectification and Sexual Harassment 1.17 1.32 +0.15 1.12
Remarks - Awareness and Advocacy 2.42 8.22 +5.80 3.40
Stereotyping 0.64 0.78 +0.14 1.22

Table 6: Change in relative frequency of sexism categories according to single-step
categorization by time frame
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Category

cav Covert and . L Objectification and__ Remarks — "
~*- Non-Sexiste- Subtle Sexism Discrediting e~ Sexual Harassment  Awareness and Advocac'y.' Stereotyping
BT2020 BT2024 HT2024
42 36 1 5
1.0 56,
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(a) Single-Step Categorization
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(b) Two-Step Categorization

Figure 4: Distribution of all categories over time according to single-step (a) and
two-step (b) categorization
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Abstract

Large Language Models (LLMs) have demon-
strated remarkable performance across various
NLP tasks, yet they continue to face challenges
in discourse relation recognition (DRR). Cur-
rent state-of-the-art methods for DRR primar-
ily rely on smaller pre-trained language models
(PLMs). In this study, we conduct a comprehen-
sive analysis of different approaches using both
PLMs and LLMs, evaluating their effectiveness
for DRR at multiple granularities and under dif-
ferent data availability settings. Our findings
indicate that no single approach consistently
outperforms the others, and we offer a general
comparison framework to guide the selection
of the most appropriate model based on specific
DRR requirements and data conditions.

1 Introduction

Discourse parsing automatically extracts the under-
lying discourse structure of a text, playing a pivotal
role in various natural language processing (NLP)
tasks. Its utility has been demonstrated in appli-
cations such as machine translation (Chen et al.,
2020), summarization (Xu et al., 2020; Chen and
Yang, 2021; Rennard et al., 2024), and question-
answering (Jansen et al., 2014). Discourse pars-
ing is particularly useful in scenarios that involve
handling complex or large-scale text, such as in
multi-document summarization (Chen et al., 2021;
Li et al., 2020; Liu and Lapata, 2019).

A fundamental task in discourse parsing is dis-
course relation recognition (DRR), which aims
to identify the relation sense between argument
pairs. Typically, argument pairs are made up of text
spans known as elementary discourse units (EDUs).
When connectives are present between argument
pairs (explicit DRR), training a simple classifier on
the connectives can achieve a classification accu-
racy close to 95% (Xiang and Wang, 2023; Pitler
and Nenkova, 2009; Varia et al., 2019). On the
other hand, the task becomes more difficult when

User 1: Anyone got wood?

User 2: Yes, plenty QA pair

Parallel
L User 3: Not me, sorry

Figure 1: An example of discourse relation parsing in
dialogue, taken from STAC corpus (Asher et al., 2016).

connectives are not present (implicit DRR), and
current approaches for this task struggle to achieve
an accuracy above 80% (Xiang et al., 2023; Zhou
etal., 2022; Chan et al., 2023). To address this chal-
lenge, we explore relation recognition in dialogue
discourse parsing (see Figure 1), where connectives
play a less prominent role, alongside implicit dis-
course relation recognition (IDRR) in monologues.
In dialogue discourse parsing, the argument pairs
are made up of user utterances, and in IDRR, the
argument pairs are made up EDUs.

Recent large language models (LLMs) (e.g.,
ChatGPT (OpenAl, 2022) and GPT-4 (OpenAl
et al., 2024)) have demonstrated remarkable per-
formance on many NLP benchmarks, and display
advanced reasoning and understanding capabilities.
They also exhibit impressive abilities in zero-shot
and few-shot settings (Wei et al., 2022), and can
sometimes be competitive with prior state-of-the-
art fine-tuning approaches (Brown et al., 2020). At
the same time, many studies suggest that LLMs do
not perform as well as small encoder-only models
fine-tuned on specific-tasks (Qin et al., 2023; Lu
et al., 2023).

This is the case for the DRR task on which
LLMs seem to struggle with (Fan et al., 2024;
Chan et al., 2024). Many of the current top-
performing approaches rely on fine-tuning rela-
tively smaller encoder-based pre-trained language
models (PLMs) like RoOBERTa (Zhou et al., 2022;
Wu et al., 2023; Xiang et al., 2023, 2022; Li et al.,
2023, 2024a,b).

In spite of these established approaches, it is still
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unclear when it is more effective to use LLMs or
PLMs for DRR. With this in mind, we conduct
a comprehensive analysis of different approaches
for the DRR task, focusing on comparing PLMs
and LLMs under different data availability settings.
For PLMs, we use the data for fine-tuning. For
LLMs, we employ zero-shot prompting, in-context
learning, and a new self-reflection technique we
call confusion-matrix prompting. We explore these
techniques using both monologues and dialogues
with different relation types and granularities.
Confusion-matrix prompting is a novel tech-
nique that uses information from a confusion ma-
trix to inform an LLLM about the errors it tends to
make, enabling it to self-reflect and adjust its pre-
dictions accordingly. This is inspired by the many
studies that have shown how LLMs benefit from
self-reflecting on and improving their initial gener-
ation (Madaan et al., 2023; Fernando et al., 2023;
Welleck et al., 2023; Shinn et al., 2023), as well as
learning from their mistakes (Zhang et al., 2024).
Our work advances the understanding of fine-
tuning PLMs and various prompting techniques
with LLMs in the context of DRR, across different
dataset sizes and multiple relation sense granulari-
ties. Key takeaways include: (1) Zero-shot prompt-
ing leverages inherent knowledge embedded in
LLMs and performs better than other techniques
when there is little available data; (2) Confusion-
matrix prompting achieves optimal performance
when there is insufficient data for fine-tuning, but
enough to surpass zero-shot performance; (3) Fine-
tuned PLMs excel in scenarios with increased data,
and is robust across various datasets regardless of
complexity or number of relation senses.

2 Methodology

To simulate different data availability settings, we
extract seven subsets of training datasets, each with
different sizes. For each subset, we randomly se-
lect a certain number of examples for each relation
sense. We start with a single example per relation
sense, and increment the number up to 250 exam-
ples per relation sense. When a specific relation
sense does not enough examples available, we ran-
domly select the remaining examples from other
relation senses to satisfy the target example count.

Next, we employ fine-tuning and prompting tech-
niques that leverage these subsets for the DRR task,
assessing how each performs across different data
volumes.

* Fine-tuning (FT). We fine-tune an encoder-
only PLM to encode the representation of
argument pairs and predict a relation sense.
Our representation of argument pairs follows
the template from Zhou et al. (2022): Arg1:
<Argl>. Arg2: <Arg2>. In summary,
the discourse relation between Argl
and Arg2 is

Zero-shot (ZS). Without using any annotated
data, we frame the problem as a zero-shot fill-
in-the-blank prompt to a LLM. Our prompt
follows the same format as FT.

In-context learning (ICL). Input-label pairs
from the dataset are incorporated directly
into the LLM’s prompt to leverage in-context
learning. Typically, in-context learning ap-
proaches manually select the input-label pairs
to ensure high-quality examples. However, in
our approach, we use randomly selected pairs
from the dataset to maintain consistency with
our other techniques. Due to the limited input
context length of the early GPT-3.5 version,
we cannot include examples for all data avail-
ability settings, particularly for larger num-
bers of examples per relation sense, e.g., >25
examples per relation sense for PDTB top-
level experiment.

Confusion-Matrix Prompting (CMP). Us-
ing the dataset, we collect zero-shot perfor-
mance of the LLM in the form of a confu-
sion matrix, recording the model’s predictions
against the true labels. This confusion matrix
allows us to determine how often the model
correctly predicts a relation, and how often it
confuses it with another relation. During in-
ference, we first let the model make its initial
prediction. Based on this prediction we formu-
late a follow-up prompt using the confusion
matrix, informing the model of its prediction
accuracy and common mistakes. We provided
this prompt as a follow-up, giving the model
a chance to self-reflect and correct it’s initial
prediction (see Appendix A for an example).

3 Experimental Setup

Monologue Data: The Penn Discourse Treebank
3.0 (PDTB 3.0). PDTB 3.0 is an annotated cor-
pus of discourse relations that come from Wall
Street Journal articles (Webber et al., 2019). It
uses 3 hierarchies of relation senses, and contains
both implicit and explicit relation types. For our
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Figure 2: Comparisons of Macro F1 scores of FT, ZS,
ICL, and CMP techniques across increasing numbers
of examples per relation sense on PDTB top-level. The
number of ICL examples is restricted to up to 25 due to
the input context length of GPT-3.5.!

experiments, we use the four top-level and twenty
second-level implicit relation senses, with a test set
of 1,538 examples.

Dialogue Data: STAC. STAC is a corpus of
multi-party dialogues collected from an online
game called The Settlers of Catan (Asher et al.,
2016). The dialogues are annotated in the style
of Segmented Discourse Representation Theory
(SDRT), which uses sixteen relation senses (Asher
and Lascarides, 2003). The test set consists of
1,128 examples.

Implementation Details. The fine-tuning experi-
ments were conducted using RoOBERTa-base (Liu
et al., 2019). We selected this lightweight model
for its strong performance on the DRR task. We
employ a learning rate of 1le — 5 and trained the
model for 20 epochs with early stopping based on
performance on the development set. To ensure ro-
bustness of our results, we repeat each experiment
over 10 random seeds and report the average score.

ZS, ICL and CMP experiments were done us-
ing GPT-3.5 Turbo. We report the average of our
results over 5 random seeds. Additionally, prelim-
inary experiments were performed on Mistral 7B
(Jiang et al., 2023), and indicated a similar trend of
improvement in performance.

4 Results and Analysis

The results of our experiments are displayed in
Table 1 and illustrated in Figures 2, 3, and 4 for

"Logarithmic scale is used for the x-axis
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Figure 3: Comparisons of Macro F1 scores of FT, ZS,
ICL, and CMP techniques across increasing numbers of
examples per relation sense on PDTB second-level. ICL
examples is restricted to 1 example per relation sense. !
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Figure 4: Comparisons of Macro F1 scores of FT, ZS,
ICL, and CMP techniques across increasing numbers of
examples per relation sense on STAC. ICL examples is
restricted to up to 5 examples per relation sense. !

PDTB top-level, second-level, and STAC corpus,
respectively. Our analysis primarily uses Macro F1
scores, though similar trends are observed for accu-
racy (relevant figures are included in Appendix B).

In general, ZS is consistently the better tech-
nique for lesser amounts of data. As the number of
examples per relation sense increases, fine-tuning
(FT) demonstrates constant improvement and soon
surpasses ZS, underlining the benefits of the tech-
nique. While CMP starts out with lower perfor-
mance, it has shown to improve and eventually
surpass ZS at higher data volumes. ICL, on the
other hand, exhibits underwhelming performance
across all datasets.

The observed trends indicate that ZS, which re-
lies on inherent discourse knowledge embedded in
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Number of Training Examples Per Relation Sense (always zero for ZS)

1 5 10 25 75 125 250
Technique | Acc FI1 | Acc Fl | Acc FI | Acc FI | Acc FIl | Acc FI | Acc FI
PDTB Top-Level (4 relation senses)
FT 209 82 | 227 9. |229 147|345 303|399 37.7|431 41.2 | 51.7 493
A 42.8 294 | 428 294 | 428 294 | 42.8 294 | 428 294 | 428 294 | 428 294
ICL 40.8 27.6 |39.6 28.1 |33.1 230|185 142 - - - - - -
CMP 225 19.6 | 33.1 262|354 28.1|395 324|420 329|421 343|423 337
PDTB Second-Level (20 relation senses)
FT 56 07 ] 62 12 |150 132|254 220|384 31.1|426 345|501 359
7S 178 69 (178 69 (178 69 | 178 69 [178 69 | 178 69 | 178 69
ICL 9.1 4.7 - - - - - - - - - - - -
CMP 11.5 53 | 139 6.0 | 134 65 |11.7 7.1 | 193 87 | 195 87 |20.5 8.7
STAC (16 relation senses)

FT 43 0.7 {200 12.8|31.0 208|399 294 | 465 33.2|53.0 40.7 | 59.1 44.6
A 249 181|249 181|249 181|249 181|249 181|249 181|249 18.1
ICL 20.6 12.8 | 17.2 10.2 - - - - - - - - - -
CMP 162 11.0| 149 125|162 129|193 150 21.6 16.6 |22.1 165|268 179

Table 1: Accuracy (Acc) and Macro F1 (F1) scores of FT, ZS, ICL, and CMP techniques on different numbers of
examples per relation sense. The best results for each technique are bolded. The - values indicate that we were

unable to experiments due to input length limitations.

the model, is the highest performing technique for
DRR in low data availability scenarios. When con-
sidering ZS performance across the datasets, the
performance diminishes for more complex prob-
lems where there are greater numbers of relation
senses. ZS achieves higher performance on top-
level PDTB, with 4 relations senses, and lower
performance on STAC, with 16 relation senses,
and even lower performance in second-level PDTB,
with 20 relation senses. This increased difficulty
highlights the limitations of relying solely on pre-
trained knowledge.

FT scales very well with the data and always
emerges as the most effective technique as data
availability increases. Notably, the accuracy and
F1 scores achieved by FT are relatively consistent
across the different datasets. Unlike in ZS, we
do not see a similar drop in performance as the
number of relation senses increases. From this,
we can gather that a more complex task does not
proportionally impact the performance of PLMs
the same way it does for LLMs.

CMP begins to outperform ZS as dataset sizes in-
crease, showing that it is optimal when the amount
of data is insufficient for fine-tuning, or if fine-
tuning is not a viable option. In scenarios involving
smaller datasets, the volatility of the confusion ma-
trix is less representative of model performance, of-
ten causing a drop in performance. However, as we
use larger datasets, the confusion matrix provides

a more accurate depiction of the model’s errors
and overall performance. This allows CMP to help
the LLM learn from its past performance and start
outperforming ZS.

Furthermore, CMP proves to be more effective
in the more complex datasets with larger numbers
of relation senses. This effectiveness is attributed
to the technique being beneficial when there are
more potential mistakes that the LLM can make.

The results observed from ICL gives poor re-
sults, which is likely due to the random selection of
examples and context length limitations. It never
outperformed ZS, and the performance decreases
as the datasets get larger, as if adding more data
into the prompt makes it more difficult for the LLM
to effectively process.

5 Conclusion

In order to identify the optimal techniques for DRR
under different data availability settings, we per-
form an analysis on how these techniques perform
with varying amounts of data. The techniques we
explore include fine-tuning for PLMs, and various
prompting techniques with LLMs. In our exper-
iments, we find that in low data availability sce-
narios, zero-shot prompting performs best. CMP
achieves the best performance when there is more
data available, but not enough for effective fine-
tuning. When we have more data, fine-tuning
PLMs dominates, and performance is not affected
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by more complex relation sense granularities. Un-
expectedly, ICL is always dominated by ZS.

In future work, we plan to further investigate the
trade-off between PLMs and LLMs for discourse
processing tasks. We would like to extend this work
by conducting further experiments on more pow-
erful LLMs, more specific ICL techniques such as
similarity-based selection, as well as more complex
tasks such as discourse parsing. Additionally, we
would like to explore self-reflection learning tech-
niques for LLMs as we have found quite promising
results. The methodology and experimental frame-
work we have designed and implemented ' will be
critical in facilitating these further investigations
by us and other researchers.

6 Limitations

In our experiments, we consider GPT-3.5 Turbo
and RoBERTa-base as representatives for LLMs
and PLMs, respectively. While these models serve
as good representatives, exploring more powerful
models would further strengthen our study. Further-
more, due to the lack of annotated data, our experi-
ments were limited to two English datasets: PDTB
3.0 and STAC. These limitations highlight areas for
future research to provide a more comprehensive
understanding of discourse relation recognition
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A Confusion-Matrix Prompting
Examples

User: Argl: Coupons and a newsletter will
be mailed. Arg2: And the sponsor will
be able to gather a list of desirable
potential customers.

In summary, the discourse
between Argl and Arg2 is

relation

Model: Expansion

User: Argl: Coupons and a newsletter will
be mailed. Arg2: And the sponsor will
be able to gather a list of desirable
potential customers.

The initial prediction for the discourse

relation between Argl and Arg2 was
Expansion. 27% of the time when
Expansion was predicted, the correct

answer was Expansion. 27% of the time
when Expansion was predicted, the correct
answer was Contingency. 24% of the time
when Expansion was predicted, the correct
answer was Temporal. 20% of the time
when Expansion was predicted, the correct
answer was Comparison. Considering this
information, what is the relation sense?

Model: Contingency
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Figure 5: Comparisons of accuracy of FT, ZS, ICL, and
CMP techniques across increasing numbers of examples
per relation sense on PDTB top-level. !
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Abstract

Consider the example ” The bird sang the nurs-
ery rhyme beautifully. It made everyone in the
room smile”. The pronoun ’it’ here refers ei-
ther to the bird or to the event of singing. This
example is inherently ambiguous. It cannot be
meaningfully disambiguated as an event or en-
tity reference, as both readings result in the
same text meaning. This study introduces a
new dataset EMBITEXT to preserve ambigu-
ity in the language by navigating through the
ambiguity surrounding the pronominal refer-
ence to the entity or event. Oftentimes, ambi-
guity does not necessarily need to be resolved
but is modelled carefully. Furthermore, this
study explores the capacity of LLMs (Llama,
Mistral, Gemini, Claude AI) to embrace ambi-
guity in generating text that exhibit referential
ambiguity via an In-Context learning approach.
To evaluate of the dataset, ROBERTa was fine-
tuned on this data to model ambiguity while
simultaneously distinguishing between entity
or event references. Results demonstrate Em-
biText’s capacity to advance the ongoing NLP
research by modelling linguistic ambiguity in
computational environments instead of fully dis-
ambiguating it, thereby retaining diverse inter-
pretations where resolution may alter meaning.

1 Introduction

Ambiguity in language represents multiple plau-
sible meanings, interpretations, and contexts of
words, phrases, or sentences. The occurrence of
ambiguity in language is inherently natural and can
be a stylistic choice or a result of poetic expres-
sion, but also occur unintentionally. Humans tend
to navigate around these ambiguities naturally at
most times as compared to computers and machines,
although in extreme cases ambiguity may lead to
profound confusion for even humans. Researchers
and engineers are leveraging Artificial Intelligence
(AD to navigate through this ambiguity along with
its contextual understanding with a level of natural-
ness akin to human understanding of language.

Christian Hardmeier
IT University of Copenhagen
chrha@itu.dk

A simple pronoun could refer to any entity, an
event, or in some cases may refer to both. An entity
is typically a noun denoting an object inside the dis-
course realm, whereas an event is a verbal phrase de-
scribing an action that has occurred. Anaphora res-
olution research has traditionally focused on com-
plete disambiguation of pronominal references, as
seen in corpora like OntoNotes by Weischedel et al.
(2010) and GUM Corpus by Zeldes et al. (2025), yet
some ambiguities are difficult to resolve or resolv-
ing them lead to discrepancies in coreference an-
notation. Lapshinova-Koltunski et al. (2019) This
calls for a dataset, specifically curated and robust
to include ambiguous examples and their potential
antecedents enabling the NLP models to both detect
ambiguity and quantify uncertainty.

Examples of ambiguous cases this study primar-
ily focuses on:

* The bird mimicked the nursery rhymes beauti-
fully. It made everyone in the room smile.

* The volcano erupted violently. It created a
huge crater.

* The garden was blooming with flowers, which
made me feel refreshed.

» The fireworks display wondertully lit up the
sky on time. This added colours to the cere-
mony.

This study underscores the linguistic fundamen-
tals of ambiguity, reflecting on semantics, linguistic
theories, and syntax to interpret how multiple read-
ings can be extracted from pronoun reference.

This study addresses these research questions:

* How can the ambiguity inherent in pronomi-
nal references between entities and event be
identified, annotated, and modeled in Natural
Language?
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* Are LLMs capable of embracing ambiguity in
natural language rather than resolving it?

We answer these questions by developing a cu-
rated dataset that models the ambiguity in pronom-
inal references between entities and events. Data
is annotated and then evaluated by fine-tuning an
LLM. The text examples exhibit ambiguity sur-
rounding pronoun reference. Additionally, LLMs
are prompted to generate ambiguous examples and
quantify the likelihood of pronouns referring to en-
tities and events. This study aims to contribute to
the literature in Natural Language Processing by
exploring the complexities of natural language and
leveraging Al to preserve linguistic ambiguity.

2 Background

The literature review explores types of ambigui-
ties in natural language, i.e. syntactic, discourse,
anaphoric, semantic, and lexical ambiguities such
as in a study by Anjali and Anto (2014). Consider-
able focus has been on investigating ambiguities in
different settings. Duzi (2013) claims that ambigu-
ity is not only prominent in informal conversations
but also evidently exists in formal discussions and
arguments, particularly focusing on philosophical
approaches. Chukwu (2015) discovers and resolves
ambiguities and incorporates admissible ambiguity
into literary writing to understand word order and
context.

Researchers have developed corpora for coref-
erence resolution. Yuan et al. (2023) introduced a
corpus of sentence pairs with ambiguous and un-
ambiguous referents to compare human and model
sensitivity to ambiguity, focusing primarily on dis-
ambiguation. In contrast, EmbiText models graded
ambiguity, thereby prioritizing preservation over
resolution of ambiguity. Datasets like LitBank by
Bamman et al. (2020), LegalCore by Wei et al.
(2025), and PreCO by Chen et al. (2018) are aimed
at entity-level coreference and yield efficient error
analysis, but ignore combined representation of en-
tities and events. Emami et al. (2019) introduces
a context-driven coreference corpus by eliminat-
ing gender and number cues. KnowRef focuses on
disambiguation, unlike EmbiText, which embraces
ambiguity.

Lodiciga et al. (2017) investigates the ambiguous
nature of the pronoun ”it” by applying the max-
imum Entropy classifier to differentiate between
anaphoric, event-referential, and pleonastic uses of
“it”, with a focus on a single type of pronoun ”it”

and silver-standard data. Lodiciga et al. (2020) sub-
sequently introduced cross-lingual signals-related
disambiguation system for event-based ambigui-
ties with exclusive focus on the English pronoun
’it’” and reliance on silver standard data. This nar-
rows the scope and limits applicability to a wider
range of contexts. Bevacqua et al. (2021) investi-
gated linguistic patterns in event-entity coreference
across five languages using the story continuation
task, while focusing on disambiguation using a psy-
cholinguistic approach rather than representing am-
biguity as linguistic characteristic with computa-
tional models. Joshi et al. (2019) proposed efficient
BERT-based system for entity coreference which
struggled with encoding relations between entities.
Le et al. (2022) proposed extremely accurate scien-
tific coreference resolution with In Context learning,
but is restricted by prompt-based capacity and cross-
domain generalization. These studies underscore
the need for extensive research, which our study
aims to accomplish by curating EmbiText, anno-
tated data to navigate through ambiguity in pronom-
inal reference and leveraging LL.Ms to provide in-
sights about the linguistic phenomena related to
pronoun reference. Unlike traditional disambigua-
tion, this study coherently embraces ambiguity by
introducing data with inherently ambiguous cases.

3 Methodology

This section outlines the complete study pipeline,
from data acquisition and processing to model train-
ing. Provided that the focus of the study is on
pronoun reference, the selected pronouns are: ’It’,
"This’, That and *Which’.

3.1 Data Acquisition

Georgetown University Multilayer Corpus (GUM)
by Zeldes et al. (2025) was chosen for experimen-
tal analysis as it contains real-world examples from
various domains such as academic, art, literature, in-
terviews, etc. Datasets from the coreference section
of GUM were selected due to their relevance to the
focus of this study, containing a total of 14158 text
examples. About 4860 text examples containing
the selected pronouns were extracted. Each exam-
ple was subjected to extensive auditing to examine
whether the pronoun referred to an antecedent and
to check for potential ambiguity. Examples con-
taining dummy pronouns e.g. ~Basing letters on
objects (pictographs) is an easy way to start a writ-
ing system. Try this with a group of friends. It’s
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much more fun when there are other people that can
understand your language” and informal dialogues
i.e. ”But, but I remember, like I went there with this
person, it’s kind of funny” were excluded. The ’it’
here functions as a syntactic placeholder without
an antecedent. In total, 249 examples were sampled
from the corpus, containing a mix of ambiguous and
unambiguous examples. We conducted a text gen-
eration experiment by using Decoder-only LLMs
with an In-Context Few Shot learning approach
to assess their capability in generating examples
containing ambiguous pronoun references. Mis-
tral Al (Mistral-7B-Instruct-v0.1) by (Jiang
et al., 2023), Gemini 2.0 by (Google DeepMind,
2023), Llama 3.0 (1lama-3-8b-instruct) by
(Grattafiori et al., 2024) and Anthropic’s Claude
Al (Claude 3 Haiku) (Anthropic, 2024) were se-
lected, fine-tuned to generate texts identical to the
requirement of this research. The hyperparam-
eters setting included: temperature set to 0.7,
do_sample set to true, and max_new_tokens set
to 700 for Mistral and 1000 for Claude. This setting
ensured a controlled level of linguistic creativity, di-
versity, and randomness in the generated examples
while adhering to the task-specific prompts. With
extensive prompt engineering (see 7), 120 examples
were generated; 30 examples from each model.
The data examples generated from LLMs (Gem-
ini, Mistral Al, Claude, and Llama) along with the
shortlisted data examples from GUM corpus were
integrated into a composite dataset for annotations.

3.1.1 Annotations

To identify ambiguity surrounding pronominal ref-
erences to entities or events, text examples were
annotated. Dataset was annotated using Label Stu-
dio by Tkachenko et al. (2025). Each text example
was critically examined and classified as ambiguous
when it contained both entity and event references
or as unambiguous when it contained only one ref-
erence type. To ensure an unbiased and systematic
annotation process, both authors of this study in-
dependently annotated the examples. This strategy
was used to mitigate individual bias. The custom
labeling setup involved rating examples on an 11-
point scale ranging from 100% entity-leaning to
100% event-leaning. Annotators labeled and rated
each example: Figure 1 illustrates the star icon used
for annotations. Annotators used their contextual
understanding and linguistic understanding while
following annotation guidelines.

We initially calculated the inter-annotator agree-

Drag the rating to indicate pronoun reference between Entity (left)
and Event (right)

1 star = 100% Entity, 6 = 50/50, 11 = 100% Event

Figure 1: Star rating icon; the first four stars starting
from the left represent pronoun reference leaning to-
wards entity while the first star represents 100% entity
reference, the three stars in the middle denote ambiguity,
the last four stars represent pronoun reference leaning
towards event, with the last and eleventh star indicating
100% event.

ment while correcting for chance agreement by us-
ing Cohen’s Kappa by Cohen (1960) and ordinal
Krippendorff’s alpha by krippendorff (2004). This
was followed by annotators adopting an adjudica-
tion approach. Both annotators jointly reviewed
all cases of annotation disagreements and resolved
them through systematic discussion, resulting in
consensus for each case. This process led to a re-
vised annotated dataset, devoid of inter-annotator
disagreements and was subsequently used as final
training and test data for the model.

An example of an ambiguous case is as follows:
”The dog barked at the mailman. It startled the
children”. Here, either the dog (entity) or "the bark-
ing of dog’ (event), startled the children, hence
entity and event probability both receive values of
0.5. Probabilities are categorized for a simple an-
notation process; 0.1-0.39 represents entity-leaning
while remaining 0.69-0.9 represent event-leaning
and vice-versa, and 0.4-0.6 represent Ambiguous
cases. These five labels were later condensed into
three labels: entity leaning, event-leaning and am-
biguous by removing ’entity’ and ’event’ labels.
Three-label scheme categorizes probabilities in
ranges of: 0-0.39 for entity-leaning and the remain-
ing 0.69-1 for event-leaning. Refer to appendix 7
for an example. This approach introduced simplic-
ity in labeling examples and subsequently helped
mediate inter-annotator disagreement. In view of
computation, merging exact entity-event categories
into entity-event-leaning categories reduces spar-
sity. An overview of example categories in dataset
is illustrated in figure 1.

Category Number of Text Examples
Entity Leaning 127
Ambiguous 69
Event Leaning 53
Total 249

Table 1: Distribution of annotated examples across cate-
gories in the EmbiText.
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3.1.2 Model Training

Transformer-based RoOBERTa by Liu et al. (2019),
was fine-tuned on EmbiText to test its interpretabil-
ity when the pronominal reference potentially leads
to multiple interpretations. The model then pre-
dicts the probability of the entity or an event, and
the complementary probability is calculated as 1
minus the predicted probability, e.g. p(entity) =
1 — p(entity) and vice versa. For instance, if the
entity prediction is 0.72, the corresponding event
prediction is 0.28.

We used the HuggingFace Transformers frame-
work to fine-tune the model. The best model check-
point was chosen on the basis of the validation loss.
Appendices 7 and 7 show the input features and
hyperparameter configuration. This hyperparame-
ter configuration is widely used as the ROBERTa
fine-tuning setting for small datasets, e.g. Wolf
et al. (2020), resulting in stable convergence with-
out overfitting.

The model uses sigmoid activation function to
provide a probabilistic illustration of whether a pro-
noun refers to an entity or an event. Probability
tokens are the targets for the model to compute loss
using Mean Squared error (MSE) to project the dif-
ference between predictions and ground-truth prob-
abilities by penalizing large deviations to train the
model on necessary fine-grained contextual cues.
Probabilistic outcomes enable the model to project
ambiguity and degrees of entity/event-leaning in-
stead of predicting binary choices. The output was
post-processed using a threshold function to map
probabilities to categories of: 1) Entity-leaning, 2)
Ambiguous, 3) Event-leaning.

To evaluate the system’s performance, we com-
pared it with an instruction-tuned baseline language
model, Flan-T5, encoder-decoder-based system by
Chung et al. (2022). It has shown promising per-
formance across zero- and few-shot prompts setup.
We conducted few-shot prompting by including a
random sample of training examples. The model
was responsible for generating output in the form of
probability estimates for pronominal references to
entities or events. The generated probabilities were
categorized using the same thresholding method
used to fine-tune RoOBERTa.

4 Results

Our results demonstrate that EmbiText effectively
embraces pronominal ambiguity, supporting its rel-
evance for human-computer interactions. The over-

all results highlight the reasonable quality of the
annotations of the data for this experiment. The an-
notators reviewed their annotated examples and dis-
agreed on approximately 15% of the total examples.
Cohen’s Kappa evaluation on the initial five-label
scheme resulted in a fair agreement according to
(Landis and Koch, 1977) but constrained consen-
sus between both annotators with a value of 0.24.
After reducing the labels to three, Cohen’s value
increased to 0.36, highlighting improvement and
fair agreement (Landis and Koch, 1977). Similarly,
the ordinal Krippendorff’s alpha value improved
from 0.31 to 0.46. Despite the improvement, the
score still hints at low inter-annotator agreement,
reflecting the subjectivity and difficult nature of dif-
ferentiating between ambiguous and entity-event-
leaning pronominal references. The initial five-
label scheme in Appendix 7, shows strong agree-
ment on “ambiguous” cases but prominent disagree-
ment on cases between “Entity”, Entity leaning”
and "Ambiguous”. Contrastingly, as observed in
figure 2, three-label scheme clarifies that the dis-
agreement primarily is prominent between entity-
leaning and the customized labeling setup involved
rating examples on an 11-point scale ranging from
100% entity-leaning to 100% event-leaning. Anno-
tator 1 labeled more examples as ambiguous, while
Annotator 2 leaned towards entity-specific labels.
See Appendix 7 for cases of inter-annotator dis-
agreement and their resolution. This enabled the
annotators to resolve the discrepancies through sys-
tematic discussions of each conflicted example until
a common ground was established. Subsequently,
the reconciled annotations were used as the final
data to train and evaluate the model.

Inter-Annotator Agreement

Annotator 1
Event Leaning Ambiguous Entity Leaning

Entity Leaning Ambiguous Event ﬁeaning
Annotator 2

Figure 2: Confusion Matrix denoting inter-annotator
agreement using three-labels scheme.

Findings from text generation experiment demon-
strate that LLMs are capable of generating text ex-
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amples that are ambiguous in nature. Figure 3 illus-
trates the superiority in performance of Llama, fol-
lowed by mistral Al, however 60% of its output dis-
played a negative tone, emphasizing disasters, death
and destruction despite the inclusion of positive and
neutral examples in the prompt. This suggests that
the output represents a subset of the distribution of
possible examples. For example: ” The tsunami hit
the shore with huge waves. It caused widespread
destruction and loss of life”. Claude and Gemini
demonstrated underwhelming performance.

Distribution of types of Generated Examples by LLM

30 mmm Negative tone
m Ambiguous
Unambiguous

S

Number of Examples
5 G

e

Mistral
LLMs

Llama Claude Gemini

Figure 3: Overview of generated examples from LLM:s.

Fine-tuning RoBERTa on this data showcased
a lower rate of prediction errors: MSE of 0.019
(entity) and 0. 1328 (event), RMSE of 0. 3029 (en-
tity), 0. 3644 (event), and MAE of 0.2573 (entity)
and 0,3119 (event), indicating more accurate re-
sults for entity references and overall reflecting a
low value of average prediction error and deviation
of predictions from ground truth values. Table 2
presents the comparison of our system (Fine-tunes
RoBERTa) with baseline (Flan-T5). Our model
yielded a lower error rates (MSE and RMSE and
more accurate performance as compared to Flan-T5.
This detail suggests that model succeeded in predict-
ing probabilities values closer to true probability
values.

Metric Flan-T5 (few-shot) RoBERTa (fine-tuned)
MSE 0.1063 0.0847
RMSE 0.3260 0.2911
Accuracy 0.314 0.353
Macro F1 0.096 0.205

Table 2: Comparison of the baseline (Flan-T5, few-shot)
and our system (fine-tuned RoBERTa) on the test set,
predicting entity probabilities.

5 Discussion and Conclusion

Our results corroborate that the curated EmbiText
dataset and fine-tuned LLMs efficiently model nat-

ural ambiguity, especially in cases in common lan-
guage where resolution is challenging. The pro-
posed dataset demonstrate linguistic relevance and
careful annotation approaches with systematic rec-
onciliation of inter-annotator disagreements to miti-
gate bias and subjectivity. During annotation, some
ambiguous examples featured event spans that elab-
orated on entities rather than individual actions i.e.
”Tomorrow, when this image is shared with the
world,it will be a historic moment for science and
technology”. The baseline comparison revealed
that fine-tuned RoBERTa produced an improved
probability calibration with a balanced distribution
of categories, while Flan-T5, despite strong pre-
dictions, reflected a slight bias toward Ambiguous
category.

Data it that which this
LLM-generated examples 108 0 0 0
GUM Corpus 28 13 7 11
Total 136 13 7 11

Table 3: Counts of selected pronouns across data exam-
ples.

The examples resulting from text generation
experiments reflect the ambiguity found in natu-
ral language, where pronouns can refer to multi-
ple antecedents and visualize multiple contextual
interpretations. The results from the fine-tuned
RoBERTa configuration suggest that the curated
dataset accommodates referential ambiguity while
distinguishing between entity and event references
rather than resolving it. LLM generated text only in-
cluded the pronoun ”it”, despite the prompts includ-
ing other pronouns, suggesting further prompt re-
finement as seen in Figure 3. This demonstrates the
ability of modern Al systems to interpret syntactic
and semantic ambiguity in ways that project human-
like sensitivity to multiple contexts through prompt
engineering and fine-tuning. Although LLM per-
formance is not equivalent to human cognition, the
results support the second goal of this study: mod-
eling ambiguity as a linguistic feature rather than
resolving it. This study focuses on embracing am-
biguity as a feature that uncovers deeper textual
interpretations rather than a flaw, something previ-
ous research had neglected. This study contributes
to applications involving human-computer interac-
tion, i.e. customer service bots, dialogue systems,
and assistive technologies.
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6 Limitations

Our focus is primarily on the ambiguity arising from
the pronominal reference between entity-event in
English-specific text examples. Despite a fair agree-
ment value and consensus-based resolution of dis-
agreements, perception of ambiguity remains sub-
jective, reflecting the level of difficulty of this task.
Limited data size and label imbalance can cause dif-
ferences between entity and event results. Addition-
ally, the baseline Flan-T5 model is an instruction-
tuned sequence-to-sequence model which makes
probability prediction and classification tasks less
direct as compared with encoder.only ROBERTa.
Future direction should expand data size to en-
hance model generalizability, apply resampling
techniques (i.e. SMOTE), involve cross-lingual
analysis, enhanced prompt engineering techniques
for text generation, employ other pretrained models
as baseline models to compare with, multiple an-
notators (4-6) and multiple evaluators to evaluate
generated examples for robust assessment and test
different model architectures.
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A. Input Features D. Annotation Example

Text Example and Its Category

Train Dataset ‘ Test Dataset
text _eXample ‘ t eXt_eXa_Inple “The city is hosting a major conference. It will attract international attention. IZ
pronoun ‘ pronoun

E. Confusion Matrix for Five-Label scheme

event_candidate event_candidate

Confusion Matrix for Inter-annotator Agreement with five-kabels scheme.

| |
| |
| |
‘ entity_candidate ‘ entity_candidate ‘
| |
| |
| |

|
entity_prob ‘
|

- 14
event_prob
20 - 20
Table 4: Overview of train and test set features. 1
-15
- 18

Annotator 1
Event Leaning Ambiguous Entity Leaning  Entity

B. Hyperparameters

Hyperparameter Value s
Learning Rate 2x107° B
Batch Size 16 : 0
Number Of Epochs 10 Entity Entity Leaning :Ir’:’:]nltgai(;:z Event Leaning Event
Early Stopping Patience 2 . . . N
Figure 4: Confusion Matrix denoting inter-annotator

Dropout Rate 0.3 .

. agreement using five-labels scheme.
Weight Decay 0.01
Gradient Clipping 0.01

F. Annotation Disagreement and Resolution
Table 5: Hyperparameter configuration for RoOBERTa g

fine-tuning. i
It’s an implant
that will let them
know where you
are, and how you
C. Prompt for Ambiguous text examples _are. It won't hurt. |
Generation using LLMs
prompt = """ Generate 30 ambiguous ‘ A“(')lgta(;olr 1 I;ezolg? An(;'gta‘:‘;' 2 ‘
sentences where a pronoun could - - o

refer to either an entity or an

event. Here are some examples: Figure 5: Annotation disagreement and resolution: uni-
'The volcano erupted violently. fied probability distribution.

It created a huge crater.' 'The bird

sang perfectly. It made everyone in

the room very happy.' 'Garden was

blooming with flowers, which made me
feel refreshed.' Now, generate more
examples: """
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G. Annotation Disagreement and Resolution 2.0

You know it was a
— actually though,
I think they made
a remake of it,
with Chevy Chase,
that was really
lousy though.

Annotator 1 Resolved Annotator 2
0.5, 0.5 0.5, 0.5 0.8, 0.2

Figure 6: Annotation disagreement and resolution: uni-
fied probability distribution.

H. Loss Curve Comparison

Training and Validation Loss Curve for Entity Probability Prediction

—e— Training Loss
Validation Loss

2 4 6 8 10
Epoch

(a) Loss curve for our model predicting entity probabilities.

Training and Validation Loss Curve for Event Probability Prediction

—e— Training Loss
Validation Loss

0120

0115

0110

0.105

Loss

0,100

0,095

0,090

0,085

2 4 6 8 10
Epoch

(b) Loss curve for our model predicting event probabilities.

Figure 7: Training loss curves for the model predicting
entities and events.

I. Metrics for Event Probabilities

Metric Flan-T5 (few-shot) RoBERTa (fine-tuned)

MSE 0.1063 0.0843
RMSE 0.3260 0.2903
Accuracy 0.314 0.372
Macro F1 0.096 0.214

Table 6: Comparison of the baseline (Flan-T5, few-shot)
and our system (fine-tuned RoBERTa) on the test set,
predicting event probabilities.
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Abstract

Understanding the strategies that make expert-
led explanations effective is a core challenge
in didactics and a key goal for explainable Al
To study this computationally, we introduce
ReWIRED, a large corpus of explanatory di-
alogues annotated by education experts with
fine-grained, span-level teaching acts across
five levels of explainee knowledge. We use this
resource to assess the capabilities of modern
language models, finding that while few-shot
LLMs struggle to label these acts, fine-tuning
is a highly effective methodology. Moving be-
yond structural annotation, we propose and val-
idate a suite of didactic quality metrics. We
demonstrate that a prompt-based evaluation us-
ing an LLM as a “judge” is required to cap-
ture how the functional quality of an explana-
tion aligns with the learner’s expertise — a nu-
ance missed by simpler static metrics. Together,
our dataset, modeling insights, and evaluation
framework provide a comprehensive methodol-
ogy to bridge pedagogical principles with com-
putational discourse analysis.

1 Introduction

Effective teaching is a masterclass in communi-
cation, where an expert dynamically adapts their
language and strategy to guide a learner toward
understanding. This process unfolds as a com-
plex, structured dialogue, yet the specific discourse
mechanisms that make an explanation effective,
especially when tailored to different audiences,
are not well understood from a computational
perspective. While insights from education and
psychology define what constitutes good teaching
(Miller, 2019; Kulgemeyer, 2018), we lack the fine-
grained datasets and evaluation frameworks needed
to model these principles in natural language.
This paper addresses that gap through a multi-
faceted approach, as illustrated in Figure 1. First,

“Work done while at DFKI.

h.wachsmuth@ai.uni-hannover.de

g : : )
C ReWIRED Domain expert annotation >

< Expert-led dialogue >

Explainer: Chess in an absolutely [Knowledge
fascinating game. Think of is asa Statement]
language [...] How would you
explain chess to them? (Assess
Explainee: | would start off with  prior

the basics... knowledge]

[Comparison]

ReWIRED LLM experiments >
C LLM D)
BERT (_gson Y TaNL I GOLLIE )
[token] [token] [token]
{i} [span | @dataclass class
tag] Span(Entity):
[tag] [tag] [tag]

( IXQuisite Qualitative evaluation )

Explainer: Chess in an
absolutely fascinating game.
Think of is as a language [...]
How would you explain chess
to them?

Explainee: | would start off
with the basics...

Check for prior knowledge
Example/analogy

X Mindfulness of common
misconceptions

Adaptation

[
ol
@
S
g
=

%

Figure 1: Our workflow: We begin by having education
experts create span-level annotations of teaching acts in
explanatory dialogues. We then experiment with various
LLMs to automate this annotation. Finally, we conduct
a qualitative evaluation, using both human experts and
LLMs, to assess the quality of the explanations based
on didactic principles.

we introduce ReWIRED, a new corpus resource
that significantly extends the WIRED dataset
(Wachsmuth and Alshomary, 2022). Our contribu-
tion lies in a new layer of span-level annotations
of teaching acts, provided by education domain
experts, across dialogues tailored to five distinct
knowledge levels (from child to colleague). This
provides an empirical foundation for studying ped-
agogical discourse structure (§3).

Second, we explore the feasibility of automating
the detection of these acts. We evaluate a range of
language models and prompting techniques, reveal-
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ing that while few-shot LLMs struggle with this
nuanced task, models fine-tuned on our data—even
smaller ones—can achieve near-perfect accuracy.
This establishes a robust methodology for analyz-
ing instructional dialogues at scale (§4).

Finally, we move from structural annotation
to quality assessment. We employ and extend
IXQUISITE, a suite of metrics grounded in didactics,
to evaluate explanation quality. We validate these
metrics with our expert annotators and demonstrate
that a prompt-based evaluation using LLMs as
“judges” is significantly more effective at captur-
ing the functional quality of instructional discourse
than traditional static methods. This provides a
new paradigm for evaluating pedagogically-aware
systems (§5).

Together, these contributions — a richly anno-
tated corpus, a validated modeling approach, and a
nuanced evaluation framework — provide a compre-
hensive methodology for bridging educational the-
ory with computational discourse analysis, paving
the way for Al systems that can generate more
effective, human-like explanatory dialogues '.

2 Background and related work

Instructional explanations are intended to transfer
knowledge by introducing a new cognitive frame-
work for understanding a concept or performing a
task, bridging the gap between a knowledgeable
individual and someone lacking that understand-
ing. In science education, such explanations are
considered both a fundamental activity and a goal
of scientific practice, aimed at systematically ad-
dressing “how” and “why”” questions (Kulgemeyer,
2018). The authors highlight the separation of two
interpretations for the term explanation: One is
an explanation seen as activity, whose goal is to
“engender understanding” between an explanation
holder and an explainee; the other is a more philo-
sophical understanding explanation, as that which
connects explanans and explanandum (Zhu and
Rudzicz, 2023). Although most studies concern-
ing explainability have focused on the latter, we
focus on its execution as a social, dialogical prac-
tice (Miller, 2019). In this view, the sequence of
communicative acts, the choice of examples, and
the adaptation to the learner are all crucial elements
of the dialogue’s discourse structure.

Modeling Pedagogical Strategies with Anno-

The dataset, code, and test suite are available at
https://github.com/nfelnlp/InstruX.

tation Schemata. To analyze this structure compu-
tationally, we draw from established feaching mod-
els from education science (Oser and Baeriswyl,
2002; Krabbe et al., 2015). These models are not
just abstract theories; they provide a blueprint for
effective instructional sequences. For instance, a
common pattern is to first assess prior knowledge,
then introduce a concept, provide an example, and
finally test for understanding. We operationalize
these pedagogical principles as a set of nine span-
level teaching acts (Table 1). This approach treats
teaching strategies as a form of domain-specific dis-
course annotation, allowing us to model the under-
lying functional structure of the dialogue beyond
surface-level linguistics.

Corpora for Educational Dialogue and Expla-
nation Quality. Several corpora have paved the
way for analyzing educational dialogues. Datasets
like CIMA (Stasaski et al., 2020), TSCC-2 (Caines
et al., 2022), and NCTE (Demszky and Hill, 2023)
capture teacher-student interactions, but often fo-
cus on general dialogue moves rather than the spe-
cific pedagogical functions within an explanation.
The work closest to ours is the WIRED corpus
(Wachsmuth and Alshomary, 2022) and its anal-
ysis by Alshomary et al. (2024), which includes
annotations for high-level explanation and dialogue
moves. Our work significantly extends this by: (1)
doubling the dataset size; (2) providing more gran-
ular, span-level annotations of teaching acts rather
than turn-level classifications; and (3) using do-
main experts in education for annotation, increas-
ing the validity of the labels. This finer granularity
is crucial for understanding how different teach-
ing strategies are woven together within a single
conversational turn.

Recent work has also leveraged LLMs in ed-
ucation, for tasks like assessing student answers
(Carpenter et al., 2024) or cognitive engagement
(McClure et al., 2024), and in human-AlI tutoring
systems (Wang et al., 2024; Jurenka et al., 2024).
Evaluating the quality of these interactions remains
a challenge. While some metrics focus on general
dialogue quality (Mehri and Eskénazi, 2020) or tex-
tual features (McNamara et al., 2014), they often
miss the pedagogical dimension. Inspired by the
approach of Rooein et al. (2024), who use both
static and LLM-prompted metrics for readability,
we adopt and expand a suite of quality metrics to
specifically assess instructional explanations, con-
necting discourse phenomena to didactic principles.
This addresses the challenge noted by Xu et al.
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Teaching Act
TO1: ‘Assess Prior Knowledge ‘

Checking what the student knows before starting a lesson
TO02: Lesson Proposal UT
Proposing the steps that will be taken during the lesson

Providing the student with puzzle/question to explore;
(Student:) Interacting with a mental concept

TO04: Reflection PS

Finding gaps in knowledge or inconsistencies;
Asking questions about the experience or concept

T. MdI. |
CB, UT

CB, UT

TO5: ‘ Knowledge Statement PS
Stating the concept(s) being taught via rules or facts
TO06: Comparison UT

Considering similarities and differences between
the main concept and other related topics or facts
TO07: Generalization CB, PS
Exploring how the concept applies to new scenarios,
experiences and situations outside of the lesson topic

TO08: Test Understanding CB

Finding out if the concept previously established
was received correctly and is properly understood

T09: ‘ Engagement Management ‘

Maintaining the classroom context to facilitate effective
teaching, creating rapport between teacher and student

Table 1: Teaching acts in the ReWIRED dataset (with
descriptions and their connection to a teaching model
from didactics: Teaching as problem solving (PS), teach-
ing as concept building (CB) (Krabbe et al., 2015),
and unified teaching choreographies (UT) (Oser and
Baeriswyl, 2002).

(2024) that LLMs excel at simple evaluation but
struggle with complex teaching practices without
proper guidance.

3 The ReWIRED dataset

To study instructional strategies in explanatory di-
alogues, we introduce ReWIRED, a new corpus
resource featuring a novel layer of expert-provided,
span-level annotations. We build upon and signif-
icantly extend an existing dataset of instructional
dialogues, enriching it with annotations grounded
in pedagogical theory to facilitate fine-grained dis-
course analysis.

3.1 Source data: Explanation dialogues

Our starting point is the WIRED corpus
(Wachsmuth and Alshomary, 2022), which con-
tains transcripts from the 5-Levels video series?.
These videos provide a unique setting for discourse
analysis, as they feature a domain expert explaining
a complex STEM topic to five different explainees
of progressively higher expertise: (1) a child, (2)
a teenager, (3) an undergraduate, (4) a graduate
student, and (5) a colleague (a fellow expert).

2https://www.wired.com/video/series/5-1levels

#  Topic #  Topic

1 Music harmony 14 Memory

2 Blockchain 15 Zero-knowledge
proofs

3 Virtual reality 16 Black holes

4 Connectome 17 Quantum computing

5  Black holes 18 Quantum sensing

6  Lasers 19 Fractals

7  Sleep science 20 Internet

8  Dimensions 21 Moravecs Paradox

9  Gravity 22 Infinity

10 Computer hacking 23  Algorithms

11 Nanotechnology 24 Nuclear fusion

12 Origami 25 Time

13 Machine learning 26 Chess

Table 2: Topics in ReWIRED. 14-26 (yellow) are tran-
scripts that were not part of the original WIRED dataset
(Wachsmuth and Alshomary, 2022). The topic “black
holes” is explained in two different videos, resulting
in the duplicate (5, 16). Chess (26) applies distinctive
knowledge levels (novice, intermediate, FIDE master,
Grandmaster, and Al expert), as educational background
doesn’t imply a player’s capability.

We expanded this resource by transcribing and
incorporating 13 additional topics released after the
original corpus’ publication, effectively doubling
the dataset size. ReWIRED now comprises 130
dialogues across the 26 topics shown in Table 2.
This expansion broadens the dataset’s scope and en-
riches the variety of linguistic phenomena available
for analysis.

3.2 Annotation of Teaching Acts

The primary contribution of our work is a new
layer of annotation. We argue that to model how in-
struction is delivered, we need annotations that are
more granular than turn-level labels. Pedagogical
strategies are often embedded within a single utter-
ance or can overlap. Therefore, we adopt a span-
labeling approach to precisely identify segments
corresponding to nine distinct teaching acts, as de-
fined in Table 1. This annotation scheme allows
us to capture the fine-grained, and often nested,
discourse structure of instructional explanations.

Annotation Process and Quality. To ensure the
validity of our annotations, we recruited four an-
notators, all of whom hold a Master of Educa-
tion degree or equivalent and have practical in-
classroom teaching experience. Annotators were
onboarded through a detailed process that included
a written guide with definitions and examples for
each act (see Appendix E and A), and a screencast
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TO1{PARLR 273 3794 1427 4559 1326 1501 550 2057

TO2- 362 1374 768 252 770 101 225 143 427

TO3- 58 34 BESLLE 1700 1679 685 970 161 572
TO4- 1 0 329 3630 196 0 0 31 19
TO5- 1146 238 5445 2169 1965 1021 3411

TO6- 44 0 1213 2320 2770 1038 0 15 518

TO7- 126 22 2359 3370 3399 545 3069 126 401

TO8- 104 74 1970 2025 1870 748 702 3288 750

2441 462 556 255 BEIEL)

PSP S PSS SIS

TO9- 605 106 2199 2546

& QLS

k- 076 023 0.61 0.27 099 0.09 028 032 0.83

Figure 2: ReWIRED inter-annotator agreement for
teaching acts on token level. For better visibility,
we scale-adjust the colors by np.loglp(...)%. Each
cell shows the number of tokens for which annotators
(dis)agreed on a label in a pairwise comparison. The bot-
tom row with green and red highlights show the Fleiss’
K per teaching act.

demonstrating the annotation tool (LABEL STU-
DIO (Tkachenko et al., 2020-2024)) and walking
through ambiguous cases.

The full dataset was split, with each half anno-
tated by two experts. The task proved to be chal-
lenging, reflecting the inherent subjectivity of inter-
preting pedagogical intent. This is visible in Figure
3, which shows how two experts can reasonably
apply different labels to the same text. The result-
ing inter-annotator agreement is Fleiss’ x = 0.44.
While this value indicates moderate agreement, it is
not unexpected for a complex discourse annotation
task and highlights that human label variation can
itself be an informative signal about the ambiguity
of the underlying phenomena (Plank, 2022). To
create a reliable gold standard, we introduced the
pre-existing non-expert annotations from Feldhus
et al. (2024) as a third opinion and consolidated all
three label sets to adjudicate disagreements.

The final distribution of teaching acts across the
five knowledge levels is shown in Figure 4. This
newly annotated corpus provides a unique resource
for studying how discourse strategies in explana-
tions are adapted to listeners with varying levels of
prior knowledge.

4 Experiments: Sequence-labeling acts

Having established a richly annotated dataset, a crit-
ical next step is to assess the feasibility of automat-
ing the detection of teaching acts. Automating this

That kinds of notes back to Realism in our history and how Realism was a response to
Romanticism. And Realism was meant to capture the mundane, everyday lives of individuals and
not idealize any of their activities in any way. And | think that that's really important for virtual
reality. | think its kind of rite-of-passage for any kind of our technology to go through.

TOS: Knowledge statement

That kinds of notes back to Realism in our history and how Realism was a response to
Romanticism. And Realism was meant to capture the mundane, everyday lives of individuals and
not idealize any of their activities in any way. And | think that that's really important for virtual
reality. | think its kind of rite-of-passage for any kind of our technology to go through.

T06: Comparison (pink) and TO7: Generalization (azure)

Figure 3: An example of a turn given labeled as different
teaching acts by the two expert annotators.

Teaching Acts

B TO1 - Assess Prior Knowledge TO6 - Comparison
TO2 - Lesson Proposal TO7 - Generalization
m TO3 - Active Experience TO08 - Test Understanding

T04 - Reflection
I TOS5 - Knowledge Statement

EE T09 - Engagement Management

colleague

teenager

4] 20 40 60 80 100
Percentage

Figure 4: Distribution of teaching acts in ReWIRED
across the five knowledge levels.

process is a prerequisite for analyzing instructional
discourse at scale or for developing real-time as-
sistive technologies. We therefore conduct a series
of experiments to evaluate how well modern lan-
guage models can perform this complex, span-level
sequence labeling task.

We frame the task as structured prediction on the
ReWIRED dialogues. Our evaluation compares
three distinct approaches: a fine-tuned baseline
model, large language models (LLMs) in a few-
shot setting, and a fine-tuned LLM.

Models and Setups. As a strong baseline,
we fine-tune BERT-base (Devlin et al., 2019)
for token-level classification using 5-fold cross-
validation, following the setup of Wachsmuth and
Alshomary (2022). We then evaluate large pro-
prietary LLMs—GPT-40 (OpenAl, 2023) and two
versions of Gemini 1.5 (Reid et al., 2024)—using
few-shot prompting. Finally, to directly compare
the effect of fine-tuning on a modern architecture,
we fine-tune GPT-40-mini using the same 5-fold
cross-validation setup. Further details on model
implementation are in Appendix C.

Prompting for Structured Prediction. For the
LLM experiments, we test three different prompt-
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\ Teaching acts | T01 T02 T03 T04 T05 T06 T07 T08 T09 | Macro-F} | Span AL |
| BERT FT | 80.68% 72.15% 87.93% 83.07% 90.18% 8157% 83.75% 82.53% 8031% | 84.17% | -
GPT-40JSON | 35.69 % 49.38% 39.80% 34.60% 6636% 38.76% 39.34% 29.19% 4272% | 41.76% | 36.75%
GPT-40 TANL | 66.69 % 70.39% 63.61% 80.22% 8491% 7510% 7529% 61.96% 70.26% | 72.05% | 6821%
GPT-40 GOLLIE | 7139 % 67.26% 72.83% 7899% 82.70% 79.11% 78.05% 71.66% 67.07% | 74.34% | 73.54%
Gemini 1.5 F TANL | 5339 % 71.65% 77.76% 8586% 86.13% 81.88% 83.73% 63.04% 7483% | 7536% | 74.09%
Gemini 1.5 F GoLLIE | 46.17 % 4595% 59.33% 69.39% 72.82% 6441% 6547% 47.84% 49.89% | 57.92% | 58.80 %
Gemini 1.5 P TANL | 67.11% 7400% 79.97% 79.45% 87.18% 8135% 8203% 53.70% 7751% | 7571% | 69.81%
Gemini 1.5 P GoLLIE | 46.25% 3056 % 53.60% 63.00% 70.56% 47.44% 49.23% 24.88% 48.60% | 48.23% | 49.53 %
GPT-4o-mini FTTANL | 93.64% 97.98% 9523% 99.30% 98.90% 99.03% 98.64% 97.00% 97.28% | 97.44% | 94.63%
GPT-40-mini FTGOLLIE | 98.54 % 98.57% 99.11% 9887% 99.56% 98.14% 100.0% 99.67% 9891% | 99.04% | 9549 %

Table 3: Language models evaluated on the tasks of sequence-labeling teaching acts within dialogue turns from our
ReWIRED dataset. Percentages under each of the acts show micro-F7 scores in a 3-shot or fine-tuning (FT) setting.
Span Alignment (last column) refers to how well the spans extracted by LLMs align with human-annotated spans.

ing paradigms designed to elicit structured, span-
level output:

* JSON: Requesting a list of JSON objects,
each containing a text span and its predicted
label (Wu et al., 2024).

* TANL: An inline tagging format where pre-
dictions are structured as [span | labell]
directly in the text (Paolini et al., 2021).

* GoLLIE: Generating Python-like code where
spans and labels are assigned to data struc-
tures, guided by a schema provided in the
prompt (Sainz et al., 2024).

GPT-40-mini is fine-tuned with 5-fold cross-
validation (same setup as BERT, but with DPO,
learning rate multiplier = 1.8, epochs = 3). De-
tails and examples of these prompts are provided
in Appendix D.

4.1 Results and discussion

Our experimental results, presented in Table 3, re-
veal several key insights into modeling domain-
specific discourse acts.

Few-shot LLMs struggle with structured out-
put and complex acts. Without fine-tuning, LLMs
find the task challenging. The JSON format proved
particularly unreliable, frequently producing mal-
formed output that complicated post-processing
and led to poor performance. While providing few-
shot examples improved output consistency, the
overall results remained low. Switching to more
constrained output formats like TANL and GoL-
LIE yielded substantial improvements, nearly dou-
bling the Macro-F} for GPT-40. This highlights
that for complex structured prediction, the choice
of output format is critical. Even so, performance
varied substantially across models and prompting

styles, with TANL emerging as the best few-shot
approach, but still lagging behind the exceptional
performance of fine-tuning.

Fine-tuning is essential for high performance.
The fine-tuned BERT baseline handily outperformed
all few-shot LLM configurations across nearly ev-
ery teaching act. This underscores the difficulty of
the task and suggests that successfully capturing
nuanced, domain-specific discourse phenomena re-
quires task-specific adaptation.

This conclusion is further reinforced by our final
experiment: the fine-tuned GPT-40-mini achieves
near-perfect scores, with a Macro-F} of up to
99.04% and a span alignment of 95.49%. Rather
than suggesting the task is trivial, this result demon-
strates that fine-tuning is the most effective and
reliable paradigm for this task. It shows that
even a smaller, more efficient LLM, when prop-
erly adapted with in-domain data, can master the
complexities of annotating pedagogical discourse.
For practitioners seeking to automate the analysis
of such dialogues, we strongly recommend fine-
tuning over few-shot prompting.

5 The IXQuisite test suite

While our experiments show that teaching acts can
be reliably annotated with fine-tuning, the presence
of individual acts does not guarantee a high-quality
explanation. A good instructional dialogue must
orchestrate these acts into a coherent and effec-
tive structure. Evaluating this holistic quality is
challenging for standard automated metrics, which
often fail to capture the nuances of conversational
flow and engagement (Deriu et al., 2021).

To address this, we employ and extend
IXQUISITE, a test suite of quality metrics for in-
structional explanations grounded in didactic re-
search (Feldhus et al., 2024). The metrics are di-
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IXQUISITE: Function metrics

Abbr. Category Description Origin Static metric

PK Check for prior The teacher inquires the student about prior knowledge, Kulgemeyer and Schecker (2009), TO1
knowledge background, or what their interests might be Leinhardt and Steele (2005)

MI Mindfulness of com- The teacher addresses common misconceptions Wittwer et al. (2010), Andrews et al. T04
mon misconceptions (2011)

RE Rule-example struc- The teacher states the abstract form of the concept Tomlinson and Hunt (1971) TO5 — T03
ture being taught. Then, the teacher gives some examples

to assist in understanding

ER Example-rule struc- For procedural knowledge, the teacher first provides Champagne et al. (1982) T03 — TO5
ture examples and then derives the general rule from them

EA  Example/Analogy The teacher explains how parts of the analogy/example Ogborn et al. (1996), Valle and TO06
connection relate to the concept being explored Callanan (2006)

UN  Check for understanding  The teacher tests the understanding of the student Webb et al. (1995) TO8

Table 4: Explanation and teaching acts-related measures in IXQUISITE for instructional explanation quality based on
occurrences of classes from our annotation schema. The right arrow between two teaching acts in static metrics
refers to passages where two different acts directly follow one another in this exact sequence.

IXQUISITE: Form metrics

Abbr.  Category Description Origin Static metric
ME Minimal explana- Low cognitive load, e.g. avoid redundancies (ver- Black et al. (1986) Frequency of named entities
tions bosity) such as introducing named entities
LC Lexical complex- The level of difficulty associated with any given  Kim et al. (2016) Frequency of difficult words
ity word form by a particular individual or group
SD Synonym density ~ Children are proven better aligned with consistent ~ Wittwer and Thme (2014) Frequency of synonyms for the n
terminology; experts allow more synonyms terms most connected to the topic
™ Correlation  to  Correlation of teaching act order to prescribed  Oser and Baeriswyl (2002), Edit distance between TO1-T08
teaching model teaching models Krabbe et al. (2015) (asc.) and actual occurrences
AD Adaptation The teacher incorporates prior knowledge, miscon- ~ Wittwer et al. (2010) Inverse frequency of synonyms in
ceptions and interests and uses analogies the text
RL Readability level  Indicator of how difficult a passage is to understand Crossley et al. (2017) Flesch-Kincaid Grade level
CO Coherence How sentences relate to each other to create a log- Lehman and Schraw (2002), Frequency of conjunctions and

ical and meaningful flow for the reader or listener

Duffy et al. (1986)

linking language

Table 5: Categories for instructional explanation quality and associated numerical measures in IXQUISITE.

vided into two categories:

* Function metrics assess the pedagogical
structure of the dialogue. They are calculated
based on the presence, frequency, or sequence
of the teaching acts annotated in our dataset
(e.g., measuring if a Rule is followed by an
Example). These are detailed in Table 4.

* Form metrics evaluate linguistic and stylistic
features of the explanation that impact cogni-
tive load and readability, such as lexical com-
plexity or coherence. These are detailed in
Table 5.

We investigate this suite through three lenses: hu-
man validation, traditional static evaluation, and a
novel prompt-based LLM evaluation.
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5.1 Human Validation of Metrics

Before applying the metrics, we first sought to vali-
date their relevance with our domain experts. As a
follow-up task to the span annotation, we asked our
four annotators to assess each of the 13 metrics for
every dialogue, with reference to the descriptions
provided in Table 4 and Table 5. Using a 3-point
Likert scale, they rated the presence of each metric
and its contribution to the explanation’s quality
for the given knowledge level. This step anchors
our framework in the expertise and judgment of
education professionals.

The results of the annotators’ assessment of met-
ric presence are shown in Figure 5a, based on
the normalized average of the ratings. The anal-
ysis reveals a strong alignment between the per-
ceived presence of most function metrics and the
explainee’s knowledge level. For instance, Check



for prior knowledge (PK), Rule-example (RE), and
Example-rule (ER) structures are rated as more
present in dialogues with less expert explainees.
In contrast, form-based metrics like Adaptation
(AD), Readability (RL), and Coherence (CO) are
consistently rated as important across all levels, in-
dicating that they serve as foundational elements
of any strong explanation.

5.2 Static vs. Prompt-based Evaluation

We then evaluated the dialogues automatically us-
ing two different methods to see how well they
could replicate the nuanced judgments of our hu-
man experts.

Static Evaluation. Our first approach uses
"static" or rule-based calculations. For function
metrics, this involves counting the tokens in the cor-
responding gold-standard teaching act spans (e.g.,
TO1 for PK). For form metrics, we use standard lin-
guistic feature calculations like the Flesch-Kincaid
grade level for readability (RL). The results, shown
in Figure 5b, reveal a key limitation of this ap-
proach. While some form-based metrics (e.g., LC,
SD, RL) show a clear trend across knowledge lev-
els, the function-based metrics appear noisy and
fail to show a consistent correlation. The static
method seems too superficial to capture the func-
tional quality of the instructional discourse.

Prompt-based Evaluation. To overcome these
limitations, we developed a "prompt-based" evalu-
ation framework inspired by Rooein et al. (2024).
Instead of relying on simple counts, we leverage
an LLM’s reasoning capabilities. We prompted
GPT-40 with the full dialogue and asked it to rate
each metric on a scale from O to 10 (e.g., "On a
scale from O to 10, how well does the explainer
check for understanding?").

The results, shown in Figure 5c for the function
metrics, are strikingly different from the static eval-
uation. The prompt-based scores align remarkably
well with the human judgments from our validation
step. There is a clear, graded relationship between
the metric scores and the explainees’ knowledge
levels, especially for PK, EA, RE, and ER. This
demonstrates that an LLM-based "judge" is far
more capable of capturing the nuanced, functional
aspects of instructional quality than simple static
heuristics. For form-related metrics (Appendix
F), the prompt-based scores were high and stable
across levels, confirming the human assessment
that these are universally important. This suggests
a hybrid approach for future work: static metrics

may suffice for form, but evaluating the functional
discourse structure of explanations requires the in-
ferential power of prompt-based LLM evaluation.

6 Discussion

Our findings offer several key implications for the
fields of computational discourse analysis, educa-
tional technology, as well as NLP practices such as
fine-tuning and automated evaluation.

Implications for Discourse Analysis. Our work
treats teaching as a complex, goal-oriented dis-
course phenomenon. By creating a fine-grained,
span-level annotation scheme for pedagogical
strategies, we provide a new lens for analyzing dia-
logue structure. The feaching acts in ReWIRED
can be viewed as a domain-specific set of discourse
relations that govern how instructional conversa-
tions are built. Our dataset, with its unique five-
level structure of explainee expertise, offers a con-
trolled environment to study audience adaptation
at a granular level. Future work can analyze the
typical sequences and flows of these acts to uncover
the “discourse grammar” of effective explanation.

Implications for Educational Technology and
XAIL Our contributions provide a direct pathway
toward more effective and pedagogically-aware Al
systems, e.g.:

* Al Tutors: An automated tutor could use our
models to self-assess its own dialogue strate-
gies in real-time (Wang et al., 2024). If it pro-
duces too many ‘Knowledge Statement‘s with-
out a corresponding ‘Check for Understand-
ing‘, it could adapt its strategy to be more in-
teractive. The IXQUISITE metrics could serve
as a reward function for RL-based dialogue
managers.

* Tools for Human Educators: Our frame-
work could power tools that provide feedback
to trainee teachers. By analyzing a transcript
of a practice lesson, such a tool could high-
light strengths (e.g., “Great use of analogy
here!”) or suggest improvements (e.g., “Con-
sider first checking for prior knowledge.”).

* Advancing Explainable AI (XAI): True XAI
should go beyond presenting information to
actively fostering human understanding. Our
work offers a blueprint for pedagogically
sound explanatory dialogue, shifting the focus
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Figure 5: IXQUISITE results.

from producing static explanations to enabling
interactive and adaptive exchanges (Feldhus
et al., 2023).

Methodological Takeaways for NLP. Finally,
our experiments offer two clear methodological
lessons. First, for complex, domain-specific struc-
tured prediction tasks like identifying teaching acts,
in-domain fine-tuning is critical. It vastly out-
performs even the most capable few-shot LL.Ms,
demonstrating that task-specific adaptation remains
essential for high-fidelity discourse analysis. The
exceptional performance can be explained with
the fact that the ground truth is a consolidation
from multiple annotators. The model is exposed to
many examples of the already consolidated teach-
ing acts, which is in contrast to how human anno-
tators are typically introduced to labeling efforts,

namely with explicit instructions and few-shot ex-
amples. This is reinforced by our observation that
models exposed only to few-shot examples without
fine-tuning performed substantially worse.

Second, our work combines the strengths of two
approaches: from the LLM-as-a-judge paradigm
and static metrics. Our analyses suggest that
for evaluating nuanced pragmatic qualities of dis-
course, leveraging the contextual reasoning of
LLMs is a more promising path forward than rely-
ing on surface-level heuristics. However, it should
be taken into consideration that, depending on
the task, judge models’ agreement with human
annotators can vary across datasets and domains
(Bavaresco et al., 2025). In future work, apply-
ing the same principles across multiple LLMs may
yield different outcomes.
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7 Conclusion

In this paper, we introduced ReWIRED, a dataset
of instructional dialogues significantly extending
prior work with expert, span-level annotations of
teaching acts. We demonstrated that while automat-
ically labeling these acts is challenging for few-shot
LLMs, fine-tuning achieves excellent performance
with both smaller and larger models, establishing
a reliable methodology for analyzing pedagogical
discourse at scale. Furthermore, we proposed a
framework for evaluating the quality of these ex-
planations, showing that while static metrics are
limited for certain dimensions, a prompt-based ap-
proach using LL.Ms as evaluators more effectively
captures how instructional strategies are adapted to
explainees’ knowledge levels.

Our contributions provide a crucial bridge be-
tween pedagogical theory and computational dis-
course analysis. The dataset and validated evalua-
tion suite offer a concrete methodology for building
and assessing systems that engage in instructional
dialogue. This paves the way for a new generation
of applications, from more adaptive and effective
automated tutors to Al-powered tools that provide
feedback to human educators. Ultimately, by mod-
eling the structure of effective teaching, our work
helps advance the broader goal of creating Al sys-
tems that can not only explain, but explain well.

Limitations

We acknowledge that, despite our annotators’ high
expertise in the field of education, some teach-
ing acts seem not as easily distinguishable as the
other act dimensions, resulting in a relatively low
inter-annotator agreement. However, the single
aggregation-based Fleiss’ x score might be too su-
perficial to capture the complexity behind. Ulti-
mately, the annotation variations also convey the
subjectivity of teaching-related explanations, fol-
lowing the idea that human label variation should
be encouraged (Plank, 2022).

Further limitations include that a portion of the
test suite relies on human annotation, which may
introduce inconsistencies. Replicating or extending
the test suite might be difficult without a reliable
teaching act prediction model. Also, the dataset we
present is extracted from videos—audio and visual
elements not present in the transcription. The effi-
cacy of our approach may vary depending on the
complexity and diversity of the multimodal inputs,
if present. Last but not least, the generalizability of

our findings may be constrained by the narrow do-
main of dialogues examined, limiting extrapolation
to broader conversational contexts.

Ethical statement

We do not see immediate ethical concerns regard-
ing research and development. The data included in
the corpus are readily available from WIRED Web
resources. Following the ACM Code of Ethics (1.2,
1.6), all participants consented to be recorded as
far as perceivable from the WIRED web resources,
which are free to use for research purposes. The
four annotators in our study were recruited over
online platforms (LinkedIn, university forum). The
annotation of each dialogue took an annotator an
average of 10 minutes; depending on their work-
load, the annotation duration was between 12 and
20 hours. In our view, the provided prediction mod-
els target dimensions of dialogue turns that are not
prone to misuse for ethically doubtful applications.
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Appendix
A Examples for acts

Figure 6 shows examples from ReWIRED for each
of the acts as provided to the annotators.

B Label distributions

Figure 9 shows the number of distinct acts per dia-
logue turn as per annotated.

C Models

Table 6 lists how the models in §4 were employed.
We used the following GPUs: A100, RTXA6000,
RTX3080. For the BERT fine-tuning, we reinitial-
ized the BERT model for token classification at the
start of every fold (kK = 5) and used a batch size
of 4, an AdamW optimizer with a learning rate of
5% 1076, epsilon of 1 * 10~%, and warmup.

D Prompt design

Figure 10 and Figure 11 depict the prompts used
with LLLMs such as GPT-4o to produce the predic-
tions whose evaluation is shown in Table 3. For
few-shot demonstrations, we first presented the
three preceding turns of the same dialogue (or from
the end of last dialogue if the turn in question is
at the start of a dialogue) and their corresponding
gold spans (in the format required by the respective
prompting paradigm) just as we elicit it from the
model in the zero-shot setup. Figure 12 and Fig-
ure 13 show the results from GoLLIE and TANL
prompts for Gemini 1.5 Pro and GPT-4o, respec-
tively.

E Annotation instructions

To annotators, we provided examples from Ap-
pendix A as well as further delineations of the acts
with examples and descriptions of how to differen-
tiate between them. We also provided a screencast
with instructions on how to use LABEL STUDIO and
walk-through examples for each act. The introduc-
tory text shown to all annotators before watching
the recording and accessing LABEL STUDIO is the
following (unformatted version):

4 )

Your objective is annotating linguistic information
about the multi-layered objectives each person per-
forms when communicating. The dataset is com-
prised of transcribed conversations in which an ex-
pert in a field explains some concept to multiple peo-
ple at varying levels of education: child, teenager,
undergraduate, graduate and expert.

Your task as an annotator will be, given a transcript
of one of these conversations, to use a highlighting
tool to mark which “acts” are present in different
parts of the text. These acts highlight some unspo-
ken objectives present in the text. For example, the
text “Do you understand that?” could be said to
have both an objective of asking a yes/no question
and checking for understanding.

Some of these will be straightforward to label and
say “that is clearly the intention behind that sen-
tence”, while some will be a bit more complicated.
We often have many intentions behind what we say,
and we account for that by letting you tag any seg-
ment of text with as many labels as you see fit, even
none at all.

Your annotation task is about labeling the aforemen-
tioned objectives from the perspective of Teaching
Acts, which focus on conversation mechanics in
terms of lesson planning and didactics.

- J
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Model name #Params URL Training times Inference times

BERT 110M https://huggingface.co/ 13 hours <1 hour
bert-base-uncased

GPT-40-mini ? https://platform.openai.com/docs/ 6 hours 6 hours

(fine-tuned) guides/fine-tuning

GPT-40 ? https://platform.openai.com/docs/ n.a 9 hours
api-reference/chat

Gemini 1.5 ? https://ai.google.dev/gemini-api/docs  n.a 11 hours

Table 6: Language models with parameter counts, training times, inference times, and API costs.

fractals are really nice for computer graphics is because the algorithms that we use

to draw images also have this kind of recursive flavor. What's recursion?
TO1 - Assess...

Undergrad: Recursion is a function that uses itself or calls itself in it's definition. And

basically with that, you can figure out minute details such as searching for a value in

(a) TO1: Assess Prior Knowledge

Explainer: We're gonna talk about some science. Do you like science?
*T02 - Lesson... TO9 - Engage...

Child: Yes, a lot.

*T02 - Lesson...
(b) TO2: Lesson Proposal

Explainer: So here's some toys. We're gonna build some dimensions, right? So what
TO3 - Active...

would you say about this?

Child: That's one dimensional.
TO3 - Active...

(c) TO3: Active Experience

Explainer: Exactly. It's not really one dimensional, right?
TO3 - Active...

Child: So everything has to be one or two dimensionﬁl before it's three dimensional.
*T04 - Reflec...

(d) TO4: Reflection

Explainer: When we were much smaller societies, you and | could trade in our
*TO5 - Knowle...

community pretty easily. As the distance in our trade grew, we ended up inventing

institutions, right? If you Uber or you use Airbnb or you use Amazon even, these are

(e) TOS: Knowledge Statement

Undergrad: How long does this process take?
T06 - Compar...

Explainer: Well, because people who really need to use these subdivision services for
TO6 - Compar...

everything, people who worked hard over the years to make this super, super fast. In

(f) TO6: Comparison

Explainer -
That's right. And we could live there. The world we see around us, the
three dimensions of space around us could reflect the fact that we are
somehow stuck on a three dimensional brane trying to escape.

(g) TO7: Generalization

Explainer B
It's even better. It's the theory of everything. What would you tell a friend
of yours if they asked you what dimensions are, what extra dimensions
are, what a brane is?

(h) TO8: Test Understanding (vermilion) and T05: Knowledge
Statement (blue)

Explainer: That was awesome, Daniel, thank you.

TO9 - Engage...

(1) TO9: Engagement Management

Figure 6: Examples for teaching acts TO1-T09.
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F IXQuisite: additional information

F.1 Annotator’s assessment of contribution of
metrics in each level

Besides validating the presence of each IXQUISITE
metric in every dialogue, annotators were addition-
ally asked to assess their importance/contribution,
especially in regards to the level of knowledge of
the explainee. Figure 7 shows the annotator’s as-
sessment of the importance/contribution of each
metric at each level.

F.2 Form metrics: prompt-based evaluation

Figure 8 presents the results of the prompt-based
evaluation of the form metrics in the dataset. The
results do not exhibit a clear correlation with the
five levels, predominantly falling within the range
of 0.8 to 0.9. This may be attributed to the formu-
lation of the prompts.0.9. This might be related to
the way the prompts were formulated.

F.3 Prompt-based metric questions

Table 7 shows the metrics formulated as questions
for prompt-based evaluation of the explanatory di-
alogues in the ReWIRED dataset according to the
IXQUISITE test suite.

Abbr.  On ascale from 0 to 10...

PK ... how well does the explainer inquire about prior
knowledge?

MI ... how well does the explainer deal with common
misconceptions?

RE ... how well does the explainer state the abstract
form of a statement and then some example to assist
understanding?

ER ... how well does the explainer provide examples
prior to deriving a rule?

EA ... how well does the explainer explain ... how parts
of the analogy/example relate to the concept being
explored?

UN ... how well does the explainer check the understand-
ing of the student?

ME ... how appropriate is the cognitive load for the ex-
plainee’s level?

LC ... how appropriate is the lexical complexity for the
explainee’s level?

SD ... how appropriate is the amount of synonyms and
technical language used for the explainee’s level?

AD ... how well-adapted is the content of the dialogue to
the explainee?

RG ... how appropriate is the readability level for the
explainee’s level?

CO ... how appropriate is the number of conjuction and
subordination for the explainee’s level?

™ ... how coherent is the text for the explainee’s level?"

Table 7: IXQUISITE metrics formulated as questions for
prompt-based dialogue evaluation.
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Figure 7: Annotators assessment on contribution of each metric present in IXQUISITE for each level.
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Figure 8: IXQUISITE form metrics: prompt-based evaluation of the five levels in the dataset.
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Figure 9: Number of unique teaching acts per turn in
ReWIRED. The bar chart reveals that more than half of
all dialogue turns in ReWIRED contain more than one
distinct teaching act.
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# Example label mapping (dialogue acts)
ReWIRED_ta_str_2_int = {

'TO1 - Assess Prior Knowledge': 1,

'T@2 - Lesson Proposal': 2,

'T@3 - Active Experience': 3,

'To4 - Reflection': 4,

'TO5 - Knowledge Statement': 5,

'Te6 - Comparison': 6,

'To7 - Generalization': 7,

'Te8 - Test Understanding': 8,

'T@9 - Engagement Management': 9,

'T10 - Other Act': 0
}
label_schema = ("The label schema consists of the following 10 classes:\n* " + "\n*
— ".join(list(ReWIRED_ta_str_2_int.keys())) + "\n")

Figure 10: Label schema.

system_prompt = (f"You are an expert annotator. ")
read_instruction = (f"Here is one turn from a dialogue between an explainer and a {student_role}
— on the topic of {topic}:\n{turn_text}\n")

task_instruction_JSON = ("Please extract the spans from the turn and assign a label to each of
< the spans. It is possible that the whole turn is just one span, because the act applies to
— 1its entirety. Please present your predictions in a JSON format like this:

< {\n\t{\n\t\t'Span': '...', \n\t\t'Predicted label': '...' \n\t},\n}\n")
task_instruction_TANL = ("Please annotate the spans in the turn by marking them inline using the
— format [ span | label ]. It is possible that the whole turn is just one span if the act

— applies to its entirety.")

task_instruction_GoLLIE = ("Task: Annotate the following text with {TASK_NAME[task]}

« labels.\n\n'docstring += 'Guidelines:\n'docstring += '- Identify spans in the text that

— correspond to the following acts.\n'docstring += '- The act classes are defined below.")

entire_input = system_prompt + read_instruction + label_schema + task_instruction

Figure 11: Simplified version of the Python code showing the span-labeling task prompt for ReWIRED.

Text = "Explainer: \"So machine learning is a way that we teach computers to learn things about
< the world by looking at patterns and looking at examples of things. So can I show you an
— example of how a machine might learn something?\""

labels = [
{'span': "So machine learning is a way that we teach computers to learn things about the
— world by looking at patterns and looking at examples of things."”, 'label':
— 'TO5___Knowledge_Statement'},
{'span': "So can I show you an example of how a machine might learn something?", 'label':
— 'T@2___Lesson_Proposal'},
]
Figure 12: Example for a result from a GoLLIE prompt with Gemini 1.5 Pro.
"Explainer: ""It's a lot of practice and analysis. [Really, an advanced chess player was not
< born an advanced chess player. They have probably hundreds, if not thousands of more games
< in their mind, in their past, in their history that they've analyzed, that they've studied.
— It's like any athlete, you know? | T@7 - Generalization] [I put my weight on this foot, and
— so I wasn't able to hit the shot back that well. So the next time that that happens, I'm
< gonna be more prepared. | T@6 - Comparison]"""

Figure 13: Example for a result from a TANL prompt with GPT-4o0.
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Abstract

This study addresses the fundamental task of
discourse unit detection — the critical initial step
in discourse parsing. We analyze how various
discourse frameworks conceptualize and struc-
ture discourse units, with a focus on their under-
lying taxonomies and theoretical assumptions.
While approaches to discourse segmentation
vary considerably, the extent to which these
conceptual divergences influence practical im-
plementations remains insufficiently studied.
To address this gap, we investigate similarities
and differences in segmentation across several
English datasets, segmented and annotated ac-
cording to distinct discourse frameworks, us-
ing a simple, rule-based heuristics. We evalu-
ate the effectiveness of rules with respect to
gold-standard segmentation, while also check-
ing variability and cross-framework generaliz-
ability. Additionally, we conduct a manual com-
parison of a sample of rule-based segmentation
outputs against benchmark segmentation, iden-
tifying points of convergence and divergence.

Our findings indicate that discourse frame-
works align strongly at the level of segmenta-
tion: particular clauses consistently serve as the
primary boundaries of discourse units. Discrep-
ancies arise mainly in the treatment of other
structures, such as adpositional phrases, apposi-
tions, interjections, and parenthesised text seg-
ments, which are inconsistently marked as sep-
arate discourse units across formalisms.

1 Introduction

Several linguistic discourse theories have been
developed to model the structure and coherence
of texts, such as Rhetorical Structure Theory
(RST, Mann and Thompson, 1988; Taboada and
Mann, 2006) and Penn Discourse Treebank (PDTB,
Prasad et al., 2008). Each of them proposes a dis-
tinct set of discourse relations and discourse unit

To the memory of Karolina, tragically deceased on Au-
gust 14, 2025.

types, as well as specific assumptions about the
hierarchical or relational structures that reflect dis-
course organization. These theoretical frameworks
form the basis for a range of practical implementa-
tions, e.g., the creation of annotated datasets and
the development of discourse parsers.

Computational approaches to discourse adopt
various taxonomies, but they typically divide dis-
course parsing into two main subtasks: the identi-
fication of discourse units and the classification of
the relations between them (Braud et al., 2023). Dis-
course units (DUs) correspond to spans of text that
convey discourse-relevant content, such as events,
states, facts, and propositions. Discourse relations
(DRs), in turn, connect DUs and assign labels to
them based on a predefined taxonomy, with cate-
gories such as contrast, elaboration, or purpose.

In this study, we focus on the initial and founda-
tional stage of discourse parsing — DU detection.
This step is particularly critical, as it significantly
impacts the overall accuracy of the subsequent dis-
course parsing task — discourse relation classifica-
tion. We review how various discourse frameworks
conceptualize and define DUs, with particular at-
tention to the taxonomies they propose (Section 2).
We then verify how these theoretical definitions are
operationalized in practice by evaluating their im-
plementations in existing datasets. To support this
analysis, we propose a simple, rule-based heuristics
for discourse segmentation (Section 3). We apply it
to several English discourse datasets to validate its
effectiveness and generalizability (Section 4). Fur-
thermore, we conduct a detailed manual analysis
of segmentation differences between datasets rep-
resenting different discourse formalisms, aiming to
identify where these frameworks align and where
they diverge (Section 5).

Our current objective is to compare various ap-
proaches to discourse segmentation in real English
datasets and to identify their commonalities and
distinctions. Ultimately, we aim to develop a dis-
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course segmentation strategy that is both theoret-
ically grounded and practically robust, i.e., con-
sistent across various discourse frameworks and
applicable to multiple languages.

e A systematisation of discourse frame-
works and their associated resources.

e An interpretable, syntax-based discourse
segmentation approach.

e An analysis of segmentation inconsisten-
cies in multiple English discourse datasets.

2 Discourse Segmentation in Various
Formalisms

Based on Marcu (2000), Wolf and Gibson (2005)
point out that there is no agreement on the notion
of discourse unit: “discourse segments should be
prosodic units (Hirschberg and Nakatani, 1996),
others argue for intentional units (Grosz and Sidner,
1986), phrasal units (Longacre, 1983; Lascarides
and Asher, 1993; Webber et al., 1999), or sentences
(Hobbs, 1985).”

In general, existing discourse representation for-
malisms adopt one of two approaches to text seg-
mentation: DUs are either independent of DRs, or
they function only as relation arguments. The for-
mer implies that a text can contain DUs that are
not part of any DR (but may be part of other co-
herence relations). In contrast, the latter approach
limits the definition of DUs to those that participate
in DRs, omitting segments that do not conform to
a particular formalism.

Further questions to consider include whether
DUs can overlap or form hierarchies within each
formalism, whether they cover the text completely,
and whether discourse markers are part of DUs. In
this section, we will address each of these questions
by reviewing the most prominent existing discourse
representation formalisms and summarizing the
findings of this review in Table 2 in Appendix A.

2.1 Non-implemented Discourse Formalisms

Hobbs’ Theory of Discourse Coherence (HTDC)
Hobbs (1985) proposes an early text coherence the-
ory that treats the connection of discourse units
through discourse relations as an indicator of text
coherence. This theory is closely linked to corefer-
ence, meaning subsequent sentences in a coherent

text should refer to the same entity (Hobbs, 1979).
Clauses consist of predicates about the entities re-
ferred to in the text.

According to Hobbs’s theory, a DU is a senten-
tial unit, which is also known as a segment of dis-
course. A segment of discourse is a set of clauses
and other sentential units. Every clause is a senten-
tial unit. Two segments form a segment of discourse
if they are connected by a relation and assertions
of predicates in both segments can be connected
into one set of assertions. Hobbs’s theory is an
attempt at a computable and implementable the-
ory of discourse. However, the idea of assertions
— the propositions in clauses that are asserted in
constructing larger sentential units — or even the
possibility to parse a clause into a set of assertions
is difficult to implement (Hobbs, 1985, 2013).

Cognitive Approach to Coherence Relations
(CCR) CCR, as elaborated by Sanders et al.
(1992, 1993), represents a functional grounded
framework for understanding discourse coherence.
CCR emphasizes the cognitive processes and con-
straints that underlie how language users identify,
categorize, and interpret coherence relations be-
tween discourse units.

Key aspects of the situation in CCR include the
description of reality: objective relations in CCR
typically pertain to DUs that describe situations or
events that occur in the real world or in the world
described by the text. Clues for the segmentation
procedure are that DUs must be small enough to be
a single information unit and interpretable on their
own. In objective relations, the speaker, or author,
merely reports facts and is not actively involved in
constructing or evaluating the relation itself. This
is evident, for example, in causal relations based on
real-world causality, where one situation or event
is presented as the cause of another. The concept of
situation in CCR thus helps distinguish objective
relations from subjective relations, which typically
express the speaker’s opinion, argument, or eval-
uative stance. Historically, one may have referred
to these as “semantic” and “pragmatic” relations,
respectively.

ISO 24617:2: Dialogue Acts The ISO standard
for Dialogue Acts (Bunt et al., 2012) provides
a framework for semantic annotation of dialogues.
It differs significantly from other discourse seg-
mentation approaches by adopting a fundamentally
functional perspective on discourse units.

The primary segmentation units are dialogue
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acts, interpreted in terms of their communicative
functions and semantic content, and distributed
across multiple dialogue dimensions (e.g., Task
Management, Feedback, Turn Management).

2.2 Discourse Frameworks Implemented as
Datasets

GraphBank Wolf and Gibson (2005) present
an annotation method for discourse coherence and
evidence that trees are not an appropriate form for
representing discourse structure. The authors ar-
gue that coherence structure can be represented in
the form of a graph, in which nodes represent dis-
course segments and edges represent the discursive
relations connecting these segments.

Discourse segments (aka DUs) correspond to
clause units, non-restrictive relative clauses, and
modifying prepositional phrases. The authors ex-
clude complex nouns or verb phrases and restrictive
relative clauses as DUs. Discourse units are typi-
cally marked by coordinating and subordinating
conjunctions and punctuation marks. However, the
conjunction ‘and’ does not mark the boundaries of
segments if it connects nominal expressions and
verb groups. As separate DUs, the authors also dis-
tinguish attributions that enable the distinction be-
tween different sources that comment on the same
event. Attributions may be separated only if the
attributed material is a complementizer phrase.

Prague Discourse Treebank 4.0 (PDiT) Intra-
or inter-sentential discourse relations in PDiT 4.0
(Synkova et al., 2024), labeled with semantic-
pragmatic types, are determined by explicitly ex-
pressed discourse connectives that link exactly two
discourse arguments (aka DUs). The primary and
secondary discourse connectives are distinguished.

Since PDiT is built upon the Prague Depen-
dency Treebank (Haji¢ et al., 2020), each DU is
anchored in a single node of a tectogrammatical
(deep-syntactic) tree representing a sentence, typ-
ically the root of the corresponding subtree. As
a result, DUs correspond to text spans centered
around a finite verb (i.e., the root node), with their
boundaries determined by the extent of the subtree.

ISO 24617:8 1SO 24617-8 (International Orga-
nization for Standardization, 2016) is a standard
created in 2016 for annotation of local discourse
relations in any language or genre.

The basic discourse unit is situation, which cov-
ers any eventuality, fact, proposition, condition,
belief, or dialogue act that can be realized by

a clause, nominalization, full sentence, utterance,
or extended DU. The standard is deliberately neu-
tral on span adjacency: an argument may be mini-
mal or extended, continuous or discontinuous, pro-
vided it denotes the intended situation. Relations
may be symmetric, assigning identical roles to both
arguments, or asymmetric, assigning distinct roles.
Crucially, relations are defined independently of
the presence or absence of discourse markers.

2.3 Discourse Frameworks Implemented as
Tools

Rhetorical Structure Theory (RST) Discourse
units are essentially sentences, coherent fragments
of text characterized by functional integrity (Mann
and Thompson, 1988, 248-249). The minimum
unit refers to spans: nuclei and their satellites. The
nuclei are crucial for maintaining the coherence
of the text. Determining the relationship between
nucleus units and satellite units allows the analyst
to present schemata, which can then be used to
represent RST structures in trees. To define the
smallest DU, later works referring to RST began
to use the term elementary discourse unit (EDU,
Carlson et al., 2001).

RST has proven to be very useful for both lin-
guistics and natural language processing, as numer-
ous RST parsers have been developed for various
languages, e.g. Carlson et al. (2001), Hernault et al.
(2010), Cardoso et al. (2011), Stede and Neumann
(2014), Iruskieta and Zapirain (2015). It should
be noted that the assumptions of RST presented
by Mann and Thompson (1988), including those
concerning the segmentation of text, have been
modified, sometimes significantly.

Penn Discourse Treebank (PDTB) PDTB
(Prasad et al., 2008) does not explicitly formulate
a definition of a DU. Instead, the framework is
grounded in a lexically driven, minimal-pair ap-
proach, in which the primary focus is the discourse
relation. This relation annotated between two spans
of text, Argl and Arg2, is linked by a discourse con-
nective (e.g. because, and, since), either explicitly
present or implicitly inferred from the context. In
the annotation process, the connective is identified
first, and then the relation built around it is labeled.

The spans are usually equivalent to clauses; how-
ever, the overarching principle in PDTB is that
they must be interpretable within the context of
a discourse relation. As a result, they may extend
beyond a single sentence or consist of only part of
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a clause. Since PDTB focuses on annotating dis-
course connectives rather than predefined discourse
units, it employs a function-based, non-overlapping
segmentation with no hierarchy or nesting.

Segmented Discourse Representation Theory
(SDRT) SDRT (Lascarides and Asher, 1993;
Asher and Lascarides, 2005) is a framework for
modeling discourse semantics that extends Dis-
course Representation Theory.

The most basic building blocks are called Ele-
mentary Discourse Units (EDUs). An EDU is de-
fined as the smallest unit of text or dialogue that is
semantically independent enough to participate in
discourse relations. Typically, this corresponds to a
simple clause (or subclause), a complete utterance
in dialogue, or sometimes a larger phrase when it
functions as a standalone informational unit. Some-
times EDUs are combined in complex discourse
units (CDUs).

3 Syntax-based Discourse Segmentation
Across Frameworks

3.1 Preliminaries and Rationale

A wide range of discourse frameworks exists (see
Section 2), each differing significantly in its theoret-
ical foundations and descriptive conventions. How-
ever, it remains an open question to what extent
their practical implementations — specifically, anno-
tated datasets and discourse parsers — also diverge.
Do these resources reflect fundamental conceptual
differences, or do they share underlying similar-
ities? In this study, we aim to shed light on this
issue by focusing on the task of discourse segmen-
tation, which represents the initial step in discourse
parsing. Using a simple, rule-based heuristics (see
Section 3.2), we perform segmentation on a se-
lection of English datasets annotated according to
various discourse frameworks.

Predicative-argument structures — comprising
sentence-level predicates and their associated ar-
guments — form the backbone of meaning repre-
sentation in natural language. These structures not
only organize the semantics of individual sentences
and clauses, but also serve as building blocks for
larger discourse-level constructions. Due to their
universality across languages, predicate-argument
structures provide a promising foundation for iden-
tifying DUs.

We assume that boundaries of DUs align with
the surface realization of predicate-argument struc-
tures. Without a doubt, these surface realizations

vary significantly across languages, influenced by
factors such as word order, morphology, and ac-
cepted argument or predicate ellipses. Despite this
variation, Universal Dependencies (UD, de Marn-
effe et al., 2021) approximate predicate-argument
relations using a cross-linguistically consistent
schema. This makes UD trees a practical and theo-
retically grounded resource for implementing a dis-
course segmentation method that generalizes across
typologically diverse languages.

Universal Dependencies are structured around
two fundamental linguistic concepts: the nominal,
typically used to represent entities, and the clause,
generally used to denote events and states. Clauses
consist of a main predicate along with its argu-
ments and modifiers. They may function as either
independent sentences or embedded clauses (i.e. re-
alizations of arguments or modifiers). Most of the
formalisms discussed in Section 2 define discourse
units roughly as clauses. Identifying clauses within
UD trees makes it possible to extract corresponding
DUs and thus to segment discourse.

3.2 UD-based Discourse Segmentation Rules

Building on the above-mentioned observations, and
in line with prior research (Braud et al., 2017; De-
sai et al., 2020), we assume that discourse relations
primarily hold between DUs realized as clauses.
Consequently, we define a set of simple UD-based
rules to identify clause structures. This clause iden-
tification serves as the foundation for detecting DU
boundaries in a consistent and linguistically moti-
vated way.

R1. Clauses UD distinguishes several depen-
dency types that are realized as clausal structures
and can be directly used for discourse segmenta-
tion. In particular, the heads of clauses are typically
marked with the following types:

e root — the root of a sentence,

* ccomp — a clausal complement of a verb or
adjective; a finite clause with an internal sub-
ject,

* advcl — an adverbial clause modifying a pred-
icate or modifier word,

* acl — an adnominal clause, i.e., a finite or non-
finite clause modifying a nominal (nominal
postmodifier).
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The full subtree headed by each of these depen-
dency types (see Ex. (1) and (2)) corresponds to
a distinct DU.

(1) (You're so stupidrpe) (thinkingagyer) (I
spentecomp the night.)

(2) (This is a trend;oe) (that bears,creacr Mmore
scrutiny) (than it has received,;.)

R2. Parataxis The parataxis relation captures
constructions in which clauses or constituents are
placed side by side without an explicit coordination
or subordination structure. Each subtree governed
by a parataxis head is treated as a distinct separate
segment (Ex. (3)).

(3) (As each task becomes,gcy; more specialized,)
(Smith notedpararaxis,) (it engagesroo; less of
the person.)

R3. Relative clauses The dependency type
acl:relcl is used to annotate relative clauses (Ex.
(4), (5)), as well as subordinate clauses introduced
by a relative pronoun that simultaneously serves
as an argument of the main predicate (Ex. (6)). All
such constructions are treated as individual DUs.

(4) (Such a scenario may be found,o, in different
situations,) (including when one studiescj-reicl
a language in a classroom...)

(5) (I'm supposed;oo to trust you every time)
(you tellep:reier the truth.)

(6) (But how am I supposed;oo to know) (when
you’re telling,cyrelcs the truth?)

R4. Coordination Clauses that are coordinated
with other clauses, such as those mentioned above,
along with parataxis or xcomp (a clausal comple-
ment of a verb or adjective with an obligatorily
controlled subject), are always treated as separate
DUs. Similarly, clauses with elided predicates are
also considered independent segments (Ex. (7)).

(7) (Finally, in some cases a gain in perfor-
mance has been observed,.: after 1.5 years
of limited exposure in one study [...],) (and
[observed]eyipsis in another study after 2
years,) (though [are observed],;psis only for
some abilities [...])

RS. Parenthesis Parenthesized content, e.g., bib-
liographic references, is treated as a separate DU.
In contrast, bracketed elements that function as ap-
positions, predicate arguments or modifiers are not
segmented (Ex. (8)). This distinction reflects the
assumption that bracket usage in such cases car-
ries a higher-level, likely pragmatic, interpretation
rather than signaling a distinct DU.

(8) (Higher levels of proficiency (or exposure)
may be associated;o,; With less attrition)
([174epl, [18], [211], [23]) (or even with no
observed lossesgiscontinuation {[21depl-)

While other punctuation marks (i.e., periods,
semicolons, and commas) can align with DU
boundaries, they are not dependable cues for seg-
mentation. They may be inconsistent or redundant,
or reflect higher-level phenomena, e.g., at the prag-
matic or stylistic level, rather than indicating clear
DUs boundaries.

Discourse connectives, such as complementiz-
ers and subordinating conjunctions (annotated as
mark), often introduce embedded DUs. Similarly,
discourse markers (discourse) may start new DUs.
However, at this preliminary stage, these elements
are not segmented separately. Our goal is to exam-
ine how they are handled across different discourse
frameworks to identify a consistent and unified ap-
proach to their treatment.

3.3 Discourse Segmentation Algorithm

A key component of the discourse segmentation
algorithm involves identifying which tokens within
a sentence correspond to DU heads, i.e., tokens
that anchor individual DUs. The selection of head
tokens is guided by:

* their dependency relation types,
* their part-of-speech tags,

* and the dependency types and part-of-speech
tags of their particular dependent tokens.

Once the head tokens are identified (e.g., likes
and /ost in Figure 1), the next step involves de-
termining the token span of each DU using the
structure of the UD subtree headed by the identi-
fied tokens. A segment X consists of its head token
x and possibly all tokens contained within the sub-
tree rooted at x, denoted as 7,.. However, if another
head token y, representing a separate DU, is nested
within 7, the span of segment X is restricted to
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tokens in 7, that are not part of the subtree rooted
aty (i.e., T). In cases where segment X continues
after the interruption caused by segment Y, a dis-
continuity discourse relation can be directly added,
based on the hierarchical structure of 7.

We adopt a rule-based approach to discourse seg-
mentation rather than training a dedicated model or
relying on large language models (LLMs). This de-
cision is motivated by several factors. First, our ob-
jective is to develop a unified segmentation method
applicable across multiple discourse datasets, anno-
tated according to different discourse frameworks.
Training a model on a single dataset would likely
result in overfitting to the specific annotation con-
ventions and discourse structure assumptions of
that dataset. On the other hand, training a single
model on a compilation of all available datasets
introduces the risk of learning from inconsistent or
conflicting instances, which may lead to poor or
unpredictable performance. Furthermore, discourse
segmentation models show limited generalizabil-
ity, even across datasets in the same language and
framework (Muller et al., 2019). Moreover, while
LLMs can be fine-tuned or prompted to perform
discourse segmentation, their output is often diffi-
cult to interpret without a complete manual revi-
sion or further postprocessing. In particular, it is
difficult to systematically verify which syntactic or
semantic cues underlie the identified DUs. Addi-
tionally, LLMs are prone to unintended alterations
in the input, making them unreliable for the current
study, where preserving the original text is crucial.
Given these constraints, a rule-based approach of-
fers a controlled and interpretable framework that
facilitates cross-formalism comparison.

4 Evaluation

As a basic proof of concept, we evaluate our
approach on English datasets from DISRPT
2023 (Braud et al., 2023) Task 1 (Treebanked
Segmentation). The datasets span three discourse
frameworks (RST, SDRT, and DEP) across diverse
domains:

* eng.dep.scidtb (Yang and Li, 2018) con-
tains scientific abstracts,

¢ eng.dep.covdtb (Nishida and Matsumoto,
2022) contains COVID-19 research abstracts,

* eng.rst.rstdt (Lynn Carlson, 2002) con-
tains Wall Street Journal articles from the
Penn Treebank,

* eng.sdrt.stac (Asher et al., 2016) contains
chat dialogues from the Settlers of Catan
game,

e eng.rst.gum (Zeldes, 2017) contains mixed
genres including essays, interviews, and on-
line forum discussions.

It is important to articulate that the DEP datasets
follow the RST annotation guidelines for DU seg-
mentation, and their discourse relation set is based
on PDBT.

Using the provided tokenization and dependency
trees from the DISRPT repository', we apply our
rule-based discourse segmenter to obtain discourse
segmentation and report precision, recall, and F1
scores in Table 1.

We compare against two DISRPT 2023 par-
ticipants: DisCut (Metheniti et al., 2023) and
HITS (Liu et al., 2023). Both systems used pre-
trained language models (XLM-RoBERTa for Dis-
Cut, RoBERTa-1large for HITS) fine-tuned sepa-
rately on each dataset. For the out-of-distribution
eng.dep.covdtb dataset, which only provided dev
and test splits, both teams used models trained on
eng.dep.scidth.

While our rule-based approach trails DisCut and
HITS by 5.61 and 5.17 F1 points respectively,
it demonstrates strong generalization ability. It
achieves consistent performance across three differ-
ent discourse frameworks and vastly different do-
mains. The performance gap narrows significantly
on out-of-distribution data: on eng.dep.covdtb,
our system comes within just 2.01 points of HITS
and 3.84 of DisCut. This convergence highlights
a key advantage — our single rule-based system
comes close to state-of-the-art performance with-
out requiring data labeling and training separate
model for each domain and discourse framework.

These results may suggest that the three dis-
course frameworks do not differ much concerning
segmentation, indicating that they share common
assumptions about how discourse should be divided
into segments. Furthermore, the observed align-
ment between our rule-based segments and those
in the datasets supports our intuition that DUs gen-
erally correspond to clauses. However, despite this
apparent similarity, some differences remain be-
tween our rule-based segmentation heuristics and
the datasets, and they should be examined more

"https://github.com/disrpt/sharedtask2023
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nsubj

1oot
acl:relcl punct punct
[ punct \ ; xcomp \ ; obj \
mark and
nsubj
Mary who  likes to smg lost her voice

PROPN PUNCT PRON VERB PART VERB PUNCT VERB PRON NOUN PUNCT

Figure 1: A dependency tree with two head tokens and the corresponding DUs highlighted in blue and red.

Our DisCut HITS
Dataset p R Fl p R Fl p R Fl
eng.rst.rstdt  87.56 87.00 8728 | 9721 98.04 97.62 | 9646 97.66 97.06
eng.rst.gum 90.76 93.14 91.93 | 9459 96.42 95.50 | 95.08 95.29 95.19
eng.sdrt.stac  87.92 9037 89.13 | 9575 9470 9522 | 9671 95.09 95.89
eng.dep.scidtb  90.84 90.88 90.86 | 9496 95.18 95.07 | 9477 95.09 94.93
eng.dep.covdtb* 89.60 87.02 8829 | 9404 9031 9213 | 9022 9038 90.30
Mean 89.34 9020 89.50 | 9551 94.93 95.11 | 94.65 9470 94.67

Table 1: Segmentation precision, recall and F1 score on English DISRPT 2023 datasets (Braud et al., 2023)
comparing our approach to DisCut (Metheniti et al., 2023) and HITS (Liu et al., 2023) (Treebanked track).
*indicates out-of-distribution datasets without training data.

closely. It is important to ask whether certain seg-
ments result from formalism-specific segmentation
principles and are unique to a particular theoretical
framework. Addressing these questions is essential
for understanding the concept of DUs and the un-
derlying theoretical assumptions in each discourse
framework.

5 Analysis of Segmentation Discrepancies

After applying our heuristics to five different
datasets, we conduct a comparative manual ana-
lysis of their samples (i.e. about 10 sentence pairs
with segmentation discrepancies from each dataset).
Its main goal is to identify the areas where rule-
based segmentation and gold-standard segmenta-
tion diverge, assess the extent of the differences
between them, and determine whether these dis-
crepancies significantly exceed the boundaries of
the DU definition we adopted.

We argued that the segmentation method — us-
ing clause boundaries as the foundation for defin-
ing DUs — is grounded in solid linguistic princi-
ples. Our analyses largely confirm this assumption,
as the majority of approaches converge with our
clause-level segmentation. Differences occur rather
in individual cases than globally and are caused by
various factors, often due to incorrect morphosyn-
tactic annotation.

Concerning discrepancies, they are grouped into

true discrepancies, reflecting systematic differences
in segmentation principles (see Section 5.1), and
other discrepancies, caused by preprocessing errors
and gold data inconsistencies (see Section 5.2).

5.1 True Discrepancies

R1. Adverbial clauses (advcl) The highest level
of agreement concerns adverbial clauses modify-
ing a predicate or modifier word, which in most
datasets — similarly to our approach — are seg-
mented. The only exception is eng.sdrt.stac,
where adverbial clauses are very consistently not
segmented (see B.1).

R1. & R3. Adnominal clauses (acl) and relative
clauses (acl:relcl) A similar degree of overlap
(high agreement) between our segmentation and
the compared datasets can be observed in the case
of all adnominal clauses, including relative clauses.
However, eng. sdrt.stac again stands out, where
such segmentation is regularly not performed (see
B.2).

R1. Clausal complements (ccomp) The segmen-
tation of complement clauses brings similar conclu-
sions to the previous ones. In situations involving
a verb complement, two UDs are distinguished
in most datasets. The only exception shows the
eng.sdrt.stac dataset (see B.3).
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R4. Verb coordination In the case of verb coor-
dination, there is no longer such agreement. In a
larger number of datasets, when there is a single
subject and a series of coordinated verbs related to
it, no division into separate parts may be made. This
is particularly noticeable in eng.dep. scidtb). Our
approach always segments each of the predicates
into separate DUs, no matter whether they are co-
ordinated (see B.4).

RS. Apposition in brackets This is the area
of the least agreement between our approach
and the others. In RST-type datasets, such as
eng.rst.rstdt and eng.rst.gum, all informa-
tion in brackets, including appositions, is frequently
annotated as separate DUs (see B.5, B.6). In DEP-
and SDRT-type approaches, similarly to our heuris-
tics, appositions in the brackets are not marked as
separate DU.

Punctuation As we mentioned in Section 3, we
do not rely on punctuation in our segmentation.
However, in some datasets, colons or semicolons
were used to mark DU boundaries. This is particu-
larly evident in RST-type datasets, where a colon
after an introductory phrase always signals a new
unit (see B.7).

Interjections Interjections, such as ’right’,
well’, 'no’, ’sorry’, ’hi’, are marked as sepa-
rate DUs in eng.sdrt.stac. In contrast, both
eng.erst.gum and our approach treat them as part
of an adjacent DU (see B.8).

Adpositional phrases In eng.dep.covdtb,
gerunds (e.g. ’including’, 'regarding’) and gerunds
followed by an adposition (e.g. "according to’) are
annotated as adpositional phrases that constitute
separate DUs (see B.9).

5.2 Other Discrepancies

Discourse datasets are annotated with morphosyn-
tactic information, including sentence and token
segmentation, part-of-speech tags, morphological
features, and dependency trees. These annotations
were either derived from existing resources or pre-
dicted automatically. Since automatic preprocess-
ing is prone to errors, it can negatively impact the
quality of discourse segmentation.

Preprocessing errors Some of the observed mis-
matches can be traced to inaccuracies in POS tag-
ging or dependency parsing errors in the gold-
standard data. For instance, multiple errors occur

in eng.dep.covdtb, including misidentification of
sentence predicates (see B.10), incorrect analyses
of coordination structures, erroneous assignment
of part-of-speech tags, etc.

Inconsistencies in gold standard In RST-type
approaches, appositions are treated as separate DUs
only when enclosed in parentheses. When they are
set off by commas, they remain part of the main
clause. This inconsistent treatment of appositions
leads to differences in segmentation between this
dataset and our approach (described in the previous
section).

Over-segmentation Our rules sometimes pro-
duce unnecessary splits, which becomes particu-
larly evident when it comes to identifying and seg-
menting spans containing proper names, titles, or
compound nouns (see B.11).

6 Conclusions

All of our analyses — initial, focusing on the most
popular approaches to discourse segmentation; sub-
sequent, examining how these theories are imple-
mented in annotated datasets; and concluding, com-
paring our proposal of the UD-based discourse
segmentation with already existing ones — have
allowed us to preliminarily confirm the assump-
tion that, in practice, all these approaches share
a significant number of common characteristics.

Moreover, our UD-based approach to discourse
segmentation, grounded in simple and clear rules,
has yielded very promising results. We are aware
that our rule-based approach does not reach the
performance of state-of-the-art methods. However,
surpassing these methods was not our primary ob-
jective. It is nevertheless worth emphasizing that
segmentation based on five simple rules, applied
uniformly across all tested datasets annotated ac-
cording to different formalisms, approaches the
performance of models trained separately for each
dataset.

Our main goal was to investigate whether syntax
can contribute to discourse segmentation, and the
results suggest that it constitutes a key factor in
identifying discourse units. This finding stands in
partial contrast to the results reported by Braud et al.
(2017). However, a direct comparison is difficult,
given the substantially different assumptions and
experimental setups. This issue, therefore, calls for
further dedicated research.

Our findings encourage us to research the topic
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further and set a goal of developing a universal,
cross-approach method for detecting DUs. Natu-
rally, certain areas remain that warrant particular
attention. They will need to be addressed in greater
depth in the next stages of our study, e.g., man-
ual comparative analyses, in which we focused on
identifying as many points of divergence in seg-
mentation as possible, revealed discrepancies pri-
marily at the level of segmenting certain types of
subordinate clauses, parataxis, appositions or units’
discontinuity. These are areas that require special
attention in future work.

It should also be noted that our comparative anal-
ysis of the proposed UD-based discourse segmen-
tation was conducted across a selection of datasets
that, in our view, appeared to be the most represen-
tative. The choice of these particular datasets was
motivated by our understanding of discourse as a
phenomenon in which the text operates as a whole.
In this perspective, discourse refers to a specific
way of organizing the text holistically, where every
element plays a defined role and, therefore, cannot
be omitted in segmentation.

Nonetheless, we acknowledge that developing a
universal approach to discourse segmentation will
require further evaluations and analyses of cross-
linguistic and cross-dataset similarities and differ-
ences in future work.

e High level of agreement on DUs segmen-
tation across the evaluated datasets.

o Promising results of the UD-based method
for DUs segmentation, demonstrating strong
generalization ability.

e Potential for unifying rules for cross-
linguistic discourse segmentation.
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A Properties of Discourse Units Across Major Discourse Frameworks

Discourse DU Name DU Form FTC OV SC 1 Dataset / Parser
Approach
Hobbs’ segment / clause / set N N N N N
Theory of sentential of clauses
Discourse unit
Coherence
(HTDC)
Cognitive discourse any text N Y Y N N
Approach to segment span,
Coherence cognitively
Relations motivated
(CCR)
ISO 24617-2 functional Turns, Y Y N Y N
(Dialogue segment utterances,
acts) sub-
utterances
GraphBank discourse clause Y N Y Y Y
segment
* Discourse
Graphbank (Wolf
et al., 2005)
Prague discourse Root nodes N N Y Y Y
Discourse argument of tectogram- )
Treebank matical * PDiT 4.0 (Synkova
4.0 (PDiT) subtrees (i.e. etal., 2024)
heads of
finite
clauses; text
spans
centred
around finite
verbs)
ISO 24617-8 situation eventualityy, N Y Y Y Y
fact,
proposition, * DRIPPS (Silvano
condition, et al., 2023)
belief or

dialogue act

* PDC (Ogrodniczuk
et al., 2024)
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Discourse DU Name DU Form FTC OV SC 1 Parser / Dataset
Approach
Rhetorical elementary nucleus or Y
Structure discourse sattelite span )
Theory units (EDU)  (essentially DPLP parser (Ji and
(RST) clauses) Eisenstein, 2014),
Hilda (Hernault
et al., 2010),
RST parser (Guz
et al., 2020),
Top-Down parser
(Koto et al., 2021),
RST parser (Yu et al.,
2022)
Penn argument a minimal N
Discourse span of text )
Treebank that conveys PDTB parser (Lin
(PDTB) a single etal., 2010),
discourse CoNLL-2015 shared
function task parsers (Wang
(most often and Lan, 2015)
clauses)
Segmented  discourse propositions N
Discourse unit / clauses .
Representa- (EDU/CDU) DDP parser (Liu and
tion Theory Chen, 2021),
(SDRT) SDD parser (Chi and
Rudnicky, 2022),
Llamipa (Thompson
et al., 2024)

Table 2: Properties of discourse units across major discourse representation frameworks. Abbreviations: Y — Yes, N
— No, FTC - Full Text Coverage; OV — DU Overlap; SC — Separate Connective (i.e. connectives treated as separate
units); I — Implementability (i.e., the feasibility of implementing the framework in a dataset or a discourse parser.
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B Types of Segmentation Discrepancies with Corresponding Examples

ID Category Dataset Gold segmentation Our segmentation
Adverbial eng.sdrt.stac  (Please only start the game (Please only start the game)
B.1 lauses when all four participants are (when all four participants
there) are there)
Adnominal eng.sdrt.stac (I respect popular music from (I respect popular music from
B2 Clauses, the time in which it was the time) (in which it was
relative clauses actually musical.) actually musical.)
Relative eng.sdrt.stac (I didn’t know you could (I didn’t know) (you could
B3 Clauses have them.) have them.)
Verb eng.dep.scidtb  (We observe, identify, and (We observe,) (identify,)
B4 coordination detect naturally occurring (and detect naturally
signals of interestingness in ~ occurring signals of
click transitions on the Web  interestingness in click
between source and target transitions on the Web
documents,) (which we between source and target
collect from commercial Web ~ documents,) (which we
browser logs.) collect from commercial Web
browser logs.)
Parenthesis eng.rst.gum (Also beginning trading (Also beginning trading
B.5 today on the Big Board are El  today on the Big Board are El
Paso Refinery Limited Paso Refinery Limited
Partnership , El Paso , Texas  Partnership , El Paso , Texas
,) ((ELP)) (and Franklin ,(ELP)) (and Franklin
Multi-Income Trust , San Multi-Income Trust , San
Mateo , Calif. ,) ((FMI).) Mateo , Calif. ,( FMI ) .)
Appositions in  eng.dep.scidtb  (...) (health practices) (...) (health practices
B.6 brackets {(exercise, tobacco and (exercise, tobacco and
alcohol consumption, sleep alcohol consumption, sleep
efficiency)) (and genetics efficiency) and genetics
contribute to CLI risk.) contribute to CLI risk.)
Punctuation eng.rst.gum (Respondents were asked to  (Respondents were asked to
B.7 indicate their race from indicate their race from
among the following among the following
categories:) (White; Black or  categories: White; Black or
African American; Hispanic; African American; Hispanic;
American Indian or Native American Indian or Native
American; and Asian or American; and Asian or
Pacific Islander.) Pacific Islander.)
Interjections eng.sdrt.stac (we ’re waiting for 2 other (we ’re waiting for 2 other

players) (right)
(no) (sorry)

players right)
(no sorry)
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Adpositional eng.dep.covid (Severe infections can lead to  (Severe infections can lead to
B.9 phrases a variety of diseases,) a variety of diseases,
(including poliomyelitis, including poliomyelitis,
aseptic meningitis, aseptic meningitis,
myocarditis and neonatal myocarditis and neonatal
sepsis. ) sepsis. )
Preprocessing  eng.dep.covid ~ Phylogenetic analysis based
B.10 errors on S3 gene showed that the
Brazilian TReoV
isolatesccomp clustered in a
single group with 98-100%
similarity to TReoV strains
circulating in the United
States.
Bl Compounds eng.rst.gum (Among his smaller works, (Among his smaller works,

the seventh Humoresque and
the song "Songs My Mother
Taught Me" are also widely
performed and recorded.)

the seventh Humoresque and
the song "Songs) (My
Mother Taught Me") (are
also widely performed) (and
recorded.)

Table 3: Segmentation discrepancy types categorized by type of linguistic phenomenon.
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Abstract

We introduce UniRST, the first unified RST-
style discourse parser capable of handling 18
treebanks in 11 languages without modifying
their relation inventories. To overcome inven-
tory incompatibilities, we propose and evalu-
ate two training strategies: Multi-Head, which
assigns separate relation classification layer
per inventory, and Masked-Union, which en-
ables shared parameter training through selec-
tive label masking. We first benchmark mono-
treebank parsing with a simple yet effective
augmentation technique for low-resource set-
tings. We then train a unified model and show
that (1) the parameter efficient Masked-Union
approach is also the strongest, and (2) UniRST
outperforms 16 of 18 mono-treebank base-
lines, demonstrating the advantages of a single-
model, multilingual end-to-end discourse pars-
ing across diverse resources.'

1 Introduction

Rhetorical Structure Theory (RST) (Mann and
Thompson, 1987) represents discourse as a hier-
archical tree of elementary discourse units (EDUs)
connected by rhetorical relations. Over the years,
RST has inspired the creation of multiple discourse
treebanks across different languages. However,
large-scale annotated corpora are scarce and pre-
dominantly available in English. For other lan-
guages, the high cost of annotation and inconsistent
guidelines have resulted in smaller, heterogeneous
resources with incompatible relation inventories.
The English RST Discourse Treebank (RST-DT)
(Carlson et al., 2001), the primary benchmark for
RST parsing, defines 56 fine-grained rhetorical rela-
tions, usually mapped to 18 coarse-grained classes
for training and evaluation. Many discourse tree-
banks in other languages define considerably fewer

'Our models and code: https://github.com/tchewik/
UniRST.

relations. Aligning them with the RST-DT inven-
tory often requires collapsing relations, such as
merging CAUSE with EFFECT, CONTRAST with
CONCESSION, or ELABORATION with ENTITY-
ELABORATION. This process erases distinctions
that can be crucial for downstream applications
such as coreference resolution, narrative analysis,
and opinion mining. Moreover, when no direct
equivalents exist, alignment is frequently based on
surface-level label similarity, which compromises
annotation reliability across languages.
End-to-end RST parsing involves three intercon-
nected subtasks: EDU segmentation, tree struc-
ture prediction, and nuclearity and relation label-
ing. The definitions of these tasks are shaped by
the relation inventory and constraints of each tree-
bank. For instance, segmentation decisions can be
influenced by fine-grained intra-sentential relations.
Mono- or multinuclearity of certain overlapping
relations (LABEL_NS, LABEL_SN, LABEL_NN)
varies across treebanks. When datasets with dif-
ferent inventories are merged and collapsed into a
coarser label set, inconsistencies in relation defi-
nitions and nuclearity distributions can introduce
substantial noise into both training and evaluation.
Despite these challenges, training on multiple
treebanks offers clear benefits. RST-style parsers
are known to generalize poorly across domains (Liu
and Zeldes, 2023), and training a unified parsing
model on all available treebanks may yield broader
applicability. The skewed label distributions within
individual corpora complicate model training, par-
ticularly in low-resource settings; pooling datasets
with overlapping labels can mitigate this issue. Al-
though larger treebanks provide sufficient data for
accurate EDU segmentation and local relation la-
beling, they remain too small to support robust
learning of global document structures. Leverag-
ing all annotated structures across corpora can thus
strengthen structural prediction. Altogether, these
considerations motivate the development of univer-
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sal discourse parsers that effectively integrate all
available resources, regardless of language, genre,
or domain.

In this work, we propose methods for building a
unified RST parser from heterogeneous treebanks.
Our contributions are:

1. The first large-scale RST parsing study cover-
ing 18 treebanks in 11 languages.

2. Data augmentation technique allowing for
strong end-to-end mono-treebank RST pars-
ing baselines even in low-resource settings.

3. Two strategies for jointly modeling divergent
relation inventories: Multi-Head and Masked-
Union.

4. Evaluations showing that: (i) dataset-specific
segmentation heads are essential for handling
varying EDU definitions; (ii) the Masked-
Union approach enables sufficient model train-
ing by leveraging label overlap while respect-
ing treebank-specific relation inventories, and
(iii) our unified model outperforms 16 out of
18 mono-treebank baselines.

2 Related Work

Cross-Lingual RST Parsing  Cross-lingual
rhetorical structure parsing has gained increasing
attention in recent years. Braud et al. (2017) intro-
duced a unified set of coarse-grained (harmonized)
rhetorical relations and presented the first data-
driven cross-lingual RST parser, transferring across
English, Brazilian Portuguese, Spanish, German,
Basque, and Dutch. Their study demonstrated that
rhetorical structure parsing from pre-segmented
texts successfully transfers beyond English and
across typologically diverse languages. Building
on this foundation, Liu et al. (2020) leveraged mul-
tilingual embeddings and proposed EDU-level ma-
chine translation to enrich training data. Subse-
quently, Liu et al. (2021) introduced DMRST, a
unified framework performing joint EDU segmen-
tation and discourse tree parsing, enabling end-to-
end RST parsing evaluation across multiple lan-
guages under harmonized inventories. Extending
this line of work, Chistova (2024) applied DMRST
to parallel English—Russian data, highlighting the
importance of aligned corpora for assessing cross-
lingual transfer in the context of RST treebank in-
compatibilities.

Training on Incompatible Treebanks Research
on integrating incompatible treebanks has largely
focused on syntax parsing. Early work by Johans-
son (2013) introduced two adaptation techniques
for training syntax parsers on treebanks with differ-
ing annotation schemes. Their methods involved
concatenating the feature spaces of two treebanks
and using a parser trained on one treebank to guide
the other. These approaches were applied to tree-
banks pairs within the same language (German,
Swedish, Italian, and English). Stymne et al. (2018)
explored three strategies: treebank concatenation
with and without fine-tuning, and the inclusion
of treebank-specific embeddings. Their results
showed consistent improvements in dependency
parsing for most of the nine languages evaluated
when using treebank-specific embeddings. A sim-
ilar approach was applied by Barry et al. (2019)
to train a cross-lingual parser for low-resource
Faroese syntax parsing. Johansson and Adesam
(2020) trained a Swedish constituency parser on
six incompatible treebanks by sharing word repre-
sentations across corpora while maintaining sepa-
rate neural parsing modules for each treebank, thus
accommodating both constituency and dependency
annotations. Kankanampati et al. (2020) lever-
aged two Arabic dependency treebanks to build
a parser with a unified attachment scorer. Sayyed
and Dakota (2021) conducted multilingual experi-
ments with treebank-specific biaffine parsing layers
for UD and SUD syntactic annotations, ultimately
finding that combining distinct annotation schemes
could degrade parsing performance.

Notably, in syntactic parsing, terminal nodes cor-
respond to words, so efforts to resolve annotation
inconsistencies are confined to structure building
and label assignment. In contrast, rhetorical struc-
ture parsing additionally requires segmentation,
which is affected by treebank-specific constraints
on elementary discourse units. In our work, we aim
to develop the first end-to-end RST parser benefit-
ing from each annotation scheme in a wide range
of diverse discourse treebanks.

3 UniRST

We address joint training over heterogeneous RST
corpora while preserving each treebank’s native
relation inventory, EDU segmentation, and rela-
tional definitions. Building on the DMRST ar-
chitecture (Liu et al., 2021), we explore exten-
sions that enable training across incompatible tree-
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Figure 1: Model variants in the UniRST framework. (a) Multi-Head: independent classifiers per relation inventory.
(b) Masked-Union: shared classifier with treebank-specific label masking.

banks. Specifically, we propose two strategies:
Multi-Head (MH), which maintains separate clas-
sification heads per inventory, and Masked-Union
(MU), which uses a single classifier constrained by
treebank-specific masks. For reference, we addi-
tionally implement Unmasked-Union (UU), which
lacks label masking and serves as a lower bound.
Unless otherwise noted, models use treebank-
specific segmentation heads, though shared seg-
mentation is also tested. Figure 1 illustrates the
architectures.

3.1 DMRST

DMRST (Liu et al., 2021) is an end-to-end RST
parsing model that integrates EDU segmentation,
discourse tree construction, and relation/nuclearity
labeling. Its pipeline has four stages: (1) a pre-
trained language model encodes input tokens, (2)
an LSTM-CRF module detects EDU boundaries,
(3) a recurrent pointer network decoder constructs
the discourse tree, and (4) a biaffine classifier as-
signs nuclearity and relation labels. The model
is trained jointly, with dynamically weighted loss
balancing segmentation, structure prediction, and
labeling. This unified design enables consistent
end-to-end parsing.

UniRST extends this backbone to multi-treebank
training. The pretrained encoder and recurrent de-
coder are shared across corpora, while segmenta-
tion and relation classification are treebank-tailored.
This design aims to achieve robust structural pre-
diction while respecting each corpus’s definitions
and constraints.

3.2 Multi-Head (MH)

Our first method for multi-inventory RST pars-
ing assigns a separate classification head to each
distinct relation inventory. Given the set of in-
ventories G = {Gi,...,Gp}, treebanks shar-
ing the same inventory (e.g., eng.gum, rus.rrg,
zho.gcdt) share a relation/nuclearity classifier
W) e RAXIGml 1In this configuration, cross-
treebank information about relation and nuclearity
is exchanged only implicitly, through fine-tuning of
the language model and shared structural decoder.

3.3 Masked-Union (MU)

Let U = |J, L7, be the unified set of all rela-
tion types across treebanks. MU employs a sin-
gle shared classifier W € R that predicts
over this unified label space. To enforce inven-
tory constraints, for each treebank 7}, we apply a
binary mask m*) € {—1 x 10,1}/ to the clas-
sifier logits. This parameter-efficient design pro-
motes explicit parameter sharing and enables direct
transfer for overlapping relations (e.g., ELABORA-
TION_NS) across all components of the model.

3.4 Unmasked-Union (UU)

UU mirrors the MU architecture but omits the
treebank-specific masking, thereby allowing predic-
tions over the entire concatenated label set without
restriction. Consequently, it can produce labels that
do not exist in the target corpus, limiting its practi-
cal utility. We include UU scores as a lower-bound
baseline.
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Treebank Language #Docs # Tokens #EDUs # Labels # Classes # Rels
ces.crdt (2024) Czech 54 14,623 1,345 23 34 1,288
deu.pcc (2014) German 176 32,836 2,842 25 37 2,665
eng.gentle (2023) (test only) English 26 17,799 2,328 15 27 2,552
eng.gum v11.1 (2025) English 255 250,290 34,428 15 27 32,173
eng.oll (2008) English 327 46,177 3,026 21 35 2,716
eng.rstdt (2002) English 385 205,829 21,789 18 42 21,404
eng.sts (2008) English 150 70,422 3,208 21 35 3,058
eng.umuc (2024) English 87 61,292 5,421 28 46 5,334
eus.ert (2013) Basque 88 45,780 2,509 24 31 2,421

fas.prstc (2021) Persian 150 66,694 5,789 18 26 5,638
fra.annodis (2012) French 86 32,699 3,307 18 20 3,221

nld.nldt (2012) Dutch 80 24,898 2,326 27 45 2,246
por.cstn (2011) Portuguese 140 58,793 5,527 22 38 5,387
rus.rrg (2024) Russian 213 172,405 25,222 15 27 25,010
rus.rrt (2017) Russian 233 262,495 28,247 17 25 25,892
spa.rststb (2011) Spanish 267 58,717 3,351 29 43 3,084
spa.sctb (2018) Spanish 50 16,515 744 20 26 694

zho.gedt (2022) Chinese 50 62,905 9,403 15 28 9,345
zho.sctb (2018) Chinese 50 15,496 744 20 26 684

Table 1: Treebank statistics.
4 Data remain underutilized due to limited training data.

This study leverages training data from 18 RST
treebanks covering 11 languages, aiming to cre-
ate the most universal end-to-end RST parser to
date. The treebanks span Czech, German, En-
glish, Basque, Persian, French, Dutch, Brazilian
Portuguese, Russian, Spanish, and Chinese. Tree-
bank statistics are summarized in Table 1.

For the English RST-DT benchmark, we adopt
the coarse-grained relation labels used in prior
work. Corpora annotated using the GUM RST
schema (eng.gum, zho.gcdt, rus.rrg) retain
their predefined coarse-grained labels. For other
corpora, if applicable, we merged infrequent
classes (less than 10 instances) with related ones
based on nuclearity, following the mapping sug-
gested by Braud et al. (2017). This ensures both la-
bel diversity and sufficient representation for train-
ing. Detailed class distributions are illustrated in
Appendix B.

To ensure consistency and reproducibility, we
use the standardized training, validation, and test
splits? provided by the DISRPT 2025 shared task
for segmentation, connective identification, and
relation classification across discourse annotation
frameworks.

4.1 Data Augmentation

While several large RST treebanks dominate end-
to-end discourse parsing research, smaller corpora
2We employ the open version of eus.ert treebank from

https://ixa2.si.ehu.eus/diskurtsoa/en/, containing
88 annotations.

To address this gap and establish strong mono-
treebank baselines, we propose a simple yet ef-
fective data augmentation technique to improve
performance in low-resource settings. Crucially,
our method enriches training data without modify-
ing the original texts or local annotations.

DMRST model employs a recurrent structure
prediction module that relies heavily on contex-
tual signals. As each annotated tree yields a sin-
gle training instance, the number of examples is
limited, particularly in smaller treebanks. To ad-
dress this, we introduce an augmentation approach
based on extracting structurally coherent subtrees
from annotated documents. While these subtrees
omit full-document context, their internal discourse
structure remains valid and informative.

Our procedure involves: (1) identifying sentence
boundaries to avoid extracting subtrees spanning
sentence fragments; (2) extracting all connected
subtrees not spanning sentence fragments and in-
cluding at least three rhetorical relations; and (3)
sampling a proportion p,,e of these subtrees for
augmentation. Sampling is critical to prevent over-
fitting, particularly for the segmentation subtask.

This augmentation allows the model to train on
a wider range of partial structures, potentially im-
proving end-to-end RST parsing training in low-
resource settings. We set payg to 50% to enrich the
training data multifold.?

3For RST-DT, pae = 50% produces 5.4 times more train-
ing samples. Over all treebanks, it multiplies number of train-
ing samples by 7.7.
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Baseline

+ Augmentation

Treebank S

Gold seg

N

R

Full

Seg

End-to-end

S

N

R

Full

S

Gold seg

N

R

Full

Seg

End-to-end

S

N

R

Full

60.2
68.7
73.3
65.9
77.5
46.5
68.8
71.0
65.0
62.5
63.8
76.0
71.2
79.7
68.1
66.7
76.3
66.7

ces.crdt
deu.pcc
eng.gum
eng.oll
eng.rstdt
eng.sts
eng.umuc
eus.ert
fas.prstc
fra.annodis
nld.nldt
por.cstn
rus.rrg
rus.rrt
spa.rststb
spa.sctb
zho.gedt
zho.sctb

31.1
38.8
60.5
48.2
66.6
35.1
50.8
47.3
51.3
51.6
47.4
62.2
57.2
61.4
52.2
41.5
58.1
37.7

18.2
24.7
52.6
29.5
56.1
21.7
33.1
29.9
40.2
33.0
30.7
50.9
49.4
51.5
35.0
35.2
52.3
32.1

16.9
23.6
51.5
29.3
54.6
21.1
324
29.2
40.1
33.0
29.1
50.8
48.2
51.3
35.0
35.2
50.7
32.1

90.1
95.2
95.5
89.7
97.6
89.7
89.6
89.7
93.8
92.1
96.3
93.9
97.2
91.1
91.5
74.1
91.2
91.1

47.3
58.9
66.9
51.4
73.8
38.2
51.2
54.8
55.3
53.2
58.2
68.2
67.6
62.8
54.9
34.3
61.0
56.3

24.0
33.9
55.4
36.7
63.4
28.8
36.9
38.0
44.6
44.7
42.9
53.3
54.3
49.0
40.9
25.4
46.1
34.3

13.7
21.0
48.3
21.9
53.3
18.2
24.3
23.1
34.4
28.6
28.5
43.9
47.1
41.4
28.1
23.1
40.9
28.5

12.3
20.0
47.4
21.5
51.8
18.0
23.7
22.7
34.4
28.6
26.9
43.8
46.0
41.3
28.1
23.1
39.6
28.5

58.9
67.2
72.8
61.8
78.3
44.1
67.1
66.5
65.3
62.5
61.7
76.1
70.3
80.0
71.1
66.7
75.3
60.2

31.1
42.7
59.9
43.2
67.5
32.9
48.4
44.5
50.9
51.4
46.4
61.6
55.9
61.9
54.4
43.6
58.2
40.9

18.0
26.4
52.6
29.0
57.0
20.5
31.8
25.7
40.7
32.9
30.6
49.9
47.9
52.2
38.9
31.7
51.9
32.3

17.1
25.6
51.4
28.4
55.2
19.6
31.2
25.7
40.4
32.9
28.8
49.9
46.8
51.9
38.9
31.7
50.4
32.3

90.6
96.0
95.2
91.2
97.7
88.4
89.0
89.0
93.8
91.5
96.4
94.0
96.8
91.0
91.9
84.1
91.9
92.5

46.2
59.7
66.1
54.1
74.9
33.5
49.1
52.3
55.3
52.4
57.2
66.3
65.6
63.0
57.7
47.5
64.0
52.3

23.4
36.9
54.3
36.4
64.5
24.5
35.1
35.3
42.9
43.3
42.8
53.3
52.2
49.9
44.0
35.3
49.5
38.1

11.5
21.7
47.9
24.5
54.6
16.1
24.3
19.9
34.3
27.6
28.9
43.0
44.9
42.5
32.8
27.3
43.5
29.6

11.2
21.2
46.9
24.0
52.9
15.7
24.0
19.8
34.0
27.6
27.3
43.0
43.9
42.3
32.8
27.3
42.3
29.6

Table 2: Performance of the treebank-specific models, with and without train data augmentation.

S Experimental Setup

We employ x1m-roberta-large as the multilin-
gual encoder across all experiments. The batch
size is set to 2, with a hidden size of 200 for the
segmenter and 512 for the parsing module. The
DMRST model is trained with a learning rate of
le-5, while the encoder is fine-tuned using a learn-
ing rate of 2e-5. Early stopping is set to a patience
of 5 in mono-treebank settings and reduced to 3 in
UniRST due to the larger concatenated dataset.

Evaluation follows the original Parseval met-
rics for rhetorical structure parsing, with micro
F1 scores reported for segmentation (Seg), span
(S), relation (R), nuclearity (N), and full structure
(Full). Each model is trained using three different
random seeds, and all reported results are averaged
across these runs.

6 Experimental Results

6.1 Mono-Treebank Evaluations

Table 2 reports the performance of treebank-
specific models trained with and without data aug-
mentation. Augmentation yielded substantial gains
on smaller corpora such as eng.oll, spa.sctb,
zho. scth, and zho. gcdt, but improvements were
not uniform across all treebanks. Interestingly,
on the eng.rstdt benchmark with diverse doc-
ument lengths, augmentation led to an average
1.1% F1 improvement in unlabeled structure pre-
diction (S), highlighting its potential even for larger
datasets. On the other hand, the data augmentation

In-treebank
Seg S N

90.5 495 245
96.0 59.7 369
955 669 554
912 54.1 354
97.7 749 645
89.7 38.2 32.6
89.6 51.2 369
89.7 54.8 38.0
93.8 583 44.6
92.1 532 447
964 57.0 439
94.1 68.8 572
972 67.6 543
91.0 63.0 499
919 57.7 440
84.1 475 353
919 64.0 495
925 523 38.1

All avg.
Seg S N

764 32.6 160
76.6 329 193
789 413 302
713 319 18.7
784 40.2 28.8
758 29.1 168
776 351 224
775 338 184
78.3 36.2 203
715 32.6 165
80.2 359 220
782 37.1 252
80.0 40.9 28.7
81.2 409 273
78.5 354 226
740 299 162
76.9 36.7 233
574 17.1 102

929 60.7 473

Model

ces.crdt
deu.pcc
eng.gum
eng.oll
eng.rstdt
eng.sts
eng.umuc
eus.ert
fas.prstc
fra.annodis
nld.nldt
por.cstn
rus.rrg
rus.rrt
spa.rststb
spa.sctb
zho.gedt
zho.sctb

UniRST

Table 3: Evaluation across all treebanks. We only assess
segmentation (Seg), unlabeled structure construction
(S), and nuclearity assignment (N), as relation invento-
ries are incompatible.

resulted in performance degradation on two large-
scale GUM-based corpora (eng.gum, rus.rrg),
likely due to segmenter overfitting on long doc-
uments. Overall, augmentation yielded the best
mono-treebank parsing performance on 10 of the
18 treebanks. For comparison, Appendix A summa-
rizes previous end-to-end RST parsing results on
eight treebanks. DMRST+ denotes the architecture
used as a baseline in this work.

201



Method ~ Segmentation ¢ (;Old segR Full Seg S Endl-\?o-endR Full
MH single 73.5 584 47.6 46.6 934 634 507 417 4038
multiple 73.6  59.0 485 47.6 93.7 63.7 513 424 416
uuU single 73.8 58.7 47.0 46.8 934 643 519 428 418
MU single 74.1 593 48.8 47.8 937 645 521 432 423
multiple 744 59.6 493 483 939 64.8 52.1 434 425
Table 4: Performance of the UniRST model in different setups.
Treebank Seg S R Full
ces.crdt 94.2 (+4.1) 579 (+10.6) 38.6 (+14.6) 27.3(+3.3) 26.8 (+14.5)
deu.pcc 96.5 (+0.5)  66.3 (+6.6) 45.5 (+8.6) 32.8 (+11.1)  31.1(+9.9)
eng.gum 95.2 (-0.3)  66.7 (-0.2)) 54.7 (-0.7) 48.0 (-0.3) 46.9 (-0.5)
eng.oll 93.8 (+2.6)  56.7 (+2.6) 40.6 (+4.2) 27.6 (+3.1) 27.1 (+3.1)
eng.rstdt 97.8 (+0.1)  75.6 (+0.7) 65.1 (+0.6) 55.2 (+0.6) 53.5 (+0.6)
eng.sts 91.0 (+1.3) 40.4 (+2.2) 30.7 (+1.9) 19.4 (+1.2) 18.8 (+0.8)
eng.umuc  88.8 (-0.8)  52.0 (+0.8) 40.1 (+3.2) 26.1 (+1.8) 25.6 (+1.9)
eus.ert 92.0 (+2.3) 62.8 (+8.0) 47.4 (+9.4) 354 (+12.3) 353 (+12.6)
fas.prstc 94.6 (+0.8)  61.7 (+6.4) 50.2 (+5.6) 40.7 (+6.3) 40.5 (+6.1)
fra.anodis  90.9 (-1.2)  58.1 (+4.9) 47.3 (+2.6) 31.1 (+2.5) 30.7 (+2.1)
nld.nldt 97.6 (+1.2)  59.3 (+2.1) 45.3 (+2.5) 33.5 (+4.6) 31.7 (+4.4)
por.cstn 94.3 (+0.4) 67.7(-0.5) 54.9 (+1.6) 457 (+1.8) 45.4 (+1.6)
rus.rrg 96.5 (-0.7)  66.8 (-0.8) 53.5 (-0.8) 45.5 (-1.6) 44.1 (-1.9)
rus.rrt 90.6 (-0.4) 63.0 (0.0) 49.8 (-0.1) 42.6 (+0.1) 42.4 (+0.1)
spa.rststb 92.5 (+0.6)  63.5(+5.8) 50.1 (+6.1) 35.3(+2.5) 352 (+2.4)
spa.sctb 86.0 (+1.9) 55.8(+8.3) 48.0 (+12.7) 40.8 (+13.5) 40.8 (+13.5)
zho.gedt 92.1 (+0.2) 629 (-1.1) 48.7 (-0.8) 44.0 (+0.5) 42.7 (+0.4)
zho.sctb 943 (+1.8) 643 (+12.0) 50.5(+12.4) 407 (+11.1) 40.7 (+11.1)

Table 5: UniRST performance per treebank. Improvements over the strongest mono-treebank baseline, as listed in

Table 2, are shown in parentheses.

To assess generalization, each best-performing
treebank-specific model was evaluated on all 18
corpora. Table 3 reveals a consistent transferabil-
ity gap: models tend to overfit to treebank-specific
language, domains, relation usage, and document
styles. Segmentation scores also decline in transfer
settings, though less severely than Span or Nuclear-
ity scores. In certain cases, however (e.g., eng.oll,
eng.gum), segmentation drops sharply, reflecting
variation in EDU definitions across corpora. De-
spite strong in-treebank Span F1 (e.g., 74.9% for
eng.rstdt, 68.8% for por.cstn), transfer perfor-
mance degrades substantially (dropping to 40.2%
and 37.1%, respectively). This disparity demon-
strates that in-domain success is a poor indicator of
cross-corpus robustness and highlights the need for
more generalizable RST parsers, such as UniRST.

6.2 UniRST

Performance of the Multi-Head and Masked-Union
strategies is reported in Table 4. UniRST performs

best when segmentation is handled by treebank-
specific heads, which capture differences in EDU
annotation schemes, whereas a universal segmen-
tation head primarily learns broader segmentation
patterns. The Masked-Union (MU) strategy consis-
tently outperforms Multi-Head (MH), offering both
greater efficiency and higher parsing accuracy. Its
masking mechanism ensures that each treebank’s
inventory is respected, while still enabling transfer
for overlapping relations, which in turn improves
parsing performance over the unmasked baseline.
The strongest configuration is MU with treebank-
specific segmentation heads. We refer to this vari-
ant as “UniRST” throughout the remainder of the

paper.

As shown in Table 3, UniRST achieves higher
average performance across combined test set com-
pared to any mono-treebank parser. This demon-
strates the robustness of UniRST model as a cross-
lingual parser capable of learning shared represen-
tations that generalize effectively across diverse
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RST corpora.

Detailed results by treebank are provided in Ta-
ble 5. The unified model outperforms the strongest
mono-treebank baselines on 16 out of 18 tree-
banks. Notable improvements in end-to-end Full
F1 are observed across most datasets, particu-
larly for smaller-scale treebanks such as ces.crdt,
deu.pcc, eus.ert, spa.sctb, zho.gcdt, and
zho. scth. Similar to data augmentation in mono-
treebank training, joint training does not benefit the
large-scale eng.gum and rus. rrg corpora, whose
annotations appear sufficient on their own. Im-
portantly, the performance drop on eng. gum under
joint training remains marginal. The only corpus
where UniRST fails to exceed 50% Span F1 and
25% Full F1 is eng. sts. Given the limited docu-
mentation of this dataset, the cause is unclear, but
the low scores may stem from poor inter-annotator
agreement or inconsistently applied segmentation
and structural constraints. Joint training nonethe-
less improved performance, suggesting that it pro-
vides some stabilization even under noisy condi-
tions. Across nine corpora in English, Persian, Por-
tuguese, Russian, Spanish, and Chinese, UniRST
achieves more than 40% Full end-to-end F1 while
preserving original relation inventories.

To further assess out-of-domain generalization,
we evaluate GUM-compatible models on the GEN-
TLE benchmark, which follows GUM annotation
guidelines.* As shown in Table 6, UniRST achieves
the highest Full end-to-end parsing score. The
eng.gum model performs best in segmentation
(93.0% F1) and structure prediction (58.0%) due
to its alignment with GENTLE’s language and an-
notation conventions. However, UniRST outper-
forms it on Relation and Full F1, highlighting the
benefits of shared relation classification training
across multiple treebanks. Notably, UniRST sup-
ports 11 languages, while eng. gum is English-only.
Training on multiple multi-domain treebanks, in-
cluding five English treebanks, did not lead to a
substantial improvement in out-of-domain perfor-
mance over the GUM-specific model. These find-
ings highlight the importance of treebank-specific
annotation schemes and show that the universal
model remains most effective within the domains
and genres present in its training data.

*GENTLE includes annotations for eight unconventional
genres: dictionary entries, esports commentaries, legal docu-
ments, medical notes, poetry, mathematical proofs, syllabuses,
and threat letters. None of these genres are represented in the
training corpora used in this work.

Model Seg S N R Full

eng.gum 93.0 58.0 472 39.1 386
rus.Irg 852 447 349 288 283
zho.gedt 764 341 235 184 18.0
UniRST 927 574 460 399 394

Table 6: Performance of the GUM-compatible models
on GENTLE out-of-domain benchmark.

7 Conclusion

While previous approaches to multilingual pars-
ing have often advocated for reducing relation in-
ventories to a small standardized set of RST rela-
tions, such strategies fail to fully account for the
broader divergences among RST treebanks. These
include differences in discourse segmentation, the
treatment of mono- versus multinuclearity, and the
granularity, specificity, and definitions of rhetori-
cal relations. In this work, we introduced UniRST,
the first unified RST-style discourse parser capable
of effectively processing 18 treebanks across 11
languages without altering their original relation in-
ventories. To address the challenge of inventory in-
compatibility, we proposed two approaches: Multi-
Head and Masked-Union. Our results show that
the latter yields superior performance, particularly
when paired with treebank-specific segmentation
heads. UniRST outperforms 16 out of 18 mono-
treebank baselines, demonstrating that end-to-end
multilingual discourse parsing is achievable despite
considerable annotation diversity. The results indi-
cate that embracing annotation heterogeneity can
benefit multilingual discourse parsing.

Limitations

The main limitation of a multilingual RST parser
that preserves multiple relation inventories lies in
the need to account for inventory differences in
downstream applications. This issue is not unique
to our approach, as it also arises when deploying
separate treebank-specific models per language or
domain. Even under label harmonization to a re-
duced set, variation in the number and distribution
of relations across languages can persist. While
UniRST demonstrates strong generalization across
most treebanks, it shows a marginal performance
drop on two large, multi-domain corpora (eng. gum,
rus.rrg), likely because their annotations are suffi-
cient to support strong mono-treebank models. Fur-
thermore, eng. sts remains the only dataset where
Span F1 remains below 50%, with both mono- and
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multi-treebank models performing poorly. These
observations suggest that data quality and annota-
tion consistency substantially affect performance,
and that future work may benefit from treebank
filtering or weighting.
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A Reference Results from Prior Work

Table 7 summarizes previously reported results for
end-to-end RST parsing. It is important to note
that prior results may differ in experimental setup,’
limiting direct comparability. All results reported
in Section 6.1 are obtained through single-treebank

SMost notably, in the use of multicorpus training with
harmonized label sets, or non-standard train/dev/test splits.
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training using the original relation sets and the stan-
dardized DISRPT 2025 splits. To the best of our
knowledge, the remaining treebanks are evaluated
here for the first time in a full end-to-end RST pars-
ing setting.

System Seg S N R Full
eng.rstdt

SegBot (2020) 922 623 50.1 407 39.6
Nguyen et al. (2021) 96.3 684 59.1 478 46.6
DMRST (2021) 963 684 59.1 478 46.6
DMRST+ (2024) 97.8 748 645 545 530
deu.pcc

DMRST (2021) 96.5 704 60.6 n/c n/c
eus.ert

DMRST (2021) 88.7 533 39.1 n/c n/c
nld.nldt

DMRST (2021) 955 623 46.6 nlc n/c
por.cstn

DMRST (2021) 92.8 625 51.6 nlc n/c
rus.rrg

DMRST+ (2024) 969 66.5 533 458 44.6
rus.rrt

DMRST+ (2024) 922 659 51.0 439 438
spa.rststb

DMRST (2021) 92.8 625 516 nlc n/c

Table 7: Reference end-to-end parsing evaluations
across RST treebanks. n/c indicates incompatible (har-
monized) label sets.

B Relation Classes across Treebanks

Figures 2 and 3 illustrate the distribution of all
relation labels across 19 treebanks (including the
test-only eng.gentle). UniRST handles all 96
unique LABEL_INUCLEARITY relations as they ap-
pear in each corpus. Note that while some tree-
banks (e.g., GUM-style and RST-DT) internally
group ANTITHESIS, CONTRAST, and CONCES-
SION as ADVERSATIVE, and CAUSE with RESULT
as CAUSAL, others treat some of these relations sep-
arately or organize them under alternative group-
ings.

During preprocessing, only relations with equiv-
alent definitions and comparable granularity were
unified under a single label (e.g., CONDITION
and CONTINGENCY; ADVERSATIVE and coarse-
grained CONTRAST). CONDITION is a coarse-
grained label encompassing, in most treebanks,
the underrepresented fine-grained relations OTH-
ERWISE, UNLESS, and UNCONDITIONAL, each of
which appears too infrequently to be modeled reli-
ably on its own. Labels without clear counterparts,
such as GRADATION_SN in ces.crdt (Polakova
et al.,, 2024) or FRAME_NS in fra.annodis
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(Muller et al., 2012), remain unique to their re-
spective treebanks.

Variations in the representation of overlapping
labels across treebanks reflect underlying genre and
linguistic differences. For instance, zho.gcdt fea-
tures more instances of ELABORATION_SN than
ELABORATION_NS, in stark contrast to other lan-
guages, where the satellite in ELABORATION typi-
cally follows the nucleus.
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Figure 2: Relation class frequency across treebanks.
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Relation Class Frequency (Continuation)
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Figure 3: Relation class frequency (continuation).
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Abstract

Understanding public discourse through the
frame of stance detection requires effective ex-
traction of issues of discussion, or stance tar-
gets. Yet current approaches to stance target
extraction are limited, only focusing on a sin-
gle document to single stance target mapping.
We propose a broader view of stance target ex-
traction, which we call corpus-oriented stance
target extraction. This approach considers that
documents have multiple stance targets, those
stance targets are hierarchical in nature, and
document stance targets should not be consid-
ered in isolation of other documents in a corpus.
We develop a formalization and metrics for this
task, propose a new method to address this task,
and show its improvement over previous meth-
ods using supervised and unsupervised met-
rics, and human evaluation tasks. Finally, we
demonstrate its utility in a case study, showcas-
ing its ability to aid in reliably surfacing key
issues of discussion in large-scale corpuses.

1 Introduction

Disagreement is a critical part of discourse. As
such, understanding discourse requires inferring
the constituent disagreements. This task becomes
increasingly complex as discussions scale to online
environments (Gottfried, 2024), where the pressing
need to ensure healthy dialogue is compounded
by threats from inauthentic influence attempts
and harmful platform mechanisms (Saurwein and
Spencer-Smith, 2021; Goldstein et al., 2023; Com-
mission, 2024). To address these challenges, we
need both easy-to-use analytical methods and clear
representations of discussion data. However, de-
veloping such tools presents challenges, given that
online media documents typically mix many differ-
ent related issues, topics, and contexts.

Stance detection (i.e. the task of identifying the
attitude of the author of a text on a stance target (a
claim, entity etc.) (Mohammad et al., 2016)) is a

Derek Ruths
McGill University
derek.ruths@mcgill.ca

well-developed method for understanding disagree-
ment. But the current state of stance detection is
such that, unless one knows a priori the stance tar-
gets one wants to know the documents’ stance on,
one must undertake the difficult task of defining
those stance targets oneself via the arduous task
of understanding the entire corpus. While there
are initial methods available for finding targets in
documents, we propose that they are insufficient
at the corpus-level, and that such a method needs
four key features in order to faithfully and clearly
capture stance in a discussion corpus:

1. The stance targets need not be known a priori
to the researcher - avoiding human bias in
issue selection, and improving scalability.

2. A single document can articulate a position on
multiple, or hierarchical (i.e. more abstract,
or more general), targets - which frequently
occurs in the real-world - and as such, the
method should map the document to these
targets.

3. Targets should be determined in the context of
the corpus - meaning both that the discussion
as a whole aids the inference of the targets
of a document, and that documents should be
clustered to targets to allow aggregation for
downstream application.

4. Documents should be mapped to clear repre-
sentations of these stance targets, to aid under-
standing, and allow use in downstream tasks

Existing approaches do not address all of these
features. Most stance target extraction methods
produce a single stance target for a single given
document, without attending to the broader context
of a discussion, or allowing for multiple issues to be
addressed in a document (Irani et al., 2024; Akash
et al., 2024; Li et al., 2023; Zhang et al., 2021).
Disagreement discovery methods from outside the
stance-detection literature that do consider a corpus
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A carbon tax is critical for
Canada’s green future

e
- action
\

\

Removing tariffs between provinces is
necessary to help increase free trade between
them and boost the Canadian economy. j

economic regulations

Figure 1: Comparison of assigning a single stance target to each document (left), versus assigning multiple
hierarchical stance targets that overlap with other texts as proposed here (right).

as a whole (Paschalides et al., 2021; He et al., 2021)
do not produce a clear mapping of documents to
stance targets.

We make four contributions. We formalize this
task of mapping issues/targets of disagreements
in a corpus into a computational task which we
call corpus-oriented stance target extraction (COS-
TEx). We then provide a metric for evaluating a
method’s performance on this task. We present
a method which addresses the task, and show it
outperforms existing methods on our task. Finally,
we conduct a case study using our method, which
shows that it can retrieve key issues (stance targets
and stances) from a discussion represented by a
corpus.

With the evaluation and development of a
method that performs well on the task we outline
here, we can unlock powerful insights in large-scale
media corpora, giving us new tools to understand
large-scale natural language behaviour such as po-
larization and public opinion. We release a library
for this method at https://github.com/benda
vidsteel/stancemining

2 Background

Subjectivity Detection The fields of stance de-
tection, aspect-based sentiment detection, and ar-
gument mining have produced methods to identify
targets of subjective perspective, and classifying
the subjective judgement of documents towards
those targets. Li et al. (2023) and Steel and Ruths
(2024) look at stance target extraction, but both
methods require a priori knowledge and manual tar-
get choice at a point in the method, and therefore
do not fulfill feature 1. Akash et al. (2024), Irani
et al. (2024) and Zhang et al. (2021), all look at
open-target extraction (where there are no prede-
fined targets) in stance detection, argument mining,
and sentiment detection respectively. All three fo-
cus on inferring targets for documents in isolation
and, as a result, none of these methods consider
the multiple or hierarchical stance targets possible

from a document (as represented in Fig. 1 and
defined as a required feature 2), or the need for
large stance target clusters —groups of documents
mapped to the same stance target —if we want to
aggregate the data for further analysis (feature 3).
Nevertheless, we compare our developed method
against WIBA (Irani et al., 2024) in this work.

Polarized and Controversial Topics Topic mod-
elling derived methods are a common approach to
this problem space, and naturally handle the desired
aggregation process from feature 3. But converting
topic clusters to stance target clusters is not trivial.
Topic and stance targets clusters don’t map neatly
one-to-one, as demonstrated in Fig. 2a. Work on
topic cluster representation, such as Pham et al.
(2023) and Grootendorst (2022), uses large lan-
guage models (LLMs) to improve the interpretabil-
ity of cluster names, working towards feature 4.
But mapping a topic cluster to a stance target is
difficult, as it requires domain knowledge and rea-
soning to convert topic descriptions into a stance
target (Fig. 2b).

Fukuma et al. (2022) use a network method to
find polarized topics, but this method is designed
for X/Twitter specific features. Garimella et al.
(2018) use hashtags to define conversational graphs,
and find partitions in those graphs in order to find
controversial topics. This method however relies
on hashtags, limiting it to corpuses with heavy hash-
tag usage. Paschalides et al. (2021) and He et al.
(2021) produce methods to find polarized topics,
and we evaluate these methods in this work.

3 Problem Definition

Motivated by our desired features from Section 1,
we define COSTEX as follows: given a corpus of
documents, we seek to identify labeled clusters of
those documents where all documents in a cluster
share the same stance target, which is captured by
the label of the cluster. Crucially, clusters can be
overlapping, allowing a document to be assigned
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Topic: "greece, bankers, eurozone"

T

Greece needs to pay its debt oth-
erwise the eurozone is finished!

My heart goes out to
Greece in these times.

Stance Target: "eurozone" Stance Target: "greece"

(a) Same high-level topic, but different specific stance targets

Topic: "cameras, police, camera, cops”

Requiring that the police wear
body cameras is common sense.

Cops using body cameras at all
times is just more surveillance.

l

Stance Target: "police body cameras"

(b) Stance targets need more specific names than topics.

Figure 2: Representation of the differences between stance target clusters and topic clusters, showing hierarchical
relationships, one-to-many mappings, and different cluster naming requirements, as discovered in manual analysis.

more than one stance target. Formally, for a corpus
of documents D = {dy, ...,dy}, we want to find
a set stance target clusters, C' = {c1,co,...car}
where ¢; C D, and their corresponding stance tar-
gets T' = {t1,ta, ..., tpr}. As stance detection has
not previously considered corpus-aware methods,
we propose new criteria that define success in COS-
TEX, that measure the extent to which a method
that implements this task fulfills the desired fea-
tures. As such, the COSTEx problem seeks C' and
T such that they reflect the following criteria:

1. Clusters with Large Stance Variance:
Given the stance of each document on the
stance target stance(t;,d;) — {—1,0,1},
we want to find stance targets that maximize
the stance variance for all related documents:

1
il Z Var({stance(t;,d) : d € ¢;})
c,eC

This is a metric for picking “controversial”
stance targets. Intuitively, stance targets that
no-one disagrees on are less interesting than
stance targets that people disagree on.

Stance Target Range and Relevance: We
want to find many stance targets that are rel-
evant to the documents. We can measure rel-
evance of targets by ensuring that the stance
targets adhere to human judgments of stance
targets, via comparison to labeled datasets and
custom human annotation (as in Akash et al.
(2024)), and we can measure ‘many stance
targets’ by measuring the mean number of
targets per document:

1
deD

. Balanced Stance Target Clusters: We want
to optimize for clusters of a range of sizes,
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including large clusters to allow for useful ag-
gregations, that still capture clusters of mean-
ingful grouping. To measure meaningful clus-
ters, we will use human evaluation. And to
measure cluster size, we will use the cluster
size Shannon entropy multipled by normal-
ized cluster size range, to ensure there are
a balanced number of clusters of a range of

sizes:

. n
maXx; ¢; — Iln; C;

Ci

C

logy =

max; ¢; P 062 C
where C = >} ¢k

Naturally, in most situations it will be impossible
to perfectly satisfy all of these. Solutions to this
task will have to make careful trade-offs between
these criteria. In practice, some of these metrics are
trivially measurable, and some of them are much
harder to measure (i.e. the ones requiring human
evaluation). We will seek to do so via quantitative
supervised and unsupervised metrics, and metrics
from human evaluation tasks.

Finally, we must address the question of what we
mean by stance targets in the formulation above.
In the literature, it is common to define stance tar-
gets either as noun-phrases (e.g., “police body cam-
eras”), or claims (“police should wear police body
cameras”) (Zhao and Caragea, 2024). A document
assigned to this stance target contains content that
takes a position on it. Note that, where stance tar-
gets are concerned, the problem definition requires
only a means of scoring a document’s position on
a stance target (i.e., stance(t;, d)). As a result, the
problem admits either noun-phrases or claims as
stance targets.

4 Methods
Here, we propose our method that fulfills all the

features in Section 1. Rather than clustering docu-
ments directly (which conflates topics with stance



targets as discussed in Section 2), we first extract
multiple stance targets (fulfilling feature 2), then
cluster those targets. This lets us find large stance
target clusters, where documents can naturally be-
long to multiple large clusters. We then gener-
ate stance targets for each of those clusters to find
higher-level stance targets (i.e. targets that are hi-
erarchically more abstract, or more general to the
cluster). Collecting all these stance targets together
for each document, we then have small, specific
stance target clusters, and larger, high level stance
target clusters. We call this method ExtractCluster
(EC), formally define it in Algorithm 3, and show
a simplified system diagram of it in Fig. 4. Our
method aims to meaningfully achieve each criteria
from Section 3.

The base stance targets are produced using an
LLM fine-tuned on document - stance target pairs,
using diverse beam search (Vijayakumar et al.,
2016) to generate multiple targets. We cluster
the targets using BERTopic (Grootendorst, 2022),
which provides an easy-to-use and configurable
topic modelling solution. The default clustering
configuration of BERTopic gives us one layer of
clusters, meaning there are two hierarchical lev-
els of stance targets. The higher-level stance tar-
gets are generated using an LLLM with a few-shot
prompt (shown in Appendix B.6). To avoid pro-
ducing stance targets for each document that are
paraphrases of each other, we remove stance tar-
gets where their sentence embeddings have high
cosine similarity based on a configurable thresh-
old (Reimers and Gurevych, 2019) (detailed in Ap-
pendix B.4).

4.1 Comparison Methods

We selected three methods to compare to EC on
our task COSTEx. Although these methods do not
fully address our proposed task, they address it
sufficiently to warrant evaluation.

POLAR (Paschalides et al., 2021) uses entity
extraction and network methods to find polarized
topics. While this method is designed to find polar-
ized topics, we apply it here to the similar but more
general COSTEX task. Though the method does
not explicitly map documents to stance targets, we
extend it to use any entities or noun phrases that are
tagged as part of a polarized topic as stance targets
for their respective documents.

PaCTE (Heetal., 2021) combines topic model-
ing and a partisanship classification model to find

: function EXTRACTCLUSTER(D)

1
2: for each document d € D do
3: Ty < ExtractStanceTargets(d)
4: Ty <+ RemoveSimilarTargets(7y)
5: end for
6: C <+ TopicModelTargets(T')
7: for each cluster ¢ € C' do
8: T. < GenerateHigherLevelTargets(c)
9: T. < RemoveSimilarTargets(1;)
10: foreachd:dte€T;:t € cdo
11: Ty TyUT,
12: end for
13: end for
14: for each document d € D do
15: for each target t € T,; do
16: Saq¢ < ClassifyStance(d, t)
17: end for
18: end for

19: return D, T, S
20: end function

Figure 3: Algorithm used by EC. Topic modelling is
done on the flat list of stance targets using BERTopic.
Removal of similar targets is based on high cosine simi-
larity between stance target sentence embeddings.

topics of partisan disagreement. We adapt it here
to finding targets of stance disagreement.

WIBA (Irani et al., 2024) uses three fine-tuned
LLMs to determine whether a document features
an argument, extracts the claim topic of the argu-
ment, then determines the stance of the document
on that argument. In this application we remove
the argument detection step, instead relying on the
neutral label in stance classification. While this
method is defined for argument detection, it maps
neatly to stance detection. Although a more stance
detection-centric method is now available (Akash
et al., 2024), we use Irani et al. (2024) because it
was available with an implementation at the time
of this work’s inception. However, the two meth-
ods are functionally similar enough as to be inter-
changeable in this context.

Comparison To summarize, these three methods
from the literature fulfill different features of the
COSTERX task as defined in Section 1. We summa-
rize the ways in which the representative methods
—which we will evaluate here —fulfill those re-
quirements in Table 1. As shown, none of the meth-
ods achieve all of the necessary attributes, but they
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LLM
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A carbon tax is critical for
Canada’s green future
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Figure 4: Simplified system diagram of the ExtractCluster (EC) method. Green boxes represent documents, yellow
boxes represent system component steps, blue boxes represent stance targets, the orange circle represents a cluster,
and pink boxes represent stance classifications. Numbers in each component step indicate the sequence of operations.
We have excluded the stance target de-duplication step for brevity.

each achieve most aspects of the desired method.

5 Experiments

With our method in hand, we now want to see
to what extent it fulfills COSTEx by testing it us-
ing metrics and human evaluation methods derived
from our formulation, and comparing it to our com-
parison methods.

Datasets We use two large stance detection
datasets to evaluate the methods, VAST (Allaway
and McKeown, 2020) and EZ-STANCE (Zhao and
Caragea, 2024). These datasets come from two
domains, New York Times comments and Twit-
ter respectively, enabling testing across diverse
text types. Importantly, both datasets derive their
stance targets from each document —as opposed
to a dataset designed around a specifically chosen
set of stance targets —allowing us to grade the pro-
duced stance targets against the annotated stance
targets from the datasets. We report statistics from
the datasets (Tab. 2).

Configuration We fine-tune a stance target ex-
traction model and a stance detection model, on
both VAST and EZ-STANCE for both tasks, using
Llama-3.2-1B-Instruct as a base model (an open-
weight 1B parameter model) (Meta, 2024). We use
these fine-tuned models for both EC and WIBA.
For diverse beam generations in EC, we sample 3
generations, as this is the ceiling integer above the

highest mean number of targets in each dataset (Tab.
2). We use a cosine similarity value of 0.8 for EC,
as through manual validation, this de-duplicates
stance targets that are functionally identical. We
use phi-3.5-mini-instruct (Abdin et al., 2024) to
generate higher-level stance targets for EC, a 4B
model suitable for few-shot prompting. We list all
other experimental implementation details of each
comparison method in Appendix B.

5.1 Automated Evaluation

Metrics As previously highlighted (Sec. 3),
some of the outcomes that we want to optimize
in our method are trivially measurable, and some
are much more difficult to measure. We therefore
propose a set of metrics that assess the extent to
which the method outputs optimize for the objec-
tives defined above. While our method does pro-
duce hierarchical stance targets, in evaluation we
will treat them as a flat list, while maintaining the
valuable property of higher-level stance targets ag-
gregating across more documents.

* Target F1: The BERTScore F1 (Zhang et al.,
2019) of the discovered targets, compared
to the annotated dataset, as in (Akash et al.,
2024). As we have a set of annotated stance
targets for each document in our labelled
dataset, we compute the precision by com-
paring each predicted stance target to all gold
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Feature

PaCTE POLAR WIBA EC

Stance target discovery through aggregation

Multiple stance targets per document
Map documents to stance targets

v v X v
v v X v
X X v v

Table 1: Comparison of different methods against our method, EC, for each of features 3, 2, and 4, as defined in

Section 1. All of the methods fulfill feature 1.

Dataset Num. Mean. Stance Lang.
Ex. Num. Split
Targets (F/N/A)
VAST 784 245 0.47/0.02/0.51 en
EZ-STANCE | 1561 1.71 0.36/0.35/0.29 en

Table 2: Statistics from the datasets used for testing.

stance targets, and the recall by comparing
each gold stance target to all predicted stance
targets, and compute the F1 from the resulting
precision and recall, as defined in Appendix
E.1. This metric measures adherence to Cri-
terium 2.

* Stance Retrieval F1: The F1 of the discov-
ered stance of the documents, compared to a
labeled dataset. Seeing as we have a poten-
tially different set of predicted stance targets
as the gold stance targets, we create a map-
ping of predicted stance targets to gold stance
targets where the sentence embedding cosine
similarity is greater than 0.9, then compute the
precision by comparing each predicted stance
to all gold stances, the recall by comparing
each gold stance to all predicted stances, and
the F1 score from the precision and recall, as
defined in Appendix E.2.

 Stance Variance: See Criterium 1.

e Mean Num. of Targets: See Criterium 2
* Balanced Cluster Sizes: See Criterium 3
¢ Walltime: Method run-time duration (s).

The supervised metrics, the target F1 and stance
retrieval F1, are measuring the adherence of the
method to a typical stance detection dataset. How-
ever, we also want to optimize for multi-target, hi-
erarchical, and clustered stance targets. Optimizing
for metrics that measure these aspects will reduce
our target F1 score, as the stance targets will be
further from the stance targets given in the base
datasets. We need to assess our results holistically,
and consider that, as part of our task formalization,
any solution to this problem is making a trade-off
between objectives. We will therefore determine

the overall ranking of the methods via a summed
rank order: we find the rank of each method on ev-
ery metric, sum all the ranks for each method, and
the lowest summed rank order is the best method.
Results We report the supervised and unsuper-
vised metrics from the mean of 5 runs for each
method on each dataset (Tab. 3). EC generally
outperforms other methods, except on stance target
F1 and precision, and wall-time. Stance retrieval
rankings are robust to varying cosine similarity, see
Appendix E.2.1. We conducted ablations of cosine
similarity threshold and number of beam genera-
tions and confirm that our chosen values yield the
best results, see Appendix C. We also tested a ver-
sion of the method that removes lower variance
stance targets and find that it achieves higher mean
stance variance but worse on all other metrics (See
Appendix C.1), showing our method could not be
trivially improved in this manner.

Human Evaluation We created two human eval-
uation tasks to evaluate the method outputs. The
first task presents a triad of documents (a base docu-
ment, another from the same cluster, and one from
a different cluster) and has the annotator select
which two documents go in the same stance tar-
get cluster. We measure how often the annotators
agree with the document clustering chosen by each
method. A second task presents a base document,
and two stance target sets provided by two different
methods, and a prompt asks the labeler to choose
between the two stance target sets, or neither if
neither are suitable. Each annotator received an
evaluation guide prior to their evaluation task to
explain the concepts in use in the task. We obtained
483 and 492 annotations for each task respectively,
from 6 annotators who were students in the au-
thors’ lab. We show the prompts and evaluation
guide given to annotators, and example generation
process in Appendix D.

To ensure there was agreement between anno-
tators, we had two annotators evaluate the same
set of 20 examples from each task. The Fleiss’
Kappa (Fleiss et al., 1981) of the stance target clus-
ter task was 0.53, and for the stance target task it
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Target Stance Mean Num. Stance B. Cluster  Wall
Method | F1T P.1 R.1 | F1t Pt R.1T | Targetst  Variance T Sizes T time |
VAST
PaCTE | 0.775 0.779 0.771 | 0.000 0.000 0.000 1.212 0.226 2314 155.2
POLAR | 0.512 0.524 0.501 - - - 2.140 - 3.028 327.7
WIBA 0910 0.930 0.891 | 0.116 0.190 0.089 1.000 0.108 7.753 246.9
EC 0.897 0.889 0.907 | 0.143 0.210 0.119 3.190 0.136 8.031 1569.1
EZSTANCE
PaCTE | 0.766 0.768 0.763 | 0.000 0.000 0.000 1.038 0.208 4311 213.7
POLAR | 0.038 0.038 0.037 - - - 0.218 - 0.168 582.7
WIBA 0.884 0.899 0.871 | 0.145 0.200 0.120 1.000 0.019 9.495 766.4
EC 0.859 0.851 0.867 | 0.158 0.202 0.141 3.380 0.039 9.520 3349.8

Table 3: Metrics comparison across datasets and methods averaged across 5 runs for each method and dataset.
Best metrics are indicated with arrows. P. and R. stand for precision and recall respectively. We do not include
stance results for POLAR as it does not assign stance to individual documents. Bold numbers indicate the best

performance, underline indicates second best.

Method | LSR | AgreePct. |  Example Output

PaCTE | -2.23 0.19 school,health,covid...
POLAR | -2.79 0.00 anyone
WIBA 1.51 0.62 medical law
EC 2.23 0.34 jerusalem

Table 4: Luce Spectral Ranking (LSR) pairwise compar-
ison score, calculated by comparing different methods’
stance target sets for each document, alongside an exam-
ple stance target output from each method for reference
(PaCTE example shown truncated). And percentage of
examples where annotators agreed with the clustering
of a document triad, for each method.

was 0.83, indicating inter-annotator agreement. For
the stance target set comparison task, we use the
Luce spectral ranking (LSR) (Maystre and Gross-
glauser, 2015) (via Choix !) to determine the output
stance targets most preferred by human annotators.
EC and WIBA are rated the highest, with POLAR
and PaCTE rated poorly (Tab. 4). For stance tar-
get cluster agreement scores, we simply record the
number of times the human evaluator agreed with
the method. WIBA, EC, and PaCTE obtain the best
results for cluster evaluation, and POLAR obtains
no agreement from evaluators (Tab. 4).

Summary We show the summed rank order of
each method, for each metric, in Fig. 5. This
demonstrates the overall rank of the methods on
the COSTEX task we introduce in this work.

6 Discussion

POLAR needs to find many named entities to find
polarized topics (being designed for news arti-

!github.com/lucasmaystre/choix
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Figure 5: Summed rank order across all metrics for
each method. EC outperforms the other methods we
trial from the literature across our metrics.

cles), and as such performs poorly on the short
text datasets used here, especially the EZ-STANCE
dataset (Tab. 3). We observe poor evaluations of
naming and clustering performance (Tab. 4).

PaCTE’s use of LDA topic modeling and a small
classifier model means that it can quickly find large
stance target clusters with high stance variance
(Tab. 3). However, the naming of clusters with
topic keywords results in a low evaluation score
(Tab. 4), and the stance target clusters are only
moderately agreed with (Tab. 4).

WIBA’s stance target extraction produces good
stance targets (Tab. 3 and 4), and performs highest
on our cluster agreement evaluation (Tab. 4). But
the small stance target clusters it produces —due
to only producing one stance target per document

—result in lower stance retrieval F1, and low stance
variance and cluster size (Tab. 3).

EC outperforms WIBA in stance target cluster

size, stance variance, stance retrieval, and stance
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target set preference (Tab. 4). However, we also
see that it under-performs WIBA on our cluster
agreement evaluation (Tab. 4), and stance target
precision. We infer that as EC maps higher-level
stance targets to each document —that have no
parallel in the annotated datasets we use —which
results in large clusters defined by abstract stance
targets that are too general for annotators to spot in
our cluster agreement exercise. Nonetheless, from
the summed rank order (Fig. 5), EC is the most
effective method tested here.

7 Case Study

Having empirically shown our method outperforms
other methods from the literature, we chose to as-
sess its effectiveness at identifying key character-
istics of a discourse under real-world conditions.
Topic modelling is frequently used for exploratory
analysis of discourse corpuses (Hobson et al., 2024;
Falkenberg et al., 2022). Although it does not dis-
aggregate expressed valence —a key part of sepa-
rating discourse (Ghafouri et al., 2024)—the pre-
viously missing step of stance detection —stance
target discovery —makes it labour-intensive to run
as a go-to exploratory step. Crucially, both EC and
BERTopic (Grootendorst, 2022) require no notable
parameter tuning and, so, are of equal complexity
for a domain researcher to use.

We assumed the role of a researcher studying
the political views present in a social media dataset.
We chose a 2024 Twitter dataset consisting of 1.4m
tweets (81% English, 9% French, 10% other lan-
guages) from 1.9k prominent Canadian media ac-
counts (Pehlivan et al., 2025). See Appendix F for
implementation details. Table 5 shows the largest
stance target vs. topic clusters.

Meaningful clusters. Both stance target and
topic modeling methods can produce nonsensical
clusters. How do we quickly remove the noise? In
topic modeling, this is messy: as seen in Table 5,
some of the largest topic clusters are meaningless
(e.g., “shes, shell, shed, quelle™). In contrast, with
EC, an easy way of filtering weak stance targets is
by simply dropping small stance clusters, with the
intuition being that modal stance targets are more
frequently good stance targets. In this case study,
we found removing stance targets with less than
50 data-points to be a good level. At this border,
there are some good stance targets (‘Organic Food
Movement’, and ‘US Col. Lawrence Wilkerson’)
but also many non-specific or nonsensical stance
targets (‘which will’, ‘candidate nomination’).

Cluster informativeness. Table 5 highlights the
informativeness of EC clusters in several ways.
First, stance target clusters capture more of the doc-
uments than the largest topics, due to EC allowing
documents to belong to multiple stance target clus-
ters. If we kept just the first extracted stance target
(as previously (Akash et al., 2024)), the ‘trudeau’
stance target would only be assigned to 22k docu-
ments, with our method allowing us to know the
stance of more documents on ‘trudeau’ where he
may be referred to implicitly. Second, the stance
targets capture the large ongoing issues of Cana-
dian public discourse (Canada, Justin Trudeau, the
Liberal Party), and topical issues (Donald Trump’s
presidency, the B.C. election, the Israel-Palestine
conflict), where these large issues are missed by
the topics - instead emphasizing smaller topics like
the Olympics. Even for topic clusters that are not
“noise”, the stance target names are consistently
more specific, and therefore more usable for fur-
ther analysis. However, EC needs improved stance
target de-duplication, as shown by the presence of
‘j. trudeau’ and ‘trudeau’.

Understanding stance on the target clusters.
We show a map of the 30 largest stance target clus-
ters in Fig. 6. Having stance classifications on so
many targets surfaces key aspects of the discourse:
allowing us to compare mean stance on party lead-
ers (-0.57 for Trudeau vs. -0.44 for Poilievre), par-
ties (-0.45 for the NDP vs. -0.62 for the Liberal
Party), and foreign policy issues (-0.46 for Israel
vs. -0.79 for Hamas) with one method application
(where we have substituted ‘favor’ for 1, ‘neutral’
for 0, and ‘against’ for -1).

This case study highlights how EC gave the re-
searcher a larger and more detailed map of the
discussion in our dataset, alongside more specific
and understandable cluster names.

8 Conclusion

We have motivated and conceptualized the task of
COSTEXx, and shown that our new method for this
task, EC, outperforms previous methods for similar
tasks. We then used a large-scale real-world dataset
to demonstrate that our method reliably captures
and represents clusters of stance target discussion.
We hope that this method can aid practitioners in
quickly understanding discourse in large and wide-
ranging real-world datasets, and help improve un-
derstanding of complex behaviors such as polar-
ization and public opinion in our quickly changing
information environments.
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Stance Targets \ Topics

Name | Count | Name | Count

canada 76k gaza, israel, israeli, hamas 22k

j. trudeau 54k olympics, game, olympic, athletes 15k

trudeau 39k hes, guy, coyne, mrstache9 10k

trump presidency 29k url, juliemarienolke, thejagmeetsingh, saudet80 9k

liberal party 22k healthcare, nurses, doctors, doctor 9k

israeli 17k shes, shell, shed, quelle 8k

trump 17k housing, rent, rental, homes 7k

b.c. ndp 16k trudeau, justin, trudeaus, resign 6k

Table 5: Comparing largest stance

target clusters to largest topic clusters.

Target Frequency

government structure jg ® Count: 10000 -| 100
governmenteiﬁeiencyx’ Count: 50000\
i(sjrael centralized go/\/e<;r,1ment L 0.50 d_%
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—|conservative party climate change denial - —0.75
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UMAP Dimension 1

Figure 6: Map of top stance targets, sized by frequency, coloured by average stance. In general, the major issues
that Canadian social media users tend to have attitudes on are represented. However, we can also see that improved

stance target de-duplication is necessary, along stance t

9 Limitations

Datasets We found that the lack of hierarchical
stance targets in the stance-detection datasets used
in this work made it difficult to evaluate the ability
of the methods to find a full breadth of hierarchical,
clustered stance targets for each document. We
can only use these datasets to assess the extent to
which the method found the base stance targets for
each document. Future work should develop new
datasets to evaluate higher-level stance targets.

Methods Stance target de-duplication became an
issue when we applied our method to a larger cor-
pus. We experimented with using DBSCAN to
some success, but de-duplicating different ways
of spelling names (‘j. trudeau’, ‘trudeau’) while
avoiding false positives requires a carefully set dis-
tance threshold between embeddings. Additionally,
our method of using diverse generation to generate
multiple stance targets for each document —while

arget clarity (‘climate change denialism’).

not requiring re-training of our stance target gen-
eration model —could be made faster and more
flexible by generating targets as a list.

Task Formulation Optimizing for stance vari-
ance deprioritizes stance targets that are generally
agreed upon, but when disagreed upon, are inter-
esting, such as conspiracy theories, so optimizing
for this metric is a trade-off.

Another key limitation was a lack of a principled
framework for defining a hierarchy of targets. In
practice, LLM prompting produced sufficiently use-
ful results here, but a more well-defined definition
could produce stronger results.
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A  Methods

In addition to the method we propose in this work,
we also trialled a method we call ClusterExtract,
inspired by PaCTE. It starts by finding hierarchical
topics in the corpus using BERTopic (Grootendorst,
2022), then assigns stance targets to each topic. It
is described in Algorithm 1. However, we found
that it produced inferior results to EC, and so do
not detail it in the main results of the work.

B Implementations

B.1 POLAR

We used all of the default parameter settings and
models for POLAR for the VAST dataset, but for
EZ-STANCE, we reduce the noun phrase clustering
threshold from 0.8 to 0.6, as the default value was
resulting in no found clusters given that the EZ-
STANCE dataset is composed of low word count
tweets, which have low entity mention counts.

In adapting this method, we need to extend it by
mapping the chosen polarized topics back to the
documents, to allow our metrics to be applied to
the results. We do so by considering a document
to be in a stance target cluster when it features a
polarized entity, and the discovered noun phrases
as the stance targets.

B.2 PaCTE

We train the PaCTE BERT model (Devlin, 2018)
using the combined training sets from VAST and
EZ-STANCE, removing all neutral examples as
the original implementation was only trained on
partisan news.

We use online latent dirichlet allocation (LDA)
(Hoffman et al., 2010) as a drop in method speed-
up, instead of the original single-core method.
Other implementation details are all the same as
the original implementation.
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Algorithm 1 Algorithm used by ClusterExtract.

Require: Documents D
1: function CLUSTEREXTRACT(D)

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

2
3
4:
S:
6
7
8
9

C < TopicModelDocs(D)
> Handle outlier documents (Topic = -1)
D+ + FilterOutliers(D, C)
for each document d € D,,,; do
T, < ExtractStanceTargets(d)
Ty <+ RemoveSimilarTargets(7y)
end for
> Handle non-outlier documents
for each cluster ¢ € C' do
T, < ExtractClusterStanceTargets(c)
T. < RemoveSimilarTargets(7;)
end for
> Generate hierarchical topic targets
H < GetHierarchicalTopics(1")
for each parent cluster c € H do
C) < GetChildTopics(c)
T, < AggregateChildTargets(C))
T}, < RemoveSimilarTargets(7})
end for
> Combine targets and remove duplicates
for each document d € D do
ifd & D,,; then
¢ < GetDocumentCluster(d)
p < GetParentCluster(c)
Ty <+ TcUT,
Ty <+ RemoveSimilarTargets(7y)
end if
for each target t € T,; do
Sa, < DetermineStance(d, t)
end for
end for
return D, T, S

34: end function

B.3 WIBA

We used Llama 3.2 1B (Meta, 2024) as the base
LLM for our implementation of WIBA, for its
trade-off of performance with small size. Train-
ing used the combined VAST and EZ-STANCE
train/validation sets. On the combined test sets, it
achieved a stance detection F1 of 71.5%, and for
stance target extraction it obtained a BERTScore
of 90.3%, comparable with the metrics achieved in
the original work.

We replaced the system and instruction tuning
tokens with a chat template as appropriate for the
Llama model. We used a cosine learning rate with
warmup that increments every step (Loshchilov and
Hutter, 2016), and NEFTune to improve fine-tuned
accuracy (Jain et al., 2023). We trained on a 24GB
NVIDIA GPU, training took roughly 8 hours.

B4 EC

For diverse generation, we generate 3 return se-
quences, by exploring 3 beam groups using 6
beams, with a diversity penalty of 10.0. We use a
no repeat n-gram size of 2 to prevent repetition.

We use the paraphrase-MiniLM-L6-v2 sentence
transformer model (Reimers and Gurevych, 2019)
to embed candidate stance targets, and remove a
target from pairs that have a cosine similarity of
higher than 0.8.

We run ablation experiments on the number of
beam groups and the cosine similarity threshold
used for stance target de-duplication in Section C.

B.5 Datasets

When using VAST as a comparison dataset for the
methods, we remove the synthetic neutral exam-
ples, as these targets aren’t specific for each doc-
ument. We do however use the synthetic neutral
examples to train our stance detection model.

B.6 Prompts

We include the few-shot prompt used for stance
target extraction from topic clusters in Prompt 1:
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Q& System:
You are an expert at analyzing discussions
across multiple documents.

= Human:

Your task is to identify a common stance tar-
get that multiple documents are expressing
opinions about.

Instructions:

1. Read all provided documents

2. Identify topics that appear across multiple
documents

3. Determine if there is a shared target that
documents are taking stances on

4. Express the target as a clear noun phrase
Input:

Documents: [list of texts]

Output:

Stance target: [noun phrase or "None"]
Reasoning: [2-3 sentences explaining the
choice]

Examples:

Example 1:

Documents:

"The council’s new parking fees are exces-
sive. Downtown businesses will suffer as
shoppers avoid the area."

"Increased parking rates will encourage pub-
lic transit use. This is exactly what our city
needs."

"Local restaurant owners report 20% fewer
customers since the parking fee increase."
Output:

Stance target: downtown parking fees
Reasoning: All three documents discuss the
impact of new parking fees, though from dif-
ferent angles. The documents show vary-
ing stances on this policy change’s effects on

nmn

business and transportation behavior.""",
Example 2:

Documents:

"Beijing saw clear skies yesterday as wind
cleared the air." "Traffic was unusually light
on Monday due to the holiday." "New subway
line construction continues on schedule."
Output:

Stance target: None

Reasoning: While all documents relate to ur-
ban conditions, they discuss different aspects
with no common target for stance-taking.
The texts are primarily descriptive rather than
expressing stances.

Example 3:

Documents:

"Al art tools make creativity accessible to
everyone."

"Generated images lack the soul of human-
made art."

"Artists demand proper attribution when Al
models use their work."

Output:

Stance target: Al-generated art

Reasoning: The documents all address Al’s
role in art creation, discussing its bene-
fits, limitations, and ethical implications.
While covering different aspects, they all take
stances on Al’s place in artistic creation.
Documents:

{formatted_docs}

i@ Assistant:
Output:
Stance target:

We include the few-shot prompt used for aggre-

gating stance targets in Prompt 2:



Q& System:
You are an expert at analyzing and categoriz-
ing topics.

= Human:

Your task is to generate a generalized stance
target that best represents a cluster of related
specific stance targets.

Instructions:

1. Review the provided stance targets and
keywords that characterize the topic cluster
2. Identify the common theme or broader
issue these targets relate to

3. Generate a concise noun phrase that:

- Captures the core concept shared across the
targets

- Is general enough to encompass the specific
instances

- Is specific enough to be meaningful for
stance analysis

Input:

Representative stance targets: [list of stance
targets]

Top keywords: [list of high tf-idf terms]
Output format:

Generalized target: [noun phrase]
Reasoning: [1-2 sentences explaining why
this generalization fits]

Examples:

Input:

Representative stance targets: ["vaccine man-
dates", "mandatory covid shots", "required
immunization for schools"]

Top keywords: ["mandatory"”, "requirement”,
"public health", "immunization", "vaccina-
tion"]

Output:

Generalized target: vaccination requirements

Reasoning: This captures the common theme
of mandatory immunization policies while
being broad enough to cover various contexts
(workplace, school, public spaces).

Input:

Representative stance targets: ["EVs in

non "non

cities", "gas car phase-out", "zero emission
zones"

Top keywords: ["emissions", "vehicles",
"transportation”, "electric", "fossil-fuel"]
Output:

Generalized target: vehicle electrification
Reasoning: This encompasses various as-
pects of transitioning from gas to electric
vehicles, including both the technology and
policy dimensions.

Input:

Representative stance targets: ["content
moderation", "online censorship"”, "platform
guidelines"]

Top keywords: ["social media", "guidelines",
"content", "moderation”, "posts"]

Output:

Generalized target: social media content con-
trol

Reasoning: This captures the broader issue
of managing online content while remaining
neutral on the specific approach or implemen-
tation.

Representative stance targets: {repr_docs}
Top keywords: {keywords}

i@ Assistant:
Output:
Generalized target:

C Ablations

We re-ran EC for varying values of the number
of beam generations and cosine similarity thresh-
old for stance target de-duplication to explore the
impact it had on method outputs. Figs. 7 and 8
shows that 3 generated beam groups produces con-
sistently the best results on our automated metrics
(other the number of beam groups and wall-time
being linearly directly correlated), out of 2, 3, and
5 as possible values. Figs. 9 and 10 shows that
varying the cosine similarity threshold between val-
ues of 0.8, 0.9, and 0.95 has minimal effect on the

final metrics.
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C.1 Stance Variance

Our stance variance metric could be optimized to
through de-generate solutions. We wanted to de-
termine the effect that solely optimizing for this
metric would have on other metrics. We ran an
experiment where we kept only stance targets that
had over the 75" and 90" percentiles. Keeping
only stance targets over the 75 stance variance
percentile did not impact the mean stance variance
(0%) change, and reduced stance retrieval F1 by
4.5%. Keeping only stance targets over the 90"
stance variance percentile increased mean stance
variance by 33%, but decreased stance retrieval F1
(-58%), stance target F1 (-37%), balanced cluster
size (-27%), and the mean number of targets per
document (-53%).

D Human Evaluation

Human evaluators were fellow students from the
authors’ lab.

We provided each annotator this explanatory doc-
ument prior to their evaluation task to help them
understand the concepts in Prompt 3.
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What is a stance target? A stance target is
a concept that one can have an opinion on.
While one can technically have an opinion
on almost anything (i.e. one can technically
be for or against atoms, but we generally do
not consider atoms to be an issue that one is
for or against), there are a more constrained
set of concepts that we generally put forth
opinions, or stances, on.

What is a topic? In computer science, de-
fined as a set of frequently co-occurring
words. More generally, synonymous with
a theme, or subject that a document can ref-
erence or be about. A document can have
multiple topics. It is an abstract concept.
Stance Targets So for example, the text: ‘I
discussed my preference for tariffs over free
trade while playing golf today at mar-a-lago’
There are 4 prominent concepts: tariffs, free
trade, golf, and mar-a-lago. Two topics for
this text would be trade policy (tariffs, free
trade), and golf (golf, mar-a-lago), as these
are frequently co-occurring words/concepts.
The two prominent stance targets are tariffs
and free-trade, as they are discussed in the
context of having a position on them, and are
things that one generally has a stance on.
Golf could also be considered a stance tar-
get in this context, but is discussed with less
emphasis on stance.

Stance targets can also exist at a higher con-
ceptual level. For example, here the author
is expressing not only their preference for
tariffs, but economic regulation, and protec-
tionism. In this way, the most representative
set of stance targets for this text would be
‘tariffs’, ‘free trade’, ‘economic regulations’,
and ‘protectionism’

One can discuss a stance target while staying



neutral. For example: ‘I read about the idea
of tariffs recently. Undecided on whether or
not they’re effective’. This author is neutral
on the stance target of tariffs.

Stance Target Clusters Two documents fit
in the same stance target cluster, if they dis-
cuss the same stance target, whatever the con-
ceptual level of that stance target. The two
documents may both be favoring the stance
target, on opposing sides of the stance target,
or both neutral on the stance target.

For example, the texts: ‘I think tariffs are a
terrible idea’ ‘Taxes should be much higher!’
Are not in the same ‘tariffs’ stance target
cluster, but are in a stance target cluster: ‘eco-
nomic regulations’

The exact text prompt given to human evalua-
tors for the stance target cluster comparison task is
shown in Prompt 4:

Which document discusses a stance target
that the base document is also discussing?
If both documents discuss completely differ-
ent stance targets from the base document,
choose neither.

To generate triads, for each method and docu-
ment from both datasets, we randomly sample a
document that is a stance target cluster that the
base document is also in, and randomly sample a
document that is not in any of the same stance tar-
get clusters. If the method does not place the base
document in a stance target cluster with any other
document, then two documents that are not in the
same stance cluster are sampled. The order of the
two comparison documents is randomly swapped
to prevent the chosen document being inferred from
the order. We then simply check if the annotator
agrees with the method.

The exact text prompt given to human evaluators
for the stance target comparison task is shown in
Prompt 5:

Compare the two sets of stance targets, and
choose the set that better covers the stance
targets the document discusses. If neither
sets fit at all, choose neither.

We sample comparisons from the set of all pair-
wise stance target set comparisons between meth-
ods for all documents from both methods. We
randomly swap the order of these sets to ensure the
same method does not always appear on the same
side.

E Metrics

E.1 Stance Target F1

For the stance target BERTScore, given a set of
documents D where each document d has predicted
targets P; and gold targets G4, we compute the
precision, recall and F1 as:

1 & S P maxyeq, BERTScore(p, g)

P=_—
|D| | Py
1 L 3G BERTS
R— — Z Y. maxpep, core(g,p)
D |Gl
2.P.R
Fl=2-""=
PR

E.2 Stance Retrieval F1

Given a set of documents D, where each document
d has predicted target-stance pairs Py = {(¢, s)},
and gold target-stance pairs G4 = {(¢, s)}, where
stance can be any of { favor, against, neutral}.
We define a mapping between predicted stance
targets and gold stance targets, where stance targets
are only mapped to each other if their sentence
embedding cosine similarity is higher than 6 = 0.9:

M = {(tp. tg) : max sim(tp, t')Asim(tp, tg) > 6}
t'e
For each document d, define the set of correct
predictions:
Cq = {(tp,s) € Py:3(ty,s) € G, (tp, ty) € M}
Then:

1
P 3 o
Dl 2 |7
1 |C4l
eyl
D] 2 [l
2PR
Fl= -
P+R
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E.2.1 Threshold Sensitivity

We looked at the sensitivity of our stance retrieval
metrics to the chosen cosine similarity parameter,
as seen in Fig. 11. The rankings of the method
are robust to varying values of the chosen cosine
similarity.

F Case Study Implementation

When deploying EC at scale in the case study,
we use smaller models: SmolLM2-360M-Instruct>
to generate the base targets, and SmolLM?2-135M-
Instruct® to classify stance. Although this makes
applying this method to large datasets more
tractable, it occasionally results in poor stance tar-
gets. This problem is alleviated by using a strong
model for the higher-level stance target generation
(huggingface.co/microsoft/Phi-4-mini-instruct).

’huggingface.co/HuggingFace TB/SmolLM2-360M-
Instruct

*huggingface.co/HuggingFace TB/SmolLM2-135M-
Instruct
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Figure 11: Varying values of the cosine similarity parameter used for calculating stance retrieval against the final
value of the metric. Method ranking remains robust to the varying parameter. Shown are the median and quartiles
for 5 outputs of each method.
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Abstract

We present a dataset of text revisions involv-
ing the deletion or replacement of discourse
connectives. Manual annotation of a replace-
ment subset reveals that only 19% of edits were
judged either necessary or should be left un-
changed, with the rest appearing optional. Sur-
prisal metrics from GPT-2 token probabilities
and prompt-based predictions from GPT-4.1
correlate with these judgments, particularly in
such clear cases.

1 Introduction

Discourse relations are essential for maintaining co-
herence and logical flow in text. This is especially
critical in instructional texts such as how-to guides,
where a lack of clarity can lead to misinterpreta-
tion and misunderstanding (Roth et al., 2022; Aktas
and Roth, 2025). Discourse relations are often sig-
naled explicitly through discourse connectives like
“because” or “however.” In the case of implicit dis-
course relations, where coherence is inferred from
context rather without an overt connective, inter-
pretation becomes more ambiguous. Even with
explicit connectives, alternative connectives may
sometimes express a relation more clearly or ap-
propriately. Identifying when a connective is truly
necessary, when it may be redundant or misleading,
and which connective best fits the context remains
a challenge in discourse processing.

We investigate revisions in which discourse
connectives are inserted, replaced or deleted,
and explore whether LLMs (GPT-2, GPT-4.1,
Mistral-7B), can offer useful cues. Specifically,
we explore whether an information-theoretic mea-
sure such as Shannon (1948)’s surprisal can be
used to assess the necessity or appropriateness of
a discourse connective in context. Our hypothesis
is that connectives inserted during revision (i.e.,
judged necessary) and those deleted (i.e., judged
unnecessary) affect the predictability of the text in

Michael Roth
Natural Language Understanding Lab
University of Technology Nuremberg
michael.roth@utn.de

different ways and and these effects can be captured
through surprisal-based measures such as average
surprisal, variance, and smoothness of surprisal
change.

An initial analysis of information-theoretic mea-
sures over all revisions regarding connectives re-
vealed inconsistent patterns: the presence or ab-
sence of a discourse connective did not consistently
affect surprisal-based metrics (see Appendix B).
To further investigate this, we conduct a qualita-
tive study on a subset of connective replacements,
which we present in Section 4. Manual annota-
tion of this subset reveals that not all replacements
serve the same function: some are optional, oth-
ers are essential for coherence, and some may
even be inappropriate. We apply two complemen-
tary approaches to uncover underlying patterns
computationally: information-theoretic analysis us-
ing GPT-2 (Radford et al., 2019) and prompting-
based evaluation with more recent models, namely
GPT-4.1 (OpenAl et al., 2024) and Mistral-7B
(Jiang et al., 2023). We discuss the patterns un-
covered by these methods in Section 5, arguing
that comparing these approaches provides valuable
insights into the interpretability of model behavior.

Although our exploration of information-
theoretic measures with language models yields
largely inconclusive results, we believe this line
of investigation remains promising. As language
models become more transparent in exposing token-
level probabilities and better at modeling discourse,
information-theoretic metrics may offer an inter-
pretable framework for assessing connective neces-
sity and discourse coherence. We view this as an
interesting direction for future research.

We investigate the following research questions:

¢ RQ1: Can information-theoretic metrics re-
veal when replacing a connective improves
coherence?

* RQ2: To what extent do information-theoretic
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and prompt-based methods align in their inter-
pretation of discourse relations?

2 Related Work

Information surprisal has been extensively used
in computational linguistics to model processing
difficulty and expectations in language compre-
hension (e.g., Levy, 2008; Clark et al., 2023; Oh
and Schuler, 2023). From a discourse perspective,
Torabi Asr and Demberg (2015) examine the role
of discourse connectives through the lens of the
Uniform Information Density (UID) hypothesis.
They show that connectives can help distribute in-
formation more evenly.

Recently, Aktas and Roth (2025) examine dis-
course connective insertions in revision data and
find that multiple relations are often plausible,
while language models perform inconsistently in
detecting ambiguity. This underscores the chal-
lenge of identifying the necessity of connectives
and motivates the need for complementary metrics.

3 Overview

In this section, we provide a brief overview of our
study design. We introduce the dataset of con-
nective edits extracted from WikiHow revisions
(Section 4), including deletions, replacements, and
manually annotated subsets of these edits used to
assess their function. Building on this, we con-
duct experiments on the annotated replacement in-
stances, comparing information-theoretic measures
with prompt-based judgments from large language
models (Section 5). Together, these components
allow us to investigate how connective edits affect
discourse coherence and how well computational
models capture these preferences.

4 Data

As a framework for discourse relations, we adopt
the Penn Discourse Treebank (PDTB) (Prasad et al.,
2018) and use its inventory of discourse connec-
tives. Building on prior work by Aktas and Roth
(2025), we use the wikiHowTolmprove dataset (An-
thonio et al., 2020), which contains sentence-level
revisions. While that prior study primarily focused
on connective insertions, we target two complemen-
tary operations: the deletion of existing connectives
and the replacement of one connective with another.
We introduce a subset of instructional text revi-
sions where explicit discourse connectives are ei-

ther deleted from the beginning of a sentence (§4.1)
or replaced with another (§4.2).

4.1 Connective Deletions

We identified 13,597 instances where discourse
connectives were deleted from the beginning of a
sentence, as illustrated in the top row of Table 1. In
a quantitative analysis, we find the most commonly
deleted connectives to be then, also, and and.! To
better understand these deletions, we qualitatively
analyzed 100 examples (four for each of the 25
most frequently deleted discourse connectives). In
64% of cases, the connective was redundant or its
removal improved sentence flow. In 21%, deletion
was necessary to resolve syntactic or interpretabil-
ity issues. In the remaining 15%, deletion should
not happen as it is altering the intended meaning.>

We examined the connective deletion statistics
in comparison to the connective insertion statistics
provided by Aktas and Roth (2025). Across the
dataset, there is a clear asymmetry between these
two types of revisions: the number of connective
deletions (13,597) significantly exceeds the number
of insertions (4,274).

As shown in Appendix E, connectives such as
then, finally, and, and so are deleted far more of-
ten than inserted, suggesting they are often per-
ceived as redundant. This supports the findings of
Torabi Asr and Demberg (2012), who argue that
causal, temporal, and additive relations (when not
marking an event shift) are frequently left implicit.
In contrast, connectives like for example and in ad-
dition are more often inserted, pointing to their role
in improving clarity. Interestingly, although for ex-
ample signals an “instantiation” relation in PDTB,
which Torabi Asr and Demberg (2012) describe as
typically implicit, our data shows frequent explicit
realization. This discrepancy suggests the need for
further investigation, possibly by analyzing the full
dataset in terms of discourse relations, rather than
focusing only on those made explicit or implicit
through sentence-initial edits.

4.2 Connective Replacements

We identified 1,841 revisions in which discourse
connectives occurring at the beginning of a sen-
tence were replaced by another connective, as

'We list the 15 most frequently deleted connectives in
Table 7 in Appendix E.

*For an example, see Figure 3 in Appendix A where delet-
ing the contrastive connective ‘Otherwise” causes the instruc-
tion to lose its conditional framing.
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Deletion

Cut the four shirt pieces out of the sheet material. Then place those pieces on the

lining material, face side up, and pin them into place before cutting them out.

Replacement
is fast, pick a fast song.

Pick a music choice that agrees with your style choice. S6 For example, if your dance

Table 1: Examples of connective edits in our data. In the first example, the connective is deleted (Then), while in the
second example the connective (So) is replaced by another connective (For example).

Revision The revised version is the only option that conveys the necessary meaning 11 cases
necessary or fits the syntactic context.

Revision  Both options are plausible, but the revision is preferred in terms of clarity, 35 cases
better formality, or fluency.

Either way  Both the original and revised versions are similarly acceptable. 36 cases
Original  Both options are plausible, but the original is preferred in terms of clarity, 10 cases
better formality, or fluency.

Original  The original version is the only option that conveys the necessary meaning 8 cases
should stay or fits the syntactic context.

Table 2: Description of labels for annotation and absolute counts after aggregation by majority vote.

The
3

illustrated in the bottom row of Table 1.
most common replacement is but — however.
While both connectives share the same dominant
PDTB sense, COMPARISON.CONCESSION.ARG2-
AS-DENIER, however is slightly less ambiguous,
linked to only 8 different PDTB senses compared
to 13 for but, and arguably better aligned with the
formal tone of instructional texts.

However, reduced ambiguity or stylistic con-
siderations do not fully explain all replacement
choices. For instance, since is more ambiguous
than because, yet because — since appears among
the top five replacement pairs. Apart from replace-
ments like if <+ even if, which reflect a clear shift in
discourse relation, most replacements preserve the
original PDTB sense. This suggests many changes
are guided more by tone, readability, or syntactic
fit rather than discourse semantics. To gain deeper
insight into the nature of these replacements, we an-
alyze four randomly selected instances for each of
the top 25 replacement pairs.* As this data is used
for experiments (§5), we collect three independent
annotations for each instance to ensure data quality
and aggregate them by majority vote.’

The labels and aggregated counts are listed in
Table 2. The average agreement with the majority

3Frequent pairs are shown in Table 8 in Appendix E.

*Since this dataset includes only edits at the beginning of
sentences, all annotated cases involve sentence-initial edits.

3One annotator is an author of this paper, whereas the other
two are PhD students in Computational Linguistics.

label is 74%. The high frequency of the Either_way
label (36%) is expected as the original and revised
connectives convey the same discourse relation in
48% of cases.® By contrast, only 11% of the revi-
sions are annotated as clearly necessary, and 8%
are seen as inappropriate. The remaining cases ap-
pear to reflect stylistic or contextual preferences
rather than discourse-level necessity.

5 Pilot Study on Replacements

Using the data described in Section 4.2, we eval-
uate whether language models can detect subtle
discourse preferences between original and revised
versions of connectives. We compare two differ-
ent methodologies: (1) an information-theoretic
approach based on token-level log-likelihoods, and
(2) prompting-based judgments from more recent
large language models. While the former offers
an interpretable output grounded in language pre-
dictability, the latter captures higher-level discourse
reasoning not available through raw probabilities.
We describe information-theoretic measures (§5.1)
before turning to a comparative evaluation (§5.2).

5.1 Information-Theoretic Measures

To measure a language model’s uncertainty and the
predictability of text, we use surprisal. For GPT-2,
the input is first tokenized, and then, the model

®As determined by the most common PDTB sense

annotations (e.g., once and after both signal tempo-
ral.asynchronous.succession).
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computes the probability of each token given its
preceding context. The surprisal of each token is
then calculated as the negative base-2 logarithm of
its predicted probability.

Average Token Surprisal For each token ;, its
surprisal S(t;|t<;) measures how unexpected it is
given the preceding context {; according to the
language model:

S(ti|t<i) = — 10g2 P(ti|t<i)
The average token surprisal for a sequence T' =
(tl,tg, e ,tN) is:
N
Avg S(T Z (tilt<i)

This value reflects the overall predictability of the
sequence for the language model, with lower values
indicating greater predictability.

Variance of Surprisal The variance of surprisal,
Var(S), quantifies the spread of token-wise sur-
prisal values around their mean:

N
1
Var(S NZ; (ti | t<i) — Avg(S))?
1=

Higher variance indicates larger fluctuations in pre-
dictability across tokens, whereas lower variance
suggests a more uniform distribution.

Smoothness of Surprisal Surprisal smoothness
captures how abruptly the language model’s pre-
dictability shifts from one token to the next. It is
defined as the mean absolute difference between
the surprisals of consecutive tokens:

Smoothness(.S)

A lower value indicates more gradual changes
(smoother transitions), while a higher value reflects
more abrupt predictability shifts.

5.2 Comparative Evaluation

We computed model preferences using GPT2’,
comparing the “original” and “revision” versions
based on surprisal metrics described in Section 5.1.
Among these, only the differences in average token

Specifically, the GPT2-large model from the

transformers library (Wolf et al., 2020).

231

Gold label Equal Orig Revi
Either_way 8 14 14
Original_better 1 6 3
Original_should_stay 2 6 0
Revision_better 6 9 20
Revision_necessary 2 0 9

Table 3: Prediction distribution from GPT2-1arge. Orig
indicates preference for the original connective; Revi,
for the revised connective; and Equal indicates both
versions received identical surprisal values.

surprisal were statistically significant across hu-
man annotation categories (p < 0.001), suggesting
a meaningful correlation between average surprisal
changes and human preferences. In contrast, dif-
ferences in variance and smoothness did not reach
statistical significance.

For a comparison with a more recent model,
we conducted prompting-based experiments using
GPT-4.1-mini. In each prompt, the connective
was replaced with “<..>” and the model was ex-
plicitly asked to suggest an appropriate discourse
connective for that position (see Appendix C for
examples). Each item was evaluated across five
independent runs. If the original connective was
predicted more frequently than the revised one,
we interpreted this as a preference for the origi-
nal; if the revised one was more frequent, it was
considered preferred. Equal prediction rates (or
no prediction) were treated as indicating no clear
preference.

Results Table 3 and Table 4 summarize the pre-
dictions of GPT-2. and GPT-4.1, respectively, on
the 100 manually annotated instances.® Despite
some variation across individual categories, the
overall distributional patterns between both models
are largely consistent. A chi-square test performed
across categories revealed no statistically signifi-
cant differences between two models’ predictions.

We also evaluated GPT-4.1-mini as a classifier
by prompting it with the same 5-way classifica-
tion instructions provided to our human annotators.
Each of the 100 instances was labeled through 5
runs, and the majority prediction was compared to
the human majority label. The model’s predictions
matched the human majority in 43% of the cases,
with a moderate association between the two label

8Note that zero-shot and few-shot prompting did not yield
statistically significant differences in GPT-4.1’s output.



Gold label Equal Orig Revi
Either_way 11 9 16
Original_better 3 5 2
Original_should_stay 2 5 1
Revision_better 10 3 22
Revision_necessary 2 0 9

Table 4: Prediction distribution from GPT-4.1 on the
manually annotated dataset.

sets (Cramér’s V = 0.306, p-value = 0.002).

We further evaluated open-source LLMs, specif-
ically Mistral-7B and LLaMA-3.1-8B. Both mod-
els had difficulty adhering to the prompt instruc-
tions unless supplied with a short list of example
connectives. In consequence, they heavily favored
items from the provided list, resulting in reduced
lexical diversity. To address this limitation, we
also experiment with a few-shot prompting strat-
egy rather than explicitly listing options. Under this
configuration, Mistral-7B exhibited improved per-
formance, producing valid connectives more con-
sistently and with greater lexical variety. However,
no statistically significant correlation with human
annotations was found (p > 0.05; see Table 5 in
Appendix D for the predictions of Mistral-7B).

6 Conclusion

We present a dataset of text revisions involving
the deletion or replacement of discourse connec-
tives at the beginning of sentences in the WikiHow
text revisions.’ From this dataset, we manually an-
notated 100 instances of connective replacements.
Only 11% of these edits were judged necessary to
convey the correct discourse meaning, whereas in
8% cases, the original connective was favored; the
remaining edits appeared to be somewhat optional.

Using GPT-2, we computed information-
theoretic metrics (mean surprisal, variance, and
smoothness) for these annotations. Of these, only
mean surprisal significantly correlated with human
judgments (RQ1). A prompt-based evaluation with
GPT-4.1-mini showed similar preferences, espe-
cially in edge cases of 5-way classification, where
a revision was necessary or the original connec-
tive should be retained (RQ2). These results sug-
gest that information-theoretic metrics and prompt-
based methods capture some patterns in human

°The dataset is publicly available at: https://github.
com/berfingit/connective-deletion-replacement.

decisions on discourse connectives, though their
coverage remains limited.
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Limitations

Our human annotation analysis is limited to a small
subset of the connective replacement data; expand-
ing annotations to include more examples and other
edit types (e.g., insertions and deletions) would
strengthen the generalizability of our findings. Ad-
ditionally, we do not explicitly ground our analysis
in a theoretical framework such as the Uniform In-
formation Density (UID) hypothesis, leaving open
questions about the broader cognitive or linguistic
implications of our results.

For computing surprisal-based metrics, we rely
on GPT-2, a relatively outdated language model.
This choice is motivated by the lack of token-level
log-probability access in widely used API-based
models like GPT-3.5 and GPT-4. While more
recent open-source models such as Mistral-7B
and LLaMA-3.1 provide access to logits (via the
transformers library) and can be used for sur-
prisal computation, integrating them was beyond
the scope of this pilot study. We leave surprisal-
based experiments with more recent models to fu-
ture work.
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A Examples with Additional Context

Source: Choreograph a Great Solo
Section: Steps

Original:
2. Pick a music choice that agrees with your style choice.
[So], if your dance is fast, pick a fast song.

Revised:
2. Pick a music choice that agrees with your style choice.
[For example], if your dance is fast, pick a fast song.

Figure 1: Example of connective replacement

Article: Make a Summer Dress out of a Bedsheet
Section: Steps

Original:

9. Cut the four shirt pieces out of the sheet material. [Then]
place those pieces on the lining material, face side up, and
pin them into place before cutting them out.

Revised:

9. Cut the four shirt pieces out of the sheet material. Place
those pieces on the lining material, face side up, and pin
them into place before cutting them out.

Figure 2: Example of connective deletion in revision

Source: Chat Using Facebook Messenger App on iOS
Section: Logging into Messenger

Original:

1. Sign in. If you’re already using the Facebook app and
have it installed and running on your mobile device, just
tap on the blue “Continue as...” button upon launch. [Oth-
erwise], input your email and password for your Facebook
account.

Revised:

1. Sign in. If you’re already using the Facebook app and
have it installed and running on your mobile device, just
tap on the blue “Continue as...” button upon launch. Input
your email and password for your Facebook account.

Figure 3: Example of misleading connective deletion.

Source: Use Every Nikon Digital SLR

Original:

[While] there are enough similarities between all Nikon
digital SLRs.

These categorisations are used here for convenience’s sake
and have nothing to do with image quality.

Revised:

There are enough similarities between all Nikon digital
SLRs.

These categorisations are used here for convenience’s sake
and have nothing to do with image quality.

Figure 4: Example of connective deletion causing un-
grammatical output.
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B Information-Theoretic Metrics on the
Full Dataset

We analyze the whole dataset using the metrics
described in §5.1 and present the results in this
section.

Average token surprisal: Connective insertions
and replacements lead to a statistically significant
increase in average surprisal, while deletions cause
a significant decrease (Figure 5). An increase in
average surprisal suggests that the resulting text
became less predictable overall, whereas a decrease
reflects a shift toward greater predictability.

Interestingly, the reverse of insertions (i.e., re-
moving connectives that had been inserted by hu-
mans, labeled as insertion_rev) also leads to a
decrease in average surprisal, mirroring the effect
of deletions. The difference between deletion
and insertion_rev is not statistically significant,
suggesting that these two operations have symmet-
rical effects on average surprisal despite differing
in context.

delta_mean Mean + 95% CI|
(ANOVA F = 33.73, p = 9.9e-22)

Delta Mean
14
S
2

-0.01 E }

insertion

deletion replacement

Edit Type

insertion_rev

Figure 5: Mean change in surprisal (A Mean) across edit
types. Error bars represent 95% confidence intervals.
ANOVA indicates a significant effect of edit type on
mean surprisal (F = 59.76, p = 1.4e-26).

Variance: As shown in Figure 6, both deletion
and replacement significantly reduce surprisal vari-
ance, making the text more uniformly predictable.
In contrast, insertions and therefore their reverse
functions insertion_rev do not significantly alter
variance.

This asymmetry between deletions and
insertion_rev, despite their functional similarity,
suggests that while the mean surprisal remains
stable, the local variance depends more on the
editing context.

Smoothness: Figure 7 shows that insertions,
deletions, and replacements each lead to small

delta_var Mean = 95% ClI
(ANOVA F = 48.51, p = 3.2e-31)

-0.05 I

-0.10

Delta Var

-0.15

-0.20 E

insertion

deletion replacement

Edit Type

insertion_rev

Figure 6: Mean change in variance (A Var) across edit
types. Error bars represent 95% confidence intervals.
ANOVA indicates a significant effect of edit type on
surprisal variance (F = 55.11, p = 1.4e-24).

but statistically significant decreases in surprisal
smoothness (i.e., negative values indicate that re-
visions are less smooth). However, the differences
across edit types are not statistically significant,
suggesting that all three introduce increases in lo-
cal unpredictability.

There is a clear contrast between deletions and
insertion_rev in terms of smoothness. Remov-
ing human-inserted connectives appears to make
the surprisal values change more gradually, yield-
ing a smoother predictability pattern.

delta_smooth Mean + 95% CI
(ANOVA F = 50.49, p = 1.7e-32)

Delta Smooth
o
°
3

-0.01

B S S

insertion

deletion replacement

Edit Type

insertion_rev

Figure 7: Mean change in smoothness (A Smooth)
across edit types. Error bars represent 95% confidence
intervals. ANOVA does a not indicate a significant ef-
fect of edit type on smoothness (F = 0.42, p = 0.66).

Discussion These results show that while
deletion and insertion_rev have similar effects
on average surprisal, they differ notably in their im-
pact on surprisal variance and smoothness. This
suggests that although a connective’s overall in-
formativeness may remain stable, its influence on
local predictability (i.e., whether it smooths or dis-
rupts the flow) depends on context.

234



Overall, the surprisal-based metrics offer a
nuanced view of how connective edits affect a
language model’s expectations (as measured by
GPT-2). Interestingly, connective insertions and
replacements increase average surprisal and reduce
smoothness, indicating that these edits do not im-
prove predictability as one might expect with ex-
plicit connectives. Since some of these findings
run counter to intuition and we do not yet provide
a deeper analysis, we consider them inconclusive.

C Prompts

Prompt Example:

TASK: Insert an appropriate discourse
connective into the gap marked by <...>
in the following text.

Text:

Steps 1. To easily interpret your
quotation and make a plausible argument
and analysis, ask yourself questions.
For example, why was this said? What
possible situation made this quotation
significant? 2. For your main points,
ask yourself questions based on your
interpretation. Always remember why,
what, and how. 3. <...> you have your
main points, come up with solid examples.
Books, movies, politics, current events,
music, art, culture, history, and any
other category will work. Just remember
to not use all of one category! Mix them
up for a more solid analysis.

Answer:

D Mistral-7B’s Connective Predictions on
Annotated Data

Human Majority Equal Orig Revi

Either_way 31 2 3
Original_better 10 0 0
Original_should_stay 5 2 1
Revision_better 27 6 2
Revision_necessary 10 0 1

Table 5: Mistral-7B’s match breakdown by human ma-
jority class

E Frequency Distribution of Connective
Deletions and Replacements

Table 6: Most frequent connective insertions with raw

Connective Count Normalized (%)
Then 882 20.5%
For example 669 15.5%
However 558 13.0%
Also 425 9.9%
But 237 5.5%
Or 185 4.3%
And 177 4.1%
So 174 4.0%
For instance 139 3.2%
If 121 2.8%
Finally 118 2.7%
Instead 106 2.5%
In addition 70 1.6%
Otherwise 42 1.0%
In fact 35 0.8%

counts and normalized percentages.

Table 7: Most frequent connective deletions with raw

Connective Count Percentage (%)
Then 4287 31.5%
Also 1690 12.4%
And 1600 11.8%
So 971 7.1%
But 960 7.1%
However 917 6.7%
Finally 851 6.3%
Or 414 3.0%
For example 374 2.8%
Instead 147 1.1%
Because 120 0.9%
In order 114 0.8%
Therefore 99 0.7%
If 97 0.7%
For instance 88 0.6%

counts and normalized percentages.
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Replacement

Count

Percentage (%)

But — However
When — If

If — When

And — Also
Because — Since
However — But

If — Even if

Also — In addition
When — Once
And — In addition
Once — When
Even if — If
While — Although
Then — Finally

So — Therefore

314
106
80
65
39
35
31
29
23
22
18
18
18
18
18

17.1
5.8
4.3
3.5
2.1
1.9
1.7
1.6
1.2
1.2
1.0
1.0
1.0
1.0
1.0

Table 8: Most frequent connective replacements with

raw counts and normalized percentages.
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