@inproceedings{ding-etal-2025-feat,
title = "{FEAT}-writing: An Interactive Training System for Argumentative Writing",
author = "Ding, Yuning and
Wehrhahn, Franziska and
Horbach, Andrea",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven and
Mather, Brodie and
Dras, Mark",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics: System Demonstrations",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-demos.22/",
pages = "217--225",
abstract = "Recent developments in Natural Language Processing (NLP) for argument mining offer new opportunities to analyze the argumentative units (AUs) in student essays. These advancements can be leveraged to provide automatically generated feedback and exercises for students engaging in online argumentative essay writing practice. Writing standards for both native English speakers (L1) and English-as-a-foreign-language (L2) learners require students to understand formal essay structures and different AUs. To address this need, we developed FEAT-writing (Feedback and Exercises for Argumentative Training in writing), an interactive system that provides students with automatically generated exercises and distinct feedback on their argumentative writing. In a preliminary evaluation involving 346 students, we assessed the impact of six different automated feedback types on essay quality, with results showing general improvements in writing after receiving feedback from the system."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ding-etal-2025-feat">
<titleInfo>
<title>FEAT-writing: An Interactive Training System for Argumentative Writing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuning</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Franziska</namePart>
<namePart type="family">Wehrhahn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Horbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brodie</namePart>
<namePart type="family">Mather</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Dras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent developments in Natural Language Processing (NLP) for argument mining offer new opportunities to analyze the argumentative units (AUs) in student essays. These advancements can be leveraged to provide automatically generated feedback and exercises for students engaging in online argumentative essay writing practice. Writing standards for both native English speakers (L1) and English-as-a-foreign-language (L2) learners require students to understand formal essay structures and different AUs. To address this need, we developed FEAT-writing (Feedback and Exercises for Argumentative Training in writing), an interactive system that provides students with automatically generated exercises and distinct feedback on their argumentative writing. In a preliminary evaluation involving 346 students, we assessed the impact of six different automated feedback types on essay quality, with results showing general improvements in writing after receiving feedback from the system.</abstract>
<identifier type="citekey">ding-etal-2025-feat</identifier>
<location>
<url>https://aclanthology.org/2025.coling-demos.22/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>217</start>
<end>225</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FEAT-writing: An Interactive Training System for Argumentative Writing
%A Ding, Yuning
%A Wehrhahn, Franziska
%A Horbach, Andrea
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%Y Mather, Brodie
%Y Dras, Mark
%S Proceedings of the 31st International Conference on Computational Linguistics: System Demonstrations
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F ding-etal-2025-feat
%X Recent developments in Natural Language Processing (NLP) for argument mining offer new opportunities to analyze the argumentative units (AUs) in student essays. These advancements can be leveraged to provide automatically generated feedback and exercises for students engaging in online argumentative essay writing practice. Writing standards for both native English speakers (L1) and English-as-a-foreign-language (L2) learners require students to understand formal essay structures and different AUs. To address this need, we developed FEAT-writing (Feedback and Exercises for Argumentative Training in writing), an interactive system that provides students with automatically generated exercises and distinct feedback on their argumentative writing. In a preliminary evaluation involving 346 students, we assessed the impact of six different automated feedback types on essay quality, with results showing general improvements in writing after receiving feedback from the system.
%U https://aclanthology.org/2025.coling-demos.22/
%P 217-225
Markdown (Informal)
[FEAT-writing: An Interactive Training System for Argumentative Writing](https://aclanthology.org/2025.coling-demos.22/) (Ding et al., COLING 2025)
ACL