
Proceedings of the 31st International Conference on Computational Linguistics: System Demonstrations, pages 117–125
January 19–24, 2025. ©2025 Association for Computational Linguistics

117

RAGthoven: A Configurable Toolkit for RAG-enabled
LLM Experimentation

Gregor Karetka1,2 Demetris Skottis2 Lucia Dutková2,3

Peter Hraška2 Marek Šuppa2,4

1Brno University of Technology 2Cisco Systems
3Linnaeus University 4Comenius University in Bratislava

Correspondence: marek@suppa.sk

Abstract

Large Language Models (LLMs) have signif-
icantly altered the landscape of Natural Lan-
guage Processing (NLP), having topped the
benchmarks of many standard tasks and prob-
lems, particularly when used in combination
with Retrieval Augmented Generation (RAG).
Despite their impressive performance and rel-
ative simplicity, its use as a baseline method
has not been extensive. One of the reasons
might be that adapting and optimizing RAG-
based pipelines for specific NLP tasks gen-
erally requires custom development which is
difficult to scale. In this work we introduce
RAGthoven, a tool for automatic evaluation
of RAG-based pipelines. It provides a sim-
ple yet powerful abstraction, which allows the
user to start the evaluation process with noth-
ing more than a single configuration file. To
demonstrate its usefulness we conduct three
case studies spanning text classification, ques-
tion answering and code generation usecases.
We release the code, as well as the documen-
tation and tutorials, at https://github.com/
ragthoven-dev/ragthoven 1

1 Introduction

Large Language Models (LLMs), when com-
bined with Retrieval Augmented Generation (RAG)
(Lewis et al., 2020), have consistently demon-
strated state-of-the-art performance across numer-
ous NLP tasks, including question answering (Siri-
wardhana et al., 2023), text classification (Loukas
et al., 2023), and code generation (Bassamzadeh
and Methani, 2024). However, despite their proven
success, as demonstrated by various surveys such
as (Gao et al., 2023), RAG in combination with
LLMs remains significantly underutilized, particu-
larly in research settings where establishing strong

1A walkthrough video can be found at https://
ragthoven-dev.github.io/walkthrough.mp4

baselines is crucial. Standardized use cases such as
benchmarking new datasets or competing in shared
tasks often overlook RAG’s potential due to the
complexities involved in its implementation. Re-
searchers and practitioners frequently default to
simpler models, leaving the full power of retrieval-
augmented systems untapped.

One reason for this underutilization might be the
significant custom development required to tailor
RAG pipelines to specific tasks. Most RAG frame-
works require users to write custom code, adjust
for task-specific nuances, and optimize the pipeline
stages. These barriers deter many from using RAG
as a baseline method, despite its potential to im-
prove performance in shared tasks, where strong,
consistent baselines are essential. That in turn lim-
its broader experimentation with RAG in academia
and industry, especially for those working with new
datasets or aiming to quickly establish competitive
baselines for NLP tasks.

The contributions of this paper address these
challenges through the introduction of RAGthoven,
a toolkit designed to automate the evaluation of
RAG-based pipelines. First, RAGthoven provides
an easy-to-use configuration-driven interface that
abstracts away the complexity of RAG implemen-
tation, making it accessible even to users with lim-
ited programming expertise. Second, it supports a
broad range of NLP tasks out of the box, allowing
researchers to quickly set up robust baselines for
new datasets or shared tasks. Third, RAGthoven in-
cludes modules for indexing, retrieval, re-ranking,
and generation, all of which can be configured inde-
pendently, ensuring flexibility and adaptability for
task-specific optimization. Through the tool’s case
studies in text classification, question answering,
and code generation, we demonstrate its ability to
simplify RAG-based evaluations while maintaining
competitive performance, thereby promoting wider
adoption of retrieval-augmented models in research
and practical applications.

mailto:marek@suppa.sk
https://github.com/ragthoven-dev/ragthoven
https://github.com/ragthoven-dev/ragthoven
https://ragthoven-dev.github.io/walkthrough.mp4
https://ragthoven-dev.github.io/walkthrough.mp4

118

2 Related Work

Since its introduction, Retrieval Augmented Gener-
ation (Lee et al., 2019; Lewis et al., 2020; Guu et al.,
2020) has been found useful for varied set of tasks,
such as language modeling (Ram et al., 2023), ma-
chine translation (Cheng et al., 2024; Wang et al.,
2022), text summarization (Li et al., 2023), ques-
tion answering (Huang et al., 2023), information
extraction (Wang et al., 2021; Glass et al., 2023),
dialogue systems (King and Flanigan, 2023), as
well as text classification (Abdullahi et al., 2024).

To support the diverse needs of the various
tasks that could benefit from Retrieval Augmented
Generation, a large number of frameworks and
platforms have been introduced. These include
extensive mature platforms such as for instance
haystack (Pietsch et al., 2019), Verba 2 or
RAGFlow 3 which are tailored towards production-
oriented and/or document understanding use cases,
as well as cognita4, canopy 5, fastRAG (Izsak
et al., 2023) and FlashRAG (Jin et al., 2024) which
are oriented more towards experimentation. Virtu-
ally all of these frameworks and platforms require
the end user to interact with them by producing cus-
tom Python code tailored to a specific task. This,
however, makes them inaccessible to a significant
number of users who might benefit from being able
to experiment with Retrieval Augmented Genera-
tion without being proficient in Python. To the best
of our knowledge RAGthoven is the only toolkit
that, while also usable as a Python library, has been
built with the ”no code” ethos in mind and as such
can be utilized by larger target audience of non-
programmers as well.

3 System Description

RAGthoven is composed of four key modules: in-
dexing, retrieval, re-ranking, and generation. Each
module can be configured independently, allowing
users to adapt the pipeline to specific NLP tasks.
The following sections describe the function and
configuration of each module in the RAGthoven
pipeline.

3.1 Indexing

The indexing module is responsible for creating
a searchable representation of the dataset, which

2https://github.com/weaviate/Verba
3https://github.com/infiniflow/ragflow
4https://github.com/truefoundry/cognita
5https://github.com/pinecone-io/canopy

is generally loaded using the datasets library
(Lhoest et al., 2021). This module supports both
vector-based indexing, which utilizes dense embed-
dings, and traditional text-based indexing, which
leverages tokenized text data. Users can configure
the indexing module to use different models for vec-
torization or tokenization, depending on the nature
of the data and the retrieval requirements. The in-
dexing module is powered by the ChromaDB6 and
can be configured to make use of any of the embed-
ding models available on HuggingFace Hub. Im-
portantly, the same model configuration is shared
between the indexing and retrieval modules to en-
sure consistency in data representation.

3.2 Retrieval

The retrieval module fetches relevant documents
or pieces of information from the indexed data. It
supports vector-based retrieval, utilizing similarity
search on dense embeddings. Users can configure
the retrieval module with the same model used
in indexing, ensuring alignment between how
the data is indexed and retrieved. By default, the
sentence-transformers/all-MiniLM-L6-v2
model is utilized for embedding generation. The
module can also be configured to output a specific
number of retrieved items from the index based
on the input using the k option in the embed
section, making it a hyperparameter for end-users
to optimize.

3.3 Re-ranking

After the retrieval step, the re-ranking module pri-
oritizes the retrieved documents, ensuring that the
most relevant items are forwarded to the generation
module. Re-ranking is particularly useful when a
large volume of data is retrieved, and further refine-
ment is required to improve the relevance of the
final output. In such a case, the Retrieval module
is generally instructed to retrieve a larger number
of samples whereas the re-ranking module is then
tasked with reordering them based on how rele-
vant they are to the input query. By default, the
ms-marco-MiniLM-L-12-v2 model is utilized to
re-rank the samples obtained in the previous step.
The number of items to finally return can again be
configured using the k option in the rerank sec-
tion.

This module can be configured to use different
re-ranking models supported by the flashrank li-

6https://www.trychroma.com/

https://github.com/weaviate/Verba
https://github.com/infiniflow/ragflow
https://github.com/truefoundry/cognita
https://github.com/pinecone-io/canopy
https://www.trychroma.com/

119

Figure 1: A diagram of a standard RAG system. Note that the Index and Re-ranking steps are optional in principle,
but have been included in the diagram for clarity.

brary (Damodaran, 2023), allowing users to adjust
ranking mechanisms based on task-specific needs
or preferences.

3.4 Generation

The generation module uses a pre-trained LLM to
generate final outputs based on the re-ranked docu-
ments. As it is built on top of the litellm library7,
it can be configured to make use of various LLM
API providers, such as OpenAI, Anthropic, Google
Vertex or Cohere. The specific model parameters,
such as number of tokens to geenrate, or the tem-
perature to use for generation, as well as the system
(sprompt) and user (uprompt) prompt to be used
can be specified as well in the llm section of the
configuration file. In the interest of reproducibility,
the temperature defaults to 0.

3.5 Configuration

The central part of the RAGthoven toolkit is the
configuration file, a sample of which can be found
in Figure 2. The configuration file aims to be a
”one-stop shop” for defining the experiment RAGth-
oven will execute, describing both the input dataset
as well as the hyperparameters to be used.

The configuration file can also be used to de-
scribe multiple hyperparameter options RAGth-
oven ought to iterate over during its execution. A
sample configuration that makes use of this ap-
proach can be seen in Figure 3. As we can see,
compared to Figure 2 the values for k and model
have become of the list type instead of being int
or str, respectively. The RAGthoven identifies
these as configuration parameters that are to be iter-
ated over, and proceeds with running the respective
experiments, using a specific combination of the

7https://github.com/BerriAI/litellm

parameters in each of them. Thanks to this suc-
cint format, the configuration definition outlined in
Figure 3 can be viewed as representing 24 fully in-
terpolated configurations as described in Figure 2.

4 Case Studies

We present three case studies demonstrating
RAGthoven’s effectiveness and ease of use. These
case studies, drawn from well-defined Shared
Tasks, showcase how RAGthoven simplifies the
implementation of competitive baselines.

4.1 Climate Activism Hate Speech Detection
The Hate Speech Detection subtask from the CASE
2024 Shared Task on Climate Activism Stance and
Hate Event Detection required participants to clas-
sify tweets related to climate activism into two
categories: Hate and Non-Hate. The dataset con-
sisted of labeled tweets, with 6,385 examples of
Non-Hate and 899 examples of Hate in the train-
ing set. The tweets were drawn from discussions
related to climate activism, with a notable propor-
tion of messages centered around prominent figures
such as Greta Thunberg. A more detailed overview
of the task can be found at (Thapa et al., 2024)
and an extensive description of the approached ex-
plored in the case study can be found in (Suppa
et al., 2024).

4.1.1 Baseline and Task Approaches
In this case study, GPT-4 was evaluated on its
ability to perform hate speech detection using
a zero-shot setup, few-shot prompting, and
retrieval-augmented generation (RAG). The base-
line established for the subtask was the majority
class and the baseline model was GPT-4 in a
zero-shot setting, where no specific examples were
provided in the prompt. The RAGthoven toolkit

https://github.com/BerriAI/litellm

120

training_data:
dataset: "Jinyan1/COLING_2025_MGT_en"
input_feature: "text"
label_feature: "label"
split_name: "train"

validation_data:
input_feature: "text"
split_name: "valid"
dataset: "data/data.jsonl"

embed:
k: 10

rerank:
k: 3

llm:
sprompt: |
You are a helpful assistant that classifies
text as Human or Machine generated.

Here are some of very similar texts and
their respective labels:
{{ examples }}

uprompt: |
Please determine the category of the text
use "0" for Human and "1" for Machine Generated:

{{ text }}
ANSWER ONLY WITH SINGLE NUMBER!

Figure 2: A sample RAGthoven configuration file.
Note that the configuration describes a real use-
case – a Shared Task on ”Binary Multilingual
Machine-Generated Text Detection” introduced as
part of the COLING 2025 Workshop on Detecting
AI Generated Content. More details can be found
at https://genai-content-detection.gitlab.io/
sharedtasks

was configured to index the dataset using the
sentence-transformers/all-MiniLM-L6-v2
model and retrieve relevant examples from
the dataset to augment the input prompts.
Re-ranking was performed using the
ms-marco-MiniLM-L-12-v2 model to priori-
tize the most relevant retrieved examples for hate
speech classification.

4.1.2 Results and Analysis

The results, as shown in Table 1, demonstrate
the effectiveness of retrieval-augmented genera-
tion in improving hate speech classification per-
formance. The baseline zero-shot GPT-4 model
achieved an accuracy of 93.5% and an F1 score of
85.6. When augmented with retrieval, the perfor-
mance improved, with the best RAG configuration
(RAG all, k = 6) achieving an F1 score of 88.1,
outperforming the few-shot model. Notably, re-
ranking did not enhance performance over basic
retrieval, suggesting that the retrieval mechanism
alone contributed the most significant gains.

training_data:
dataset: "Jinyan1/COLING_2025_MGT_en"
input_feature: "text"
label_feature: "label"
split_name: "train"

validation_data:
input_feature: "text"
split_name: "valid"
dataset: "data/data.jsonl"

embed:
k: [10, 20, 30]
model: [

"sentence-transformers/all-MiniLM-L6-v2",
"sentence-transformers/all-mpnet-base-v1"

]
rerank:

k: [3, 5]
model: [

"ms-marco-MiniLM-L-12-v2",
"ms-marco-MultiBERT-L-12"

]
llm:

sprompt: |
You are a helpful assistant that classifies
text as Human or Machine generated.

Here are some of very similar texts and
their respective labels:
{{ examples }}

uprompt: |
Determine the text category and respond
"0" for Human and "1" for Machine Generated:

{{ text }}
ANSWER WITH SINGLE NUMBER ONLY!

Figure 3: A sample RAGthoven configuration file denot-
ing different hyperparameters to run experiments over.
Note in particular the k and model keys in the embed
and rerank sections.

The results indicate that retrieval augmenta-
tion, particularly with all-mpnet-base-v2 em-
beddings, substantially improves performance in
hate speech detection, confirming that task-specific
information retrieval helps GPT-4 adapt to the nu-
ances of the dataset. However, re-ranking did not
yield additional benefits in this task, likely due to
the already high relevance of the top-retrieved ex-
amples. The full RAGthoven configuration can be
found in Appendix A and Figure 4.

4.2 Multilingual Text Detoxification 2024
Case Study

The Multilingual Text Detoxification (TextDetox)
2024 task aimed to address the problem of toxic-
ity in text by rewriting toxic content to maintain
its original meaning while removing offensive lan-
guage. Participants were provided with multilin-
gual datasets containing toxic texts from various
languages such as German, Chinese, Russian, and

https://genai-content-detection.gitlab.io/sharedtasks
https://genai-content-detection.gitlab.io/sharedtasks

121

Model Acc P R F1

baseline 0.901 - - 0.708

GPT-4 Zero-Shot 0.935 0.835 0.880 0.856
+ Few-Shot (k=6) 0.932 0.826 0.895 0.855
+ RAG (k=6) 0.941 0.851 0.889 0.868
+ RAG all (k=6) 0.948 0.866 0.899 0.881
+ RAG + Re-Rank (k=6) 0.941 0.853 0.877 0.864

Table 1: Results for the Hate Speech Detection Task in
terms of Accuracy (Acc), Precision (P), Recall (R) and
F1 score. The best performance is bolded.

more. The objective was to generate neutralized
outputs that were both non-toxic and contextually
accurate. Automatic and manual evaluations were
performed by the task organizers to assess the qual-
ity of the submissions. A more detailed overview
of the task itself can be found in (Dementieva et al.,
2024) and an extensive description of the approach
our case study is based on can be found in (Řehulka
and Šuppa, 2024).

4.2.1 Baseline and Task Approaches

The baseline approach chosen by the organizers
was the ”duplicate” baseline, which simply re-
sponded with the original text, without making any
changes.

Our baseline approach utilized a zero-shot setup
of the Llama3 model (Dubey et al., 2024). This con-
figuration simply provided instructions for detoxi-
fication without any specific contextual examples.
However, this method proved suboptimal, as the
model tended to rewrite the entire sentence, altering
the meaning significantly. To address this, we em-
ployed few-shot prompting with relevant examples
in English and other languages.

The system was then enhanced using Retrieval
Augmented Generation (RAG), which integrated
toxic-neutral text pairs from external datasets,
including textdetox/multilingual_paradetox
(TextDetox, 2023). For each input, dynamically
generated prompts included relevant detoxified ex-
amples and instructions to maintain the original
context. This approach significantly improved
detoxification results across all languages.

To further refine the outputs, we also introduced
a reverse approach. In this method, retrieved exam-
ples were presented in reverse order in the prompt,
placing the most relevant examples at the end. This
subtle change helped the model prioritize closer
matches in detoxification, particularly for challeng-
ing languages like Russian.

4.2.2 Results and Analysis
In the final evaluation, we assessed the performance
using three metrics: (1) the absence of toxic con-
tent, measured via an xlm-roberta-large classi-
fier, (2) semantic preservation, quantified by co-
sine similarity using LaBSE embeddings, and (3)
grammatical correctness, measured using the ChrF
metric. The composite score was the product of
these three metrics. Table 2 summarizes the perfor-
mance across different languages for the various
configurations.

The reverse approach, where we reordered ex-
amples in the prompt, improved the model’s perfor-
mance across several languages, particularly Ger-
man and Russian. The only language in which
our system did not manage to beat the original,
organizer-provided baseline was Amharic. We at-
tribute this to the specific script of the langauge as
well as its low-resource nature.

4.2.3 Manual Evaluation
In addition to automatic evaluation, a manual eval-
uation of 100 detoxified samples per language was
conducted. In this evaluation, our system ranked
5th overall, with notable performance in German,
where it surpassed the human reference. The re-
verse approach further contributed to gains in this
manual evaluation.

In conclusion, the combination of RAG with
dynamic prompt generation and the reverse ap-
proach allowed us to effectively tackle the Multi-
lingual Text Detoxification 2024 task. Our system
demonstrated strong cross-lingual detoxification
performance, especially for German and Chinese,
showing the flexibility and power of the RAGth-
oven system in handling diverse NLP tasks. The
full RAGthoven configuration can be found in Ap-
pendix A and Figure 5.

4.3 Code Generation for Optimization
Problems

In this case study, we apply RAGthoven to the
task of automating code generation for solving op-
timization problems. This task was inspired by
the ICML 2024 Automated Math Reasoning Chal-
lenge, specifically Track 3, which involves generat-
ing Python code that solves optimization problems
using the PuLP library8. The challenge requires
models to understand problem descriptions pre-
sented in natural language and produce executable

8https://www.codabench.org/competitions/2438/

https://www.codabench.org/competitions/2438/

122

Model avg en es de zh ar hi uk ru am

baseline 0.126 0.061 0.090 0.287 0.069 0.294 0.035 0.032 0.048 0.217

Llama 3 0.380 0.525 0.448 0.530 0.161 0.488 0.185 0.507 0.461 0.112
+ RAG 0.403 0.527 0.483 0.576 0.152 0.483 0.176 0.534 0.504 0.193
+ reverse 0.420 0.527 0.499 0.563 0.169 0.538 0.193 0.602 0.523 0.167

Table 2: Performance across different languages for various models and configurations (average scores of automatic
evaluation) in the Text Detoxification 2024 Shared Task. The highest performance per language is boldfaced.

Python code that computes optimal solutions using
specific solvers. For example, the input description
might include details such as the objective function
and constraints, with the expected output being
Python code that computes the solution and prints
specific variables.

4.3.1 Baseline and Task Approaches
This Shared Task did not feature a baseline estab-
lished by its organizers.

Our baseline for this task involved directly
prompting models like GPT-4 and GPT-4o using a
system prompt that instructed the LLM to generate
Python code for optimization problems. The model
used retrieval to augment its output by pulling rel-
evant examples from a dataset indexed using the
all-MiniLM-L6-v2 model. If the initial code gen-
eration failed—due to syntax errors or failure to
produce expected outputs—a second pipeline was
introduced, wherein the generated code, along with
a Python traceback, was sent to GPT-4 for correc-
tion. We experimented with two LLMs: GPT-4 and
GPT-4o. In addition, an ensemble approach was
tested, where the final output was determined by
combining the outputs from multiple models and
selecting the most frequent one.

4.3.2 Results and Discussion
The performance of each model on the public and
private leaderboards of the ICML challenge is sum-
marized in Table 3. The performance is measured
based on the accuracy of the generated code in
solving the optimization problems.

The results demonstrate that the RAGthoven-
augmented pipeline, especially when paired with
GPT-4o, performs robustly on both the public and
private leaderboards. Interestingly, increasing the
number of examples in the prompt (k) did not
consistently lead to performance improvements,
and the ensemble approach did not significantly
outperform the individual models. This suggests
that retrieval-based augmentation, combined with

Model Public Private

GPT-4 (k=2) 0.840 0.8171
GPT-4 (k=3) 0.815 0.7862
GPT-4 (k=4) 0.835 0.7933

GPT-4o (k=3) 0.850 0.8147
GPT-4o (k=4) 0.820 0.8052
GPT-4o (k=5) 0.845 0.8147

Ensemble 0.850 0.8171

Table 3: Results for code generation models on the
public and private leaderboards of the ICML 2024 Au-
tomated Math Reasoning Challenge. k denotes the num-
ber of examples in the prompt. Bold values represent
the highest performance for each leaderboard.

prompt-tuning, can provide strong baselines for
code generation tasks. However, there may be di-
minishing returns when adding more examples or
using model ensembles.

The full RAGthoven configuration for the out-
lined experiments can be found in Appendix A and
seen in Figure 6.

5 Conclusion

In this paper, we introduce RAGthoven, a toolkit
designed to simplify the evaluation of RAG-based
pipelines. By offering a configuration-driven in-
terface, RAGthoven makes retrieval-augmented
models accessible to both technical users and non-
programmers. Its modular nature allows for easy
extension, ensuring future adaptability across di-
verse NLP tasks. Through case studies in text clas-
sification, question answering, and code generation,
we demonstrate that RAGthoven maintains com-
petitive performance while streamlining setup. Our
results highlight its potential to lower the barriers
for wider adoption of RAG across academia and
industry. To this end we release RAGthoven un-
der the terms of the MIT license, hoping it will
contribute increased RAG usage in the future.

123

References
Tassallah Abdullahi, Ritambhara Singh, and Carsten

Eickhoff. 2024. Retrieval augmented zero-shot text
classification. In Proceedings of the 2024 ACM SI-
GIR International Conference on Theory of Informa-
tion Retrieval, pages 195–203.

Nastaran Bassamzadeh and Chhaya Methani. 2024. A
comparative study of dsl code generation: Fine-
tuning vs. optimized retrieval augmentation. arXiv
preprint arXiv:2407.02742.

Xin Cheng, Di Luo, Xiuying Chen, Lemao Liu,
Dongyan Zhao, and Rui Yan. 2024. Lift yourself
up: Retrieval-augmented text generation with self-
memory. Advances in Neural Information Processing
Systems, 36.

Prithiviraj Damodaran. 2023. FlashRank, Lightest and
Fastest 2nd Stage Reranker for search pipelines.

Daryna Dementieva, Daniil Moskovskiy, Nikolay
Babakov, Abinew Ali Ayele, Naquee Rizwan, Fro-
lian Schneider, Xintog Wang, Seid Muhie Yimam,
Dmitry Ustalov, Elisei Stakovskii, Alisa Smirnova,
Ashraf Elnagar, Animesh Mukherjee, and Alexander
Panchenko. 2024. Overview of the multilingual text
detoxification task at pan 2024. In Working Notes of
CLEF 2024 - Conference and Labs of the Evaluation
Forum. CEUR-WS.org.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Michael Glass, Xueqing Wu, Ankita Rajaram Naik, Gae-
tano Rossiello, and Alfio Gliozzo. 2023. Retrieval-
based transformer for table augmentation. arXiv
preprint arXiv:2306.11843.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929–3938. PMLR.

Jie Huang, Wei Ping, Peng Xu, Mohammad Shoeybi,
Kevin Chen-Chuan Chang, and Bryan Catanzaro.
2023. Raven: In-context learning with retrieval aug-
mented encoder-decoder language models. arXiv
preprint arXiv:2308.07922.

Peter Izsak, Moshe Berchansky, Daniel Fleischer, and
Ronen Laperdon. 2023. fastRAG: Efficient Retrieval
Augmentation and Generation Framework.

Jiajie Jin, Yutao Zhu, Xinyu Yang, Chenghao Zhang,
and Zhicheng Dou. 2024. Flashrag: A modular
toolkit for efficient retrieval-augmented generation
research. Preprint, arXiv:2405.13576.

Brendan King and Jeffrey Flanigan. 2023. Diverse
retrieval-augmented in-context learning for dialogue
state tracking. arXiv preprint arXiv:2307.01453.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised
open domain question answering. arXiv preprint
arXiv:1906.00300.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Quentin Lhoest, Albert Villanova Del Moral, Yacine
Jernite, Abhishek Thakur, Patrick Von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, et al. 2021. Datasets: A commu-
nity library for natural language processing. arXiv
preprint arXiv:2109.02846.

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu,
Yuan Ni, Guotong Xie, Xiaoling Wang, and Xipeng
Qiu. 2023. Unified demonstration retriever for in-
context learning. arXiv preprint arXiv:2305.04320.

Lefteris Loukas, Ilias Stogiannidis, Odysseas Dia-
mantopoulos, Prodromos Malakasiotis, and Stavros
Vassos. 2023. Making llms worth every penny:
Resource-limited text classification in banking. In
Proceedings of the Fourth ACM International Con-
ference on AI in Finance, pages 392–400.

Malte Pietsch, Timo Möller, Bogdan Kostic, Julian
Risch, Massimiliano Pippi, Mayank Jobanputra, Sara
Zanzottera, Silvano Cerza, Vladimir Blagojevic,
Thomas Stadelmann, Tanay Soni, and Sebastian Lee.
2019. Haystack: the end-to-end NLP framework for
pragmatic builders.

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,
Amnon Shashua, Kevin Leyton-Brown, and Yoav
Shoham. 2023. In-context retrieval-augmented lan-
guage models. Transactions of the Association for
Computational Linguistics, 11:1316–1331.

Erik Řehulka and Marek Šuppa. 2024. Rag meets detox:
Enhancing text detoxification using open large lan-
guage models with retrieval augmented generation.

Shamane Siriwardhana, Rivindu Weerasekera, Elliott
Wen, Tharindu Kaluarachchi, Rajib Rana, and
Suranga Nanayakkara. 2023. Improving the domain
adaptation of retrieval augmented generation (rag)
models for open domain question answering. Trans-
actions of the Association for Computational Linguis-
tics, 11:1–17.

Marek Suppa, Daniel Skala, Daniela Jass, Samuel Sucik,
Andrej Svec, and Peter Hraska. 2024. Bryndza at
climateactivism 2024: Stance, target and hate event
detection via retrieval-augmented gpt-4 and llama.
ArXiv, abs/2402.06549.

https://doi.org/10.5281/zenodo.10426927
https://doi.org/10.5281/zenodo.10426927
https://github.com/IntelLabs/fastrag
https://github.com/IntelLabs/fastrag
https://arxiv.org/abs/2405.13576
https://arxiv.org/abs/2405.13576
https://arxiv.org/abs/2405.13576
https://github.com/deepset-ai/haystack
https://github.com/deepset-ai/haystack
https://api.semanticscholar.org/CorpusID:267616764
https://api.semanticscholar.org/CorpusID:267616764
https://api.semanticscholar.org/CorpusID:267616764

124

TextDetox. 2023. Multilingual paradetox. https:
//huggingface.co/datasets/textdetox/
multilingual_paradetox. Accessed: 2024-05-30.

Surendrabikram Thapa, Kritesh Rauniyar, Farhan Ah-
mad Jafri, Shuvam Shiwakoti, Hariram Veeramani,
Raghav Jain, Guneet Singh Kohli, Ali Hürriyetoğlu,
and Usman Naseem. 2024. Stance and hate event
detection in tweets related to climate activism-shared
task at case 2024. In 7th Workshop on Challenges
and Applications of Automated Extraction of Socio-
Political Events from Text, CASE 2024, pages 234–
247. Association for Computational Linguistics.

Shuohang Wang, Yichong Xu, Yuwei Fang, Yang Liu,
Siqi Sun, Ruochen Xu, Chenguang Zhu, and Michael
Zeng. 2022. Training data is more valuable than you
think: A simple and effective method by retrieving
from training data. arXiv preprint arXiv:2203.08773.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. 2021.
Improving named entity recognition by external
context retrieving and cooperative learning. arXiv
preprint arXiv:2105.03654.

A RAGthoven Configurations

training_data:
dataset: SubTaskA-train.csv
input_feature: "text"
output_feature: "prediction"

validation_data:
dataset: SubTaskA-test.csv
input_feature: "text"

embed:
k: [6, 12]
model: [

"sentence-transformers/all-MiniLM-L6-v2",
"sentence-transformers/all-mpnet-base-v1"

]
rerank:

k: 6
llm:

model: "gpt4"
sprompt: |

Analyze the input tweet to determine if it
is hate speech or not, based on the
following criteria:

Hate Speech Patterns

...

Non-Hate Speech Patterns

...

Evaluation

- If the tweet aligns more with the
Hate Speech Patterns, output:
'Prediction: 1' (indicating it is
hate speech).

- If the tweet aligns more with the
Non-Hate Speech Patterns, output:
'Prediction: 0' (indicating it is
not hate speech).

Examples
{{ examples }}

uprompt: |
{{ text }}

Figure 4: The RAGthoven configuration file associated
with the The Hate Speech Detection subtask from the
CASE 2024 Shared Task on Climate Activism Stance
and Hate Event Detection. The ellipsis (...) in both
Hate and Non-Hate Speech patterns denotes parts of the
prompt that has been omitted for brevity.

https://huggingface.co/datasets/textdetox/multilingual_paradetox
https://huggingface.co/datasets/textdetox/multilingual_paradetox
https://huggingface.co/datasets/textdetox/multilingual_paradetox

125

training_data:
dataset: "textdetox/multilingual_paradetox"
input_feature: "toxic_sentence"
output_feature: "neutral_sentence"

validation_data:
dataset: "textdetox/multilingual_paradetox_test"
input_feature: "toxic_sentence"

embed:
k: 10

llm:
model: "ollama/llama3"
sprompt: |

Task

You are a text detoxifier. On input you receive
a text which may be toxic or harmful. Your task
is to rewrite this text in a way that does not
contain any toxicity or harmful words, while
preserving the original content and context.

The Output contains only the detoxified text
and nothing else like notes or additional
information. You do not add any more context
to the resulting text, which is not in the
original text.
Do not rewrite the original text too much,
just either remove the toxic part completely,
or replace it with some non-toxic words while
preserving the meaning and context.

The language of the input is {{ language }}
and the language of the response must be the
same.

Examples
{{ examples }}

uprompt: |
{{ text }}

Figure 5: The RAGthoven configuration file associated
with the Text Detoxification 2024 Shared Task.

training_data:
dataset: optim-with-code-train.json
input_feature: "task_definition"
output_feature: "code"

validation_data:
dataset: optim-with-code-val.json
input_feature: "task_definition"

embed:
k: [2, 3, 4, 5]

llm:
model: ["gpt-4", "gpt-4o"]
sprompt: |

You are an Optimization Problem-Solving
expert that solves optimization tasks using
the PuLP library in Python.

Task
You will be given a description of an
optimization problem on the input and will be
asked to output a Python script that uses the
PuLP library that solves the task.

The Python code should compute ALL of the
expected variables and print their output out.
Use the EXACT SAME variable names in the
output VERBATIM as the ones provided in the
input.

Do not add any additional formatting to the
output (e.g. no '$' signs, no commas, etc.).

Format the output as float values.

Output ONLY the resulting Python code and
nothing else.

Follow the format in the examples below.
Do not attempt to compute anything yourself,
only output Python code that does the
computation.

Examples
{{examples}}

uprompt: |
{{ text }}

Figure 6: The RAGthoven configuration file associated
with the ICML 2024 Automated Math Reasoning Chal-
lenge.

	Introduction
	Related Work
	System Description
	Indexing
	Retrieval
	Re-ranking
	Generation
	Configuration

	Case Studies
	Climate Activism Hate Speech Detection
	Baseline and Task Approaches
	Results and Analysis

	Multilingual Text Detoxification 2024 Case Study
	Baseline and Task Approaches
	Results and Analysis
	Manual Evaluation

	Code Generation for Optimization Problems
	Baseline and Task Approaches
	Results and Discussion

	Conclusion
	RAGthoven Configurations

