@inproceedings{aitymbetov-zorbas-2025-autonomous,
title = "Autonomous Machine Learning-Based Peer Reviewer Selection System",
author = "Aitymbetov, Nurmukhammed and
Zorbas, Dimitrios",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven and
Mather, Brodie and
Dras, Mark",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics: System Demonstrations",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-demos.20/",
pages = "199--207",
abstract = "The peer review process is essential for academic research, yet it faces challenges such as inefficiencies, biases, and limited access to qualified reviewers. This paper introduces an autonomous peer reviewer selection system that employs the Natural Language Processing (NLP) model to match submitted papers with expert reviewers independently of traditional journals and conferences. Our model performs competitively in comparison with the transformer-based state-of-the-art models while being 10 times faster at inference and 7 times smaller, which makes our platform highly scalable. Additionally, with our paper-reviewer matching model being trained on scientific papers from various academic fields, our system allows scholars from different backgrounds to benefit from this automation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="aitymbetov-zorbas-2025-autonomous">
<titleInfo>
<title>Autonomous Machine Learning-Based Peer Reviewer Selection System</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nurmukhammed</namePart>
<namePart type="family">Aitymbetov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dimitrios</namePart>
<namePart type="family">Zorbas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brodie</namePart>
<namePart type="family">Mather</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Dras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The peer review process is essential for academic research, yet it faces challenges such as inefficiencies, biases, and limited access to qualified reviewers. This paper introduces an autonomous peer reviewer selection system that employs the Natural Language Processing (NLP) model to match submitted papers with expert reviewers independently of traditional journals and conferences. Our model performs competitively in comparison with the transformer-based state-of-the-art models while being 10 times faster at inference and 7 times smaller, which makes our platform highly scalable. Additionally, with our paper-reviewer matching model being trained on scientific papers from various academic fields, our system allows scholars from different backgrounds to benefit from this automation.</abstract>
<identifier type="citekey">aitymbetov-zorbas-2025-autonomous</identifier>
<location>
<url>https://aclanthology.org/2025.coling-demos.20/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>199</start>
<end>207</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Autonomous Machine Learning-Based Peer Reviewer Selection System
%A Aitymbetov, Nurmukhammed
%A Zorbas, Dimitrios
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%Y Mather, Brodie
%Y Dras, Mark
%S Proceedings of the 31st International Conference on Computational Linguistics: System Demonstrations
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F aitymbetov-zorbas-2025-autonomous
%X The peer review process is essential for academic research, yet it faces challenges such as inefficiencies, biases, and limited access to qualified reviewers. This paper introduces an autonomous peer reviewer selection system that employs the Natural Language Processing (NLP) model to match submitted papers with expert reviewers independently of traditional journals and conferences. Our model performs competitively in comparison with the transformer-based state-of-the-art models while being 10 times faster at inference and 7 times smaller, which makes our platform highly scalable. Additionally, with our paper-reviewer matching model being trained on scientific papers from various academic fields, our system allows scholars from different backgrounds to benefit from this automation.
%U https://aclanthology.org/2025.coling-demos.20/
%P 199-207
Markdown (Informal)
[Autonomous Machine Learning-Based Peer Reviewer Selection System](https://aclanthology.org/2025.coling-demos.20/) (Aitymbetov & Zorbas, COLING 2025)
ACL