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Abstract

The extraction of lung lesion information from
clinical and medical imaging reports is crucial
for research on and clinical care of lung-related
diseases. Large language models (LLMs) can
be effective at interpreting unstructured text
in reports, but they often hallucinate due to
a lack of domain-specific knowledge, leading
to reduced accuracy and posing challenges for
use in clinical settings. To address this, we
propose a novel framework that aligns gener-
ated internal knowledge with external knowl-
edge through in-context learning (ICL). Our
framework employs a retriever to identify rel-
evant units of internal or external knowledge
and a grader to evaluate the truthfulness and
helpfulness of the retrieved internal-knowledge
rules, to align and update the knowledge bases.
Experiments with expert-curated test datasets
demonstrate that this ICL approach can in-
crease the F1 score for key fields (lesion size,
margin and solidity) by an average of 12.9%
over existing ICL methods.

1 Introduction

Lung lesion clinical data extraction from medical
imaging and clinical reports plays a crucial role in
enhancing the early detection and study of lung-
related diseases (Zhang et al., 2018; Huang et al.,
2024). Accurate automated extraction can reduce
the manual effort required by a radiologist or physi-
cian. As illustrated in Figure 1, given a report, the
task is to automatically extract information at the
finding level, where a finding refers to text describ-
ing one or more closely related lesions. Since a
report can have multiple findings, our task is to
detect all findings and to parse each of them into
a structured schema with pre-defined fields. (See
Figure 1 and Tables 8 and 9).

However, interpreting unstructured text in re-
ports presents a considerable challenge due to the
complexity and variability of medical language

[Source text]
02/16/22 pet/ct identified 5.5 m m  with SUV of 12.3 pulm onary 

nodule rl l , previously 5 m m  and two subpleural noncalcified 
loculated ground glass up to 2.2 m m  nodular densit y in rul.

        
        Imaging Procedure: pet/ct
        Procedure Date: 2022-02-16
        Lung RADS: none
        N umber of Lesion: 1
        Lesion Size: 5.5 mm
        Lesion Type: nodule
        SU V: 12.3,
        Lesion Description: none
        Location: rll
         
  

Imaging Procedure: pet/ct
Procedure Date: 2022-02-16
Lung RADS: none
N umber of Lesion: 2
Lesion Size: up to 2.2 mm
Lesion Type: nodules
SU V: N one,
Lesion Description: subpleural noncalcified                            

  loculated ground glass
Location: rul     

Location Description: subpleural
M argin: loculated
Solidity: ground glass
Calcification: noncalcified
Cavitation: none

Lung lesion finding detect ion

Lesion descr ipt ion extract ion

lung- related rule: Look for mentions of ?nodule? 
or ?mass? within the lung lobes.

lung- ir relevant rule: Findings related to other 
organs without any mention of lung lesions.

Lung lesion finding detect ion

Finding #1

Finding #2

Figure 1: Example of lung lesion information extraction.
Two findings (one describing a single lesion, and the
other, two lesions) were identified in the source text. Ex-
ample rules from the generated internal knowledge base
are shown. First-stage finding detection and primary
structured field parsing is followed by a second stage
that further parses lesion description text.

(Wang et al., 2018). Creating specialized super-
vised machine learning models for specific med-
ical terms can be effective but is often resource-
intensive (Spasic et al., 2020). Recently, large lan-
guage models (LLMs) have emerged as valuable
assistive tools for general clinical data extraction
(Singhal et al., 2023; Thirunavukarasu et al., 2023).

Nonetheless, using LLMs for clinical data extrac-
tion suffers from several challenges. First, LLMs
often miss fine-grained details in clinical data ex-
traction (Ji et al., 2023; Dagdelen et al., 2024),
due to a lack of domain-specific knowledge. The
extraction of lung lesion information requires an
understanding of specialized fields (such as margin
and solidity) that are not included in predefined
schemas (Linguistic Data Consortium, 2006, 2008).
Second, for extracting complex domain-specific
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fields, LLMs often fail to understand nested sub-
fields (Chen et al., 2024), and as a result, they may
generate structurally inconsistent outputs.

To provide an automated method of clinical data
extraction that addresses the above limitations, we
propose a two-stage LLM framework that uses an
internal knowledge base that is iteratively aligned
with an expert-derived external knowledge base
using in-context learning (ICL). Specifically, we
first create the internal knowledge base by utiliz-
ing a manually curated medical report training cor-
pus to generate references. The references that are
deemed relevant to new input reports are converted
into a set of higher-level rules that comprise the in-
ternal knowledge base. When extracting data from
a report, rules from the internal knowledge base
are retrieved and graded by our system to improve
alignment with the external knowledge base. This
process enhances the effectiveness of finding de-
tection by leveraging relevant extraction patterns
that are aligned with external knowledge. Lastly, to
address the challenge of extraction of nested fields,
we first extract an unstructured lesion description
text field for each finding, then parse the descrip-
tion text into structured fields as a separate task that
employs a more instructed approach (Figure 1).

We validate our approach through experiments
using a curated dataset from a real-world clinical
trial that includes annotations from medical experts.
In addition, we define a new field schema for the
lung lesion extraction task that may be useful for
related lung disease studies. Our results demon-
strate improvements in the accuracy of lung lesion
clinical data extractions when using our framework
compared to existing ICL methods.

2 Methodology

2.1 Task Definition

Our task is to extract lung lesions findings from
clinical and imaging reports. Key fields include
imaging procedure, lesion size, margin, solidity,
lobe, and for PET/CT, standardized uptake value
(SUV). 1 Extraction of the above fields is use-
ful for oncology research and to support clinical
care (American Cancer Society, 2024).

2.2 Clinical Data Extraction Framework

Given input reports X , an internal knowledge
base (KB) containing LLM-generated rules D =

1Details on the meaning of these fields, along with a com-
plete list of extraction fields, are provided in Table 5.

{d1, ..., dN}, and an expert-curated external KB
K = {k1, ..., kM}, our system aims to generate the
extracted fields as Y .

Our framework for aligning the KBs uses a re-
triever R and a grader G. The retriever R re-
trieves the top k rules D̃ = {d1, ..., dk} that are
relevant to the input X from D. The grader G
then further selects and attempts to improve the
rules D̃ based on the input X and retrieved exter-
nal knowledge K̃ = R(K|D̃) from K, resulting in
D̂ = G(D̃|X , K̃), where D̂ are knowledge aligned
rules. By adding the improved D̂ to the default
prompt, an LLM extracts the fields from reports X
into our structured lesion field schema Y .

2.3 Lung Lesion Knowledge Base
Construction

We construct two KBs: an internal one generated
by an LLM-based rule generator module using a
small labeled training set, and an external one using
expert knowledge resources.

Internal Knowledge Base Construction Using
a small training set of annotated reports with lung
lesion and non-lung lesion findings, we first ask
the rule generator (implemented by an LLM) to
create lung-related and lung-irrelevant references.
A reference takes the following form:

source text “Additional soft tissue nodular density
in the right upper lobe measuring 1.3 cm.”

explanation “This finding is described as a ’soft
tissue nodular density’ measuring 1.3 cm, lo-
cated in the right upper lobe. It may indicate
a small mass or nodule.”

To transform these references into more gen-
eral, reusable rules, we next prompt the rule gen-
erator to identify common properties among the
references and to extrapolate. For example, lung-
related references often include measurements, so
an extrapolated rule might be: “Look for descrip-
tions that include measurements (e.g., ‘identified
5.5 mm’, ‘measures 1.8 x 1.2 cm’) which often in-
dicate lung lesions.” The rules are generated in a
multi-dialogue style, and the generation process
is illustrated in Table 6. These generalized rules
make up our internal knowledge base, denoted as
D, consisting of lung-related and lung-irrelevant
rules. Example rules are provided in Table 3. We
prioritize the lung-irrelevant rules since they assist
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Retr iever

Stage 1:
Lung lesion  

finding detect ion

Clinical 
&  

Im aging Repor ts

Prom pt: 
1.Task instruct ion 
2.Repor ts 
3.Few-shot sam ples 
4. Aligned rules

Internal knowledge base 

Update

Response: 
1.Extracted fields
2. Source text 

Grader

Prom pt: 
1.Task instruct ion
2. Predefined vocabulary   
3. Extend context 
4. Few-shot sam ples   

Retr ieval

Grading

Two-stage extract ion

External knowledge base

Stage 2:
Lesion descr ipt ion 

extract ion

Response: 
Extracted sub- fields 

Rule 
generator

Figure 2: Framework for two-stage knowledge conditioned clinical data extraction. The Æ symbol indicates that
the module is implemented by prompting an LLM. Rules used in prompts for lesion finding detection are derived
from the internal knowledge base and aligned with external knowledge by a grader. Unstructured lesion description
text is extracted in stage 1. In stage 2, this text is parsed into structured fields by providing the LLM with additional
specialized inputs, including a controlled vocabulary.

LLMs in distinguishing findings that are not re-
lated to the lungs, thereby reducing false positives
in inference.

External Knowledge-base Construction We
manually identify external domain-specific knowl-
edge from authoritative sources, including clinical
guidelines2,3,4 and expert medical opinions. The
collected information is divided into chunks and
stored in a local database for easy retrieval. The
chunk size is 1000 with an overlap of 200 for in-
dexing. The external KB, denoted as K, encom-
passes a diverse range of content formats, including
structured data, textual information, and procedural
guidelines.

2.4 Retriever & Grader

Retriever Given reports X , the retriever module
R is responsible for identifying the top-k relevant
lung-related and lung-irrelevant rules from the in-
ternal KB D. This retrieval process matches the
input reports with the most pertinent rules and re-
turns these as D̃ = R(D|X ).

2https://radiopaedia.org/
3https://radiologyassistant.nl/
4https://www.cancer.org/cancer/types/lung-

cancer/detection-diagnosis-staging.html

For each rule d ∈ D̃, the retriever R also re-
trieves K̃ = R(d,K) from the external KB K for
use by the grader G for knowledge alignment.

Grader To improve the quality of the retrieved
rules D̃, we introduce a grader G, also implemented
with an LLM. The grader is assigned two tasks
and iterates over these tasks to refine the rules in
internal KB D.

First, G grades the rules in D̃ with a truthfulness
score, an integer ranging from 1 to 3, by compar-
ing each d against retrieved external knowledge
K̃ = R(d,K) and assessing its alignment with au-
thoritative sources. If the truthfulness score of a
rule falls below a threshold, the grader removes
the rule from D and generates revised rules that
are added back to D. Second, the grader G assigns
the aligned rules in D̂ a helpfulness score based on
their relevance to the input reports X . The help-
fulness score is an integer ranging from 1 to 5. To
assess helpfulness, the grader analyzes how well
each rule supports the extraction and interpretation
of information from X . Rules that do not meet the
helpfulness threshold are removed from D̂. This
process is repeated for each rule d over I iterations,
with I determined through practical experience.
This iterative approach helps refine the alignment
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Algorithm 1 Grading Algorithm
Input: imaging and clinical reports X , retriever
R, grader G, retrieved internal rules D̃, external
knowledge K, number of iterations I , thresholds.
Output: aligned rules D̂, updated internal KB D.

1: Initialize D̂ = ∅;
2: for i = 1 to I do
3: for d ∈ D̃ do
4: K̃ = R(d,K);
5: T = Gtruthfulness(d, K̃);
6: if T < thresholdT then
7: D = D \ {d};
8: d = Galign(d, K̃);
9: D = D ∪ {d};

10: end if
11: D̂ = D̂ ∪ {d};
12: end for
13: for d ∈ D̂ do
14: H = Ghelpfulness(d,X );
15: if H < thresholdH then
16: D̂ = D̂ \ {d};
17: end if
18: end for
19: end for

of the rules, ensuring that only the most relevant
ones are retained in D̂. The prompts for assessing
truthfulness and helpfulness can be found in Table
7.

The final set of high-scoring rules D̂ is used in
prompts for lesion finding extractions. This itera-
tive process is intended to increase the likelihood
that rules in the updated D̂ yield outputs with the
desired properties. The full grading algorithm is
detailed in Algorithm 1, where Galign returns the
aligned rule based on retrieved external knowledge.

2.5 Two-stage Extraction

Clinical data often contain nested information. For
example, an imaging report may include two find-
ings described in a single phrase: “2 adjacent
pulmonary nodules within the left lower lobe, the
larger of the two measuring 5mm with an SUV of
2.39.” In cases like this, the LLM often fails to
detect the second finding because it is not well
separated from the first finding in the text.

To address this limitation, we decompose the
clinical data extraction task into two stages: (i)
lung lesion finding detection and primary struc-
tured field parsing, followed by (ii) further parsing
of lesion description text.

For the first stage, we use D̂ as a part of the
LLM prompt for the lung lesion finding detection,
along with task instructions, the input reports, and
few-shot samples (Table 8). The second stage aims
to extract additional structured fields from the le-
sion description text. D̂ does not contribute in the
second stage, as the set of valid terms to describe
lesion description fields is limited. Instead, we pro-
vide the LLM with a controlled vocabulary based
on the SNOMED ontology (SNOMED, 2024) (Ta-
ble 9). We also note that the lesion description
alone is often insufficient, since information missed
in the first stage can lead to errors in subsequent
extraction steps. To mitigate this issue, the sec-
ond stage prompt combines the extracted lesion
description text with the full source text from the
first stage, to extend the context for extracting le-
sion description fields.

The two-stage extraction workflow is illustrated
in Figure 2.

3 Experiments

3.1 Datasets

Our work utilizes clinical and imaging reports from
Freenome’s Vallania study (ClinicalTrials.gov,
NCT05254834), which include lung cancer screen-
ing and other clinical results. Clinical experts man-
ually identify all lung lesion findings and extract
relevant fields based on our annotation schema (Ta-
ble 5). To develop a gold standard dataset for per-
formance evaluation, 19 subjects are randomly sam-
pled. These subjects have a total of 31 clinical and
30 imaging reports, resulting in 189 findings. We
randomly select 9 of these subjects as the training
set, with the remaining 10 designated as the test
set. Dataset and annotation details are discussed in
Appendix A.1.

3.2 Evaluation Metrics

For a given test report, the gold standard findings
and the system-detected findings may differ in num-
ber and/or ordering. The two sets of findings need
to be aligned to one other. To achieve this, we
perform an additional matching step and use the
Hungarian algorithm5 to match the gold-standard
and system-detected findings. All extracted fields
are used to construct the cost matrix for matching.
We report micro precision, recall, and F1 scores for
the extraction task.

5https://en.wikipedia.org/wiki/Hungarian_
algorithm

https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Hungarian_algorithm
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Stage Fields Default Prompts CoT RAG Ours

P R F1 P R F1 P R F1 P R F1

# 1

Image procedure 78.2 63.6 70.1 79.5 64.2 71.0 75.3 61.1 67.5 86.5 72.7 79.0
Lesion size † 85.9 82.1 84.0 87.3 84.2 85.7 83.0 78.5 80.7 92.8 85.8 89.1
SUV 76.0 73.1 74.5 77.4 74.3 75.8 72.5 69.4 70.9 86.6 74.0 79.7
Lesion type 83.7 67.3 74.6 85.1 68.7 76.1 80.2 63.9 71.2 88.1 73.6 80.2
Lobe 72.7 60.4 66.0 74.0 61.5 67.2 70.0 57.5 63.0 81.9 69.6 75.2

#2

Margin † 68.4 65.0 66.7 68.5 67.5 67.5 75.0 63.2 68.6 90.0 76.3 82.4
Solidity † 65.0 35.7 45.7 67.3 36.9 47.7 77.1 27.8 40.7 96.9 55.6 69.2
Calcification 87.7 61.0 71.6 89.0 62.1 73.2 76.0 62.8 67.5 88.8 67.8 75.7
Cavitation 50.0 100.0 66.7 60.0 100.0 73.4 50.0 100.0 66.7 87.5 100.0 91.7

Table 1: Overall precision (P), recall (R), and F1 scores evaluated on the test set. The results are averaged over 5
runs. The best results are marked in bold, and second best are underlined. Fields extracted in stage 1 vs. stage 2 are
indicated. Fields marked with † are the clinically most important fields.

3.3 Module Implementation
The LLMs used for rule generation, the grader, lung
lesion finding detection, and lesion description ex-
traction are based on the official API of the Google
PaLM2 model (Anil et al., 2023). All prompts used
with LLMs are listed in Appendix A.3.

We use retriever R to obtain the top k relevant
internal knowledge rules D̃ = R(D|X ) and re-
trieve external knowledge K̃ = R(D̃,K) based
on semantic similarity to D̃. Specifically, we use
the text embedding API (text-embedding-004) from
Google (Google Vertex AI, 2024) to obtain the em-
beddings of X , D, and K. Cosine similarity is used
for semantic similarity scores. For hyper-parameter
settings used in our system, refer to Table 10.

3.4 Comparison Baselines
As there is no prior work on lung lesion extraction
using LLMs with our curated real-world dataset,
we apply commonly-used ICL baseline methods
and compare against the following:

Few-shot Learning Here, the LLM is provided
with a small number of gold standard examples as
a part of the basic prompts used for lesion finding
detection and lesion description extraction (Brown
et al., 2020). These prompts, referred to as de-
fault prompts, do not include any knowledge base
content or additional guidance. We report results
based on these default prompts, and other methods
incrementally build upon them.

Chain of Thought (CoT) Additional instructions
are added in the default prompts to guide the LLM
to break down the lesion finding detection task into
simpler, sequential steps by thinking step by step
(Wei et al., 2022b). CoT is not applied at stage-two
because this task is straightforward to conduct.

Retrieval Augmented Generation (RAG) RAG
complements basic LLM queries, and it attempts to
reduce hallucination by introducing external knowl-
edge to improve the context (Lewis et al., 2020).
We implement a RAG approach that directly re-
trieves information from K and adds the retrieved
external knowledge chunks into the default prompt.
This approach does not use the internal KB (D).

3.5 Results and Analysis

Overall results The overall results are shown
in Table 1. We are especially interested in the
fields denoted with †, which include lesion size,
margin, and solidity, because these are often of
greatest clinical interest for cancer work (Nathan
et al., 1962; Khan et al., 2011).

In our experiments, the benefit of Chain of
Thought (CoT) reasoning is limited, as it appears
to be more effective for traditional multi-step rea-
soning tasks, rather than our specialized extraction
task (Wei et al., 2022a). The RAG implementation
also performs poorly in the lung lesion extraction
task — even worse than the default prompts. This
may be due to incorrect retrieval of external knowl-
edge based only on semantic similarity search, re-
sulting in adding noise to the prompt. This suggests
that the utility of the external knowledge (K) may
be constrained without first attempting to align it
to the specific extraction task. Unlike RAG, our
method first generates internal knowledge related
to the specific extraction task. External knowledge
is then utilized solely to align and update the in-
ternal knowledge. Results in Table 1 suggest that
this improves the quality of our method’s generated
rules.

Our model outperforms all ICL baselines across
all fields, particularly excelling in the † fields, with
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Stage Fields w/o knowledge w/o context w/o grading Ours

P R F1 P R F1 P R F1 P R F1

# 1

Image procedure 78.2 63.6 70.1 86.5 72.7 79.0 84.6 61.7 71.4 86.5 72.7 79.0
Lesion size † 85.9 82.1 84.0 92.8 85.8 89.1 92.4 85.1 88.5 92.8 85.8 89.1
SUV 76.0 73.1 74.5 86.6 74.0 79.7 85.7 69.2 76.6 86.6 74.0 79.7
Lesion type 83.7 67.3 74.6 88.1 73.6 80.2 91.2 69.8 78.9 88.1 73.6 80.2
Lobe 72.7 60.4 66.0 81.9 69.6 75.2 80.8 63.2 70.8 81.9 69.6 75.2

# 2

Margin † 68.6 67.8 67.2 85.8 75.0 80.0 84.5 66.7 74.1 90.0 76.3 82.4
Solidity † 91.7 37.0 52.6 95.0 44.4 60.1 90.0 55.7 65.8 96.9 55.6 69.2
Calcification 100.0 57.1 72.7 80.4 64.3 70.1 83.3 71.4 73.3 88.8 67.8 75.7
Cavitation 55.6 100.0 71.5 75.0 100.0 83.4 66.7 100.0 77.8 87.5 100.0 91.7

Table 2: Ablation study on our two-stage knowledge conditioned model. Note that the performance of the model in
the first stage without extended context (“w/o context”) is the same as our full model, as the context extension is
only applied during the second extraction stage.

an average of 12.9% increase in F1 score. Specifi-
cally, it achieves a 3.4% improvement in lesion size,
over 13.8% in margin, and a 21.5% improvement
in solidity.

Ablation Study To assess the contribution of
each component of our method, we conduct ab-
lation tests by removing each main module. The
ablation results are listed in Table 2.

Notably, there is a significant performance de-
crease in the model that does not use the knowl-
edge bases (“w/o knowledge”), indicating the im-
portance of incorporating domain knowledge. Fur-
ther, because lesion finding extraction quality de-
grades when the KBs are ignored, the quality of
stage 2 lesion description extraction also degrades.
Next, the model that omits providing extended con-
text and the SNOMED controlled vocabulary for
stage 2 (“w/o context”), performs worse for stage
2 fields. This indicates that extended context in
stage 2 prompts can help prevent error propagation
from stage 1, and that the controlled vocabulary
standardizes the extraction of lesion description
fields. Finally, we observe that the performance of
the model that does not use the grader for knowl-
edge alignment (“w/o grading”) varies significantly
across runs, suggesting that the grader’s alignment
role improves consistency and reduces noise.

3.6 Discussion

Case Study of Internal Knowledge In our
knowledge conditioned model, the grader itera-
tively updates the internal knowledge if a rule’s
truthfulness score falls below a threshold, which is
a hyper-parameter in our experiments.

To better understand the impact of the aligned
rules in the internal KB, we identify the most

frequently picked lung-related and lung-irrelevant
rules from the test set (Table 3). Rules about nod-
ules and masses are frequently picked, as these are
two commonly used terms for lung lesion types.
(See rules #2 and #3 in Table 3.) We also observe
that the LLM tends be better at detecting lung le-
sion findings with explicit lesion sizes, using these
as an anchor point to extract the full finding. Solid-
ity information is sparse in clinical data, but there
are many cases where the finding does not have
size information yet it describes solidity. Terms
like solid, partly solid, and groundglass often refer
to the solidity field. Rule #1 in Table 3 contributes
to the LLM’s ability to detect lesion findings that
reference lesion solidity.

For lung-irrelevant rules, the top-picked rule re-
lates to findings in other organs, such as liver and
kidney, without any mention of lung. Obviously,
a rule of this type helps in distinguishing between
relevant and irrelevant findings.

Effect of Retriever Top-k To determine the opti-
mal k values for internal knowledge retrieval, we
perform a grid search using the training set, eval-
uating the performance of lesion size extraction.
Different values for k are considered for both lung-
related and lung-irrelevant rules. As shown in Fig-
ure 3, the best extraction performance was observed
when k = 2 for lung-related rules and k = 1 for
lung-irrelevant rules. We use these optimal k val-
ues for extraction in the test set. An interesting
finding is that using only a few rules contributes
significantly to improving lesion size extraction
performance.
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Category Rule # Picked Rule

Lung-related
#1 { "pattern": "solid | partly solid | groundglass", "rule": "Clinical notes mentioning ‘solid’, ‘partly

solid’, ‘groundglass’ could indicate pulmonary nodule findings." }
#2 { "pattern": "nodule", "rule": "Look for descriptions that mention ‘nodule’, which often indicate

lung lesions." }
#3 { "pattern": "mass", "rule": "Look for descriptions that mention ‘mass’ which often indicate lung

lesions." }

Lung-irrelevant #4 { "pattern": "liver | kidney | other organs", "rule": "Findings related to other organs (e.g., liver,
kidney) without any mention of lung lesions." }

Table 3: Most frequently picked lung-related and lung-irrelevant rules in test dataset.
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Figure 3: Heatmap of lesion size extraction performance
with varying values for the retriever’s top-k hyper-
parameter, for both lung-related and lung-irrelevant
rules.

4 Related Work

4.1 Clinical Information Extraction
Early work in clinical information extraction fo-
cused on rule-based systems and supervised ma-
chine learning techniques (Savova et al., 2010;
Wang et al., 2018; Barrett et al., 2013; Denny et al.,
2010; Mehrabi et al., 2015; Roberts et al., 2012; Li
et al., 2015), which were labor-intensive to create
and required a process that lacked scalability.

Recently, deep learning models, especially
transformer-based architectures, have shown
promise in clinical information extraction (Zhong
et al., 2022; Spasic et al., 2020). These models
reduce the need for extensive feature engineering,
but they rely on high-quality annotated data.

In the past few years, LLMs have been applied
to clinical information extraction (Goel et al., 2023;
Wornow et al., 2024). LLMs can extract multi-
ple fields simultaneously without requiring labeled
training data for each field. While LLMs show
promise in accelerating this process, high error

rates and frequent hallucinations still necessitate
manual review. We propose a fully automated ap-
proach using novel techniques to improve accuracy
and mitigate hallucinations.

4.2 Reference-guided Extraction

The idea of using external references or knowl-
edge sources to guide information extraction has
been explored in various domains, including clin-
ical NLP (Demner-Fushman and Lin, 2005). Re-
searchers have investigated the use of medical on-
tologies, knowledge bases, and domain-specific
corpora to improve the performance of clinical
information extraction systems (Goswami et al.,
2019; Jin et al., 2022; Kiritchenko et al., 2010).
These approaches typically involve incorporating
external knowledge sources into the model architec-
ture, or using them as auxiliary inputs during train-
ing or inference. However, existing methods may
not fully leverage the evolving knowledge avail-
able in clinical references (Yan et al., 2024). In
contrast, our system dynamically aligns and refines
references with external knowledge, allowing for
easy updates as new knowledge becomes available.

5 Conclusions

In this paper, we propose a novel framework for ex-
tracting lung lesion information from clinical and
imaging reports using LLMs. Our approach aligns
internal and external knowledge through in-context
learning (ICL) to enhance the reliability and accu-
racy of extracted information. By dynamically se-
lecting and updating internal knowledge and using
external knowledge solely for internal-knowledge
updates, our method outperforms commonly used
ICL methods over data from real-world clinical
trials. It excels in accurately detecting and extract-
ing the most clinically relevant lesion information,
such as lesion size, margin, and solidity.
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Ethical Considerations

We recognize the importance of meeting all ethical
and legal standard throughout our work, particu-
larly in handling sensitive medical data and PII.

The clinical data used in this study may not be
shared or distributed. All PII in the data used for
this work have been fully redacted, to protect pa-
tient identities and adhere strictly to all relevant
regulations, laws and guidelines. Our commitment
to data security extends to our model development
process, which is limited to the use of privacy
friendly Google Cloud LLMs. This tool has been
approved by our Data Governance Committee, en-
suring that our practices align with institutional
guidelines and maintain the highest standards of
data security and compliance.
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Lesion Total Training Test

Subjects 19 9 10
Clinical reports 31 16 15
Imaging reports 30 14 16
Total findings 189 81 108

Table 4: Manually annotated lung lesion dataset statis-
tics.

A Appendix

A.1 Data Preparation and Annotation
We use a real-world dataset collected from a case-
control, multicenter diagnostic study designed to
gather blood samples for the development of blood-
based screening tests. In the collected clinical and
imaging reports, all personally identifiable informa-
tion (PII) had been previously redacted. The textual
information within these reports is extracted using
optical character recognition (OCR) via Google’s
Cloud Vision API (Google Vision, 2024).

Two annotators with clinical expertise manually
identify all lung lesion findings and extract relevant
fields based on our annotation schema (Table 5).
The inter-annotator agreement (IAA) is assessed
using 10 reports reviewed by both annotators and
calculated using Cohen’s κ. The 10 reports include
5 clinical notes and 5 radiology reports from 2
subjects. The average Cohen’s κ value for 9 lesion
fields is 0.86. In cases where discrepancies are
found, a third clinician participates to resolve the
differences and ensure consensus. The counts of
subjects, reports, and findings in the training and
test splits are listed in Table 4.

A.2 Lung Lesion Annotation Schema
According to the Lung-RADS guidelines 6, the full
annotation schema is described in Table 5.

A.3 Prompts
The system prompts for rule generator, grader, lung
lesion finding detection, and lesion descrition ex-
traction are presented in Table 6, 7, 8, and 9, re-
spectively.

A.4 Hyper-parameters
The hyper-parameter settings for all modules are
listed in Table 10.

6https://www.acr.org/-/media/ACR/Files/RADS/Lung-
RADS/Lung-RADS-2022.pdf
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Field Description

Evaluator Signed On The medical expert who signs the report, such as a physician, medical examiner,
or pathologist. The expert’s signature verifies the report and confirms their
agreement with the findings and opinions.

Date of Report Signed The date the medical expert signs the report.

Imaging Procedure The imaging procedure identifying the pulmonary lesion, including documenta-
tion or comparisons of previous procedures.

Date of Imaging Procedure Performed The date the imaging procedure is performed.

Lesion SeqNo An auxiliary variable to help track the number of lesions described in a report,
listed in chronological order if dates are available.

Number of Lesions Indicates whether the lesions are solitary or multiple.

Lesion Size (mm) Size can be reported in diameter, area, or all three dimensions (width, height,
depth). Usually measured in millimeters; convert from centimeters if necessary.

SUV The reported standard uptake value of the nodule, which may be provided even
if lesion size is not mentioned.

Lesion Type Terms used in medical imaging to describe small growths in the lungs, differing
mainly in size. A pulmonary nodule is a rounded opacity ≤ 3 cm in diameter,
while a pulmonary mass is > 3 cm. A pulmonary cyst is an air- or fluid-filled sac
within lung tissue.

Lobe The lobe of the lung where the nodule is located.

Lesion Description Detailed description of the pulmonary lesion.

Margin Describes the edge characteristics of the lesion, such as ‘spiculated’, ‘well-
defined’, or ‘irregular’.

Solidity (Morphology) Refers to the shape and structure of the lesion, such as ‘ground glass’, ‘partly-
solid’, or ‘solid’.

• For solid and part-solid nodules, the size threshold for an actionable nodule
or positive screen is ≥ 6 mm.

• For nonsolid (ground-glass) nodules, the size threshold is ≥ 20 mm.

• On follow-up screening CT exams, the size cutoff is ≥ 4 mm for solid and
part-solid nodules and/or an interval growth of ≥ 1.5 mm of preexisting
nodule(s).

Calcification Indicates if the pulmonary nodules are calcified.

Cavitation A gas-filled space within the lung tissue.

Lung RADS Score Lung-RADS is a classification system for findings in low-dose CT (LDCT)
screening exams for lung cancer. Examples include ‘4A’, ‘4B’, and ‘4X’.

Table 5: Lung lesion annotation schema.
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Role Prompt

System You are a pulmonary radiologist. Your task is to extract key findings from the
clinical or imaging reports.

User How many findings of Lung Lesions are present in the following text: {text}
System {lesion_number}
User Please provide detailed explanations.
System {detailed_explanations}
User Only {num_findings} findings should be classified as Lung Lesions, explain

why they are and why the remaining findings are not. Return in JSON format of:
{"lung lesion findings": ["referred text": "reason of being lung
lesion finding"], "none lung lesion findings": ["referred text":
"reason of not being lung lesion finding"]}

System {references}
User Transform the references into generalized, reusable rules by abstracting common

properties. Format the output in the following JSON structure: ["pattern":
"example pattern", "rule": "example rule description"]

System {lung-relevant rules, lung-irrelevant rules}

Table 6: Multi-dialogue prompt template of rule generator.

You are a grader assessing the helpfulness and truthfulness of retrieved rules related to pulmonary (lung) lesions in the
context of pulmonary lesion findings..

Given the clinical or imaging report, please evaluate the helpfulness of each rule on a scale from 1 to 5, where:
1 means not helpful at all
2 means slightly helpful
3 means moderately helpful
4 means very helpful
5 means extremely helpful

Below is the clinical or imaging report:
{input_query}

Additionally, evaluate the truthfulness of each rule based on the retrieved knowledge on a scale from 1 to 3, where:
1 means not truthful at all
2 means partially truthful
3 means completely truthful

Provide a brief explanation indicating how the rule can help in the extraction of pulmonary lesion characteristics and how
the retrieved knowledge supports or refutes the rule.

Below is the retrieved external knowledge:
{external_knowledge}

Table 7: Prompt template for grader to assess helpfulness and truthfulness. Note that we chose a range score of 1-5
for truthfulness in our sample study, but extreme values of 1 and 5 are rare, so we set the range to 1-3.
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You are a pulmonary radiologist. Extract key findings from the clinical or imaging report and organize them into the
provided JSON structure.

Use the following JSON template as a guide:
[

{
"Imaging Procedure": "Enter imaging procedure here or 'None'",
"Procedure Date": "Enter date in YYYY-MM-DD format here or 'None'",
"Lung RADS": "Enter Lung RADS category here or 'None'",
"Number of Lesion": "Enter number of lesion here or 'None'",
"Lagest Lesion Size": "Enter lesion size here",
"Lesion Type": "Enter lesion type here",
"SUV": "Enter SUV here or 'None'",
"Location": "Enter location here or 'None'",
"Lesion Description": "Enter Lesion Description here or 'None'",
"Text Source": "Enter text source here or 'None'",

},
{

// Add additional finding as needed

},
] // Lung Lesion Findings

Below is the clinical or imaging report:
{input_query}

Below are some examples for reference:
{few_shot_samples}

Below are some lung-related rules for reference:
{corrected_rules}
Below are some lung-irrelevant rules for reference:
{corrected_rules}

Table 8: Prompt template for stage-1 lung lesion finding detection.

You are a pulmonary radiologist. Please extract location description, margin, solidity, calcification, cavitation from lesion
description and organize them into the provided JSON structure.

Use the following JSON template with preferred vocabularies as a guide:
{

"location description": "Enter location description here or 'None'",
"margin": "Enter margin description here, preferably from the vocabulary

['spiculated', 'rounded', 'ill-defined', 'irregular', 'lobulated'] or 'None'"
"solidity": "Enter solidity description only from the fixed vocabulary ['solid',

'partly solid', 'groundglass', 'ground-glass',
'groundglass and consolidative'] or 'None'",

"calcification": "Enter calcification description here,
preferably from ['noncalcified'] or 'None'",

"cavitation": "Enter cavitation description here,
preferably from ['mildly cavitary', 'cavitary'] or 'None'"

}

Below is the lesion description text:
{lesion_description_text}

Below is the full text of report containing the finding for reference:
{source_text}

Below are some examples for reference:
{few_shot_samples}

Table 9: Prompt template for stage-2 lesion description text structured data extraction.
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Module Hyper-parameter Value

Rule generator temperature 0.9
top_p 1

Retriever
retrival threshold for external knowledge 0.9
retrieved top-k lung-related rule 2
retrieved top-k lung-irrelevant rule 1

Grader
number of interations I 3
truthfulness threshold 2
helpfulness threshold 4

Lesion finding detection temperature 0.2

Lesion description extraction temperature 0.2

Table 10: Hyper-parameter settings used by our clinical data extraction system.
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