@inproceedings{wang-etal-2025-okg,
title = "{OKG}: On-the-Fly Keyword Generation in Sponsored Search Advertising",
author = "Wang, Zhao and
Gangopadhyay, Briti and
Zhao, Mengjie and
Takamatsu, Shingo",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven and
Darwish, Kareem and
Agarwal, Apoorv",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics: Industry Track",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-industry.10/",
pages = "115--127",
abstract = "Current keyword decision-making in sponsored search advertising relies on large static datasets, limiting automatic keyword setup and failing to adapt to real-time KPI metrics and product updates essential for effective advertising. In this paper, we propose On-the-fly Keyword Generation (OKG), an LLM agent-based method that dynamically monitors KPI changes and adapts keyword generation in real-time, realizing the strategy recommended by advertising platforms. Additionally, we introduce the first publicly accessible dataset containing real keyword data with its KPIs across diverse domains, providing a valuable resource for future research. Experimental results and ablation studies demonstrate the effectiveness of OKG, showing significant improvements across various metrics and emphasizing the importance of each component. We believe OKG not only pioneers the use of LLM agents in this research field but also offers practical value for thousands of advertisers to automate keyword generation in real-world applications."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2025-okg">
<titleInfo>
<title>OKG: On-the-Fly Keyword Generation in Sponsored Search Advertising</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhao</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Briti</namePart>
<namePart type="family">Gangopadhyay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mengjie</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shingo</namePart>
<namePart type="family">Takamatsu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics: Industry Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kareem</namePart>
<namePart type="family">Darwish</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Apoorv</namePart>
<namePart type="family">Agarwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Current keyword decision-making in sponsored search advertising relies on large static datasets, limiting automatic keyword setup and failing to adapt to real-time KPI metrics and product updates essential for effective advertising. In this paper, we propose On-the-fly Keyword Generation (OKG), an LLM agent-based method that dynamically monitors KPI changes and adapts keyword generation in real-time, realizing the strategy recommended by advertising platforms. Additionally, we introduce the first publicly accessible dataset containing real keyword data with its KPIs across diverse domains, providing a valuable resource for future research. Experimental results and ablation studies demonstrate the effectiveness of OKG, showing significant improvements across various metrics and emphasizing the importance of each component. We believe OKG not only pioneers the use of LLM agents in this research field but also offers practical value for thousands of advertisers to automate keyword generation in real-world applications.</abstract>
<identifier type="citekey">wang-etal-2025-okg</identifier>
<location>
<url>https://aclanthology.org/2025.coling-industry.10/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>115</start>
<end>127</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T OKG: On-the-Fly Keyword Generation in Sponsored Search Advertising
%A Wang, Zhao
%A Gangopadhyay, Briti
%A Zhao, Mengjie
%A Takamatsu, Shingo
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%Y Darwish, Kareem
%Y Agarwal, Apoorv
%S Proceedings of the 31st International Conference on Computational Linguistics: Industry Track
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F wang-etal-2025-okg
%X Current keyword decision-making in sponsored search advertising relies on large static datasets, limiting automatic keyword setup and failing to adapt to real-time KPI metrics and product updates essential for effective advertising. In this paper, we propose On-the-fly Keyword Generation (OKG), an LLM agent-based method that dynamically monitors KPI changes and adapts keyword generation in real-time, realizing the strategy recommended by advertising platforms. Additionally, we introduce the first publicly accessible dataset containing real keyword data with its KPIs across diverse domains, providing a valuable resource for future research. Experimental results and ablation studies demonstrate the effectiveness of OKG, showing significant improvements across various metrics and emphasizing the importance of each component. We believe OKG not only pioneers the use of LLM agents in this research field but also offers practical value for thousands of advertisers to automate keyword generation in real-world applications.
%U https://aclanthology.org/2025.coling-industry.10/
%P 115-127
Markdown (Informal)
[OKG: On-the-Fly Keyword Generation in Sponsored Search Advertising](https://aclanthology.org/2025.coling-industry.10/) (Wang et al., COLING 2025)
ACL