
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track, pages 286–294
January 19–24, 2025. ©2025 Association for Computational Linguistics

286

LLM Evaluate: An Industry-Focused Evaluation Tool for
Large Language Models

Harsh Saini, Md Tahmid Rahman Laskar, Chen Cheng, Elham Mohammadi, David Rossouw
Dialpad Inc.

{hsaini, tahmid.rahman, cchen, elham.mohammadi, davidr}@dialpad.com

Abstract
Large Language Models (LLMs) have demon-
strated impressive capability to solve a wide
range of tasks in recent years. This has in-
spired researchers and practitioners in the real-
world industrial domain to build useful prod-
ucts via leveraging LLMs. However, exten-
sive evaluations of LLMs, in terms of accuracy,
memory management, and inference latency,
while ensuring the reproducibility of the results
are crucial before deploying LLM-based solu-
tions for real-world usage. In addition, when
evaluating LLMs on internal customer data, an
on-premise evaluation system is necessary to
protect customer privacy rather than sending
customer data to third-party APIs for evalua-
tion. In this paper, we demonstrate how we
build an on-premise system for LLM evalua-
tion to address the challenges in the evaluation
of LLMs in real-world industrial settings. We
demonstrate the complexities of consolidating
various datasets, models, and inference-related
artifacts in complex LLM inference pipelines.
For this purpose, we also present a case study
in a real-world industrial setting. The demon-
stration of the LLM evaluation tool develop-
ment would help researchers and practitioners
in building on-premise systems for LLM evalu-
ation to ensure privacy, reliability, robustness,
and reproducibility.

1 Introduction

LLMs have drawn lots of attention recently in both
academia and industries (Bang et al., 2023; Zhao
et al., 2023). This has led to rapid advancement
in building LLM-based applications to solve real-
world problems (Fu et al., 2024; Laskar et al.,
2023b). However, deploying LLMs in the real
world is not trivial. In real-world industrial sce-
narios, LLMs are required to go through exten-
sive evaluations across benchmark datasets and
tasks (Chang et al., 2024; Biderman et al., 2024).
Thus, it is crucial not only to achieve high accu-
racy but also to enhance runtime speed, maintain

low memory usage, and protect customer privacy
to minimize production costs. Additionally, due to
the open-ended nature of responses generated by
LLMs, parsing is often needed to evaluate these re-
sponses using various metrics (Laskar et al., 2023a,
2024a). These evaluations should be extensible
to ensure fair evaluation and reproducibility, espe-
cially since diverse teams may contribute to LLM
development in industrial contexts. Therefore, con-
solidating these requirements into a comprehensive
evaluation platform is a challenging but necessary
task when building LLM-based features in large
organizations.

While many frameworks already help address
several portions of the LLM evaluation workflow,
such as the HELM1 project, the Big-Bench initia-
tive (Srivastava et al., 2022; Suzgun et al., 2022),
LM Evaluation Harness (Biderman et al., 2024),
OpenAI evals2, OpenICL (Wu et al., 2023), and
LLMeBench (Dalvi et al., 2023); an industry-
standard on-premise evaluation tool that addresses
all the requirements mentioned above is still miss-
ing. In an industrial context, there may be a
large team consisting of scientists, software engi-
neers, and product managers, who may work semi-
autonomously on various projects utilizing LLMs.
On several occasions, they may need to compare
multiple commercially available LLMs (both open-
source and closed-source), as well as internally
fine-tuned LLMs on different tasks and metrics. In
such scenarios, evaluation tools should ensure ease
of usage, especially for users who do not have ex-
tensive technical expertise (e.g., coding or machine
learning knowledge). As many projects may span
multiple months, it is required to ensure that these
comparisons work with new releases and updates
to the models, datasets, and other accompanying ar-
tifacts. This poses challenges to the reproducibility

1https://crfm.stanford.edu/helm/
2https://github.com/openai/evals

https://crfm.stanford.edu/helm/
https://github.com/openai/evals


287

and repeatability of the evaluation process with a
heterogeneous set of resources. Meanwhile, many
of the existing evaluation tools are required to be
used via leveraging API endpoints. Therefore, it
may not be possible to use these endpoints to eval-
uate LLMs on sensitive in-house data.

To address these challenges, we have developed
a low-code on-premise LLM evaluation tool to help
team members reuse large portions of a standard-
ized boilerplate with a seamless implementation
to speed up their workflows while also adhering
to a specification that is common for the team and
reproducible by any member. This tool provides
key features required (but missing from existing
tools) for evaluating LLM-powered applications in
the real world such as multi-query prompt (Laskar
et al., 2024b) support, customizable parsing, and
other runtime-specific metrics. In this paper, we
demonstrate how we build an LLM evaluation tool
for real-world industrial scenarios such that prac-
titioners across diverse industries can easily de-
velop similar tools to conduct a comprehensive
evaluation of LLMs by ensuring reliability, repro-
ducibility, and privacy before their targeted deploy-
ment. In the following section, we first present
a scenario in the real-world industrial context to
build a product feature powered by LLMs. We
discuss the limitations of existing LLM evaluation
tools while using them to evaluate various compo-
nents of the product feature and the importance of
building an on-premise system for LLM evaluation.
Our proposed industry-focused LLM evaluation
tool, LLM Evaluate, is made publicly available at
https://github.com/talkiq/llm-evaluate.

2 Case Study: Evaluating a Real-World
Industrial Feature Powered by LLMs

The main objective of this paper is to demonstrate
the development of an industry-focused LLM eval-
uation tool that addresses the challenges that are
posed in real-world scenarios while releasing prod-
uct features powered by LLMs. In this regard, we
present a real-world industrial scenario to build
an LLM-powered feature for a contact center for
certain use cases to ground the evaluation consid-
erations and requirements. More specifically, we
study the development of an LLM-powered fea-
ture named AiRecaps for a contact center which
essentially is an amalgamation of 4 separate tasks:

• Summarization: It is a feature that provides a
summary of the transcript generated for calls.

• Action Items: This feature provides a list of
delegated items for further follow-up post call.

• Call Purpose Categorization: This feature
provides a top-level category for a call based
on the main purpose of the call for easier dis-
ambiguation and analytics.

• Call Disposition Categorization: It is a fea-
ture that provides a top-level disposition label
on the outcome of the call.

Each of these tasks takes the entire transcript of
a call as context.

Requirements: Since the objectives for different
tasks in the AiRecaps feature differ significantly,
there are variations in terms of prompting, response
format, evaluation metrics, etc. For instance, both
single-purpose and multi-purpose prompts (Schul-
hoff et al., 2024; Laskar et al., 2024b) are used,
and the output format specified by the prompts
could vary from plain text to structured formats
such as JSON, YAML, or any other arbitrary for-
mat. Furthermore, the evaluation platform should
also support a variety of model frameworks. For
instance, it is necessary to ensure access to exter-
nally hosted APIs, locally loaded models in the
major ML frameworks such as Pytorch and Tensor-
flow, and other optimized model frameworks such
as llama.cpp3, TensorRT-LLM4, or VLLM5.

Since the AiRecaps feature that we are studying
is geared toward production use, the ability to mea-
sure compute costs, and runtime latency, alongside
benchmarking performance across heterogeneous
hardware platforms while maintaining user data
privacy is also necessary. In addition to traditional
evaluation metrics, it is important to address the
need for adding custom metrics to evaluate the mod-
els on proprietary datasets. For instance, measuring
the quality of the output from a business context
such as toxicity measurements and other genera-
tion quality measures (e.g., readability, repetitions,
etc.) are required to ensure user satisfaction. Given
these concerns, the following set of requirements
are needed to be fulfilled to evaluate AiRecaps:

- Evaluate both open and closed-source models.
- Support both public and proprietary datasets.
- Support for multi-purpose prompts.
- Measure runtime performance such as peak

memory usage, number of generated tokens, per
3https://github.com/ggerganov/llama.cpp
4https://github.com/NVIDIA/TensorRT-LLM
5https://github.com/vllm-project/vllm

https://github.com/talkiq/llm-evaluate
https://github.com/ggerganov/llama.cpp
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/vllm-project/vllm


288

Custom Datasets Custom Models API Models Multi-query prompts Custom Parsing Custom Metrics Runtime statistics

LLM-Eval ✗ ✓ ✓ ✗ ✗ ✗ ✗

Prometheus-Eval ✗ ✓* ✓ ✗ ✗ ✓* ✗

BenchLLM ✓ ✗ ✓ ✗ ✗ ✗ ✗

LLMeBench ✓ ✓* ✓ ✗ ✗ ✗ ✗

DeepEval ✓ ✓ ✓ ✗ ✗ ✓ ✗

Opencompass ✓ ✓ ✓ ✗ ✗ ✗ ✗

LM Evaluation Harness ✓ ✓ ✓ ✗ ✗ ✓ ✗

LLM Evaluation Tool (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Feature coverage of some popular, publicly available LLM evaluation platforms.

token latency, and overall latency.
- Support for independently defining customiz-

able metrics for real-world usage, such as assess-
ments of text generation quality.

- Support the parsing of outputs from different
format responses (e.g., JSON or YAML).

Limitations in Existing Tools: Given such a di-
verse nature of requirements, existing evaluation
frameworks fell short in terms of feature coverage.
Some of the recent and popular LLM evaluation
frameworks are reviewed and their feature cover-
age is demonstrated in Table 1. Based on our sur-
vey, we find several limitations in existing tools
that prevent the evaluation of AiRecaps tasks in
these tools. For instance, most of these existing
tools are aimed towards general-purpose evalua-
tion of LLMs, limited mostly within the academic
setting. They featured pre-built blueprints to eval-
uate against publicly available datasets and tasks,
using evaluation metrics that are not applicable in
business contexts, and the supports are mostly lim-
ited to API-based or public models. Many of these
tools also do not support the ability to add new
metrics, datasets, or models, while some tools only
have limited capability to support a feature (this
has been denoted using * in Table 1). While some
tools like LLMeBench (Dalvi et al., 2023), Open-
Compass (Contributors, 2023), and LM Evaluation
Harness (Biderman et al., 2024) come with diverse
features, the following issues limit their utilization
to evaluate AiRecaps tasks:

Restrictions to a set of models: Support lim-
ited to only API-based LLMs (e.g., OpenAI models
(OpenAI, 2023), Google’s Vertex Models (Team
et al., 2023), Claude6, etc.), or certain open-sourced
LLMs (e.g., LLaMA-2 (Touvron et al., 2023), Mis-
tral (Jiang et al., 2023), etc.)

Lacking support for optimized models: The
evaluation of optimized models (e.g., GPTQ (Fran-
tar et al., 2022), llama.cpp, Medusa-LLM (Cai

6https://www.anthropic.com/news/
claude-3-family

et al., 2024), etc.), which is important in real-world
scenarios is mostly missing.

Limited to only accuracy-based evaluation:
Missing statistics on GPU usage, alongside exten-
sive runtime latency measurement.

Parsing scripts lack generalizability: LLM
output parsing scripts are not applicable across re-
sponses generated by different LLMs in different
task-specific settings (e.g., multi-purpose prompts).

These features are largely missing in all tools
explored, which are often required for releasing a
high-quality LLM-powered product. To address
these concerns, we propose an industry-standard
LLM evaluation tool, which we demonstrate in the
following section.

3 System Details

The primary goal of the tool is to assist scientists in
speeding up evaluation workflows while building
LLM-powered features, to ensure reliability in eval-
uation, reproducibility in the experimental results,
and maintenance of privacy. When broken down,
the key features this tool supports are:

• Reliability: Support a wide range of LLMs,
both closed-source and open-source, as well
as internally trained, facilitating comparative
analysis across different combinations of mod-
els, datasets, and/or prompts.

• Privacy Preservation: Evaluate internally
trained LLMs on proprietary datasets.

• Compatibility: Compatible with the com-
monly used industry standard LLM frame-
works (e.g., Pytorch, HuggingFace, llama.cpp,
etc). For instance, in addition to the boiler-
plate created specifically for the tool, it sup-
ports (i) a pythonic interface that is compatible
with HuggingFace transformers for most open-
source LLMs, (ii) the HuggingFace evalu-
ate7 package for evaluation, (iii) HuggingFace

7https://github.com/huggingface/evaluate

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://github.com/huggingface/evaluate


289

Figure 1: High level overview of the LLM Evaluation Tool

datasets for external, API-hosted datasets.
More specifically, this tool interfaces these
libraries in a unified manner, enabling a hands-
free evaluation environment.

• Flexibility: Re-use existing prompt templates
and parsing scripts while allowing easy mod-
ifications of them. Re-use existing reliable
parsing scripts that can also be modified.

• Robustness: Measure accuracy alongside run-
time latency and memory usage.

• Reproducibility: Perform repeatable and re-
producible evaluations.

A high-level overview of the proposed LLM eval-
uation tool is shown in Figure 1.

3.1 Key Components
The tool can essentially be divided into the follow-
ing five components.

Dataset: A dataset is essentially an encapsula-
tion of the input data that needs to be provided
to the model for evaluation. A dataset can be de-
fined by key information such as its source, format
(e.g., CSV/JSON/etc.), and columns (input/output)
to load and process the data. A key distinction to
note here is that a single sample in a dataset can
comprise one or more tasks.

Task: A task is the actual objective that is to
be addressed by the model. A dataset can contain
one or more tasks, which provides metadata neces-
sary for correctly processing individual task-related
information for evaluation such as parsing.

Metric: A metric defines the measure to use
for evaluation of a model’s output given a task. A
metric is defined per task per dataset. It is possible
to define multiple metrics for a given task.

Parser: A parser (Laskar et al., 2024a) is an
intermediary processing layer that can be utilized

for both pre and post-model inference text process-
ing. The idea behind this layer is that it allows the
extraction of the target output from the descriptive
texts to a form that can be easily used to apply
various evaluation metrics.

Model: A model is the LLM that will be consid-
ered for evaluation. This model can be API based,
open-source, or an in-house model. In this regard,
a pythonic interface is defined to interact with the
model’s interface.

Benchmark: A benchmark is a template of a
set of tasks that should be performed for an evalua-
tion run. Basically, it comprises a list of datasets,
parsers, and metrics that define how we should
evaluate the performance of an LLM in various
datasets. The idea behind a benchmark is that a
group of datasets can be grouped together to form
a benchmark that can be independently invoked to
create a more semantic starting point for evaluation.

3.2 Initial Configuration

As described previously, the building blocks of the
tool are artifacts such as models, parsers, metrics,
datasets, and benchmarks. Out of the box, the
tool includes Python codes for loading models on
many popular frameworks such as PyTorch, Tensor-
Flow, HuggingFace Transformers, and HTTP API
models. Programming scripts related to commonly
used parsers and metrics are also included. Load-
ers for datasets from cloud storage or HTTP APIs
for different tasks are also packaged in the tool.
To allow team members from various backgrounds
to use the tool in a completely no-code environ-
ment, only the modifications of configuration files
defined in YAML format are enough. Once the
necessary blueprint is available, these files can de-
fine options such as the configuration necessary to
load a model. For instance, a model configuration



290

(see Table 2) defines the framework of a model,
e.g., HuggingFace transformers (Wolf et al., 2020),
and its more specific type, e.g., LLaMA-2-7B (Tou-
vron et al., 2023) model, any loading options, e.g.,
loading data type, and or any inference options,
e.g., sampling parameters during text generation.
This negates the need for redefinition of any code
artifacts if the tool needs to evaluate any model
leveraging the same model blueprint, allowing for
quicker integration and usage. Similar YAML de-
sign is also applied to the benchmarks (see Table
3) and the datasets (see Table 4).

3.3 Evaluation options
The tool allows for two types of evaluation:

Metric-based Evaluation: Here, metric-based
evaluation refers to using metrics like Precision,
Recall, F1, Rouge (Lin, 2004), etc. for evaluation.

Latency & Memory Usage Evaluation: Mem-
ory usage is measured during inference by observ-
ing memory usage on NVIDIA GPUs during the
evaluation and latency (supports both CPU-only
environment and NVIDIA GPUs) is measured by
looking at the absolute time taken to produce a
complete response given an input prompt.

3.4 Invoking the Tool
Every component in the tool has a blueprint that
allows it to load the necessary artifacts correctly.
These blueprints map to a Python class in the tool
that defines the contract on its usage. For instance,
a model class defines a model that can be loaded
and the functionality it needs to support to ensure
integration with the tool. This model class can be
extended to support any segment of models, such
as those from the HuggingFace Transformers li-
brary (Wolf et al., 2020). Once this specification is
created in code, any LLM that uses the Hugging-
Face Transformer (or other libraries like llama.cpp)
can be used with the tool using a no-code approach.
This tool can be invoked via a command-line in-
terface. A few options need to be specified when
invoking the tool (see Command 1). For instance,
for metric-based evaluation (see Command 2):

(a) The benchmark name(s) to load the correct
datasets, metrics, and parsers.

(b) The model name or path, which allows for
selecting the correct LLM for inference.

Upon receiving these parameters, the following
steps happen in sequence:

(a) Load the configuration files.
(b) Load the model.

model:
model: meta-llama/Meta-Llama-3.1-8B
model_type: hf-automodel
tokenizer_args:

model_max_length: 3000
truncation_side: right
truncation: longest_first

model_load_args:
max_input_tokens: 3000

model_inference_args:
max_new_tokens: 512
num_beams: 1
temperature: 0.8

add_to_prompt_start: '[Prompt]'
add_to_prompt_end: '[Response]'

Table 2: Model configuration - contains information
such as the model’s framework, along with options nec-
essary for model initialization & inference, and append-
ing arbitrary text to every input during inference.

(c) Identify the datasets to be evaluated via the
benchmark(s) specified.

(d) For every dataset, (i) load the data, (ii)
perform any preprocessing necessary using input
parsers (e.g., processing the prompt), (iii) run in-
ference on the model using the processed prompts,
(iv) generate the outputs and perform any post-
processing using output parsers.

(e) For every task, (i) compute the metric value(s)
using the references, and (ii) display the results as
a report (see Command 4) and save them with the
outputs in the disk.

For latency and memory usage evaluation (see
Command 3), the process is very similar to the
above steps with the exception that instead of
metric-based evaluation, the memory usage and
latency are measured by recording GPU memory
usage and the wall-clock times. A report is also
generated (see Command 5) once the evaluation is
complete.

4 Advantage of the proposed LLM
Evaluation Tool

As mentioned previously, a key objective of this
tool is to ensure flexible, fair, reproducible evalu-
ations of LLMs in real world settings. Thus, this
tool needs to be easily extensible to add new mod-
els, datasets, and any other processing artifacts,
alongside preserving privacy. More specifically:

Flexibility: It ensures a no-code approach to add
components that follow an existing blueprint. New
models, datasets, and benchmarks can be added by
modifying only the YAML configuration.

Compitability and Reproducibility: Configu-



291

benchmarks:
my_benchmark:
my_dataset:

tasks:
my_dataset_task_0:
metrics:
- accuracy
- f1
- precision
- recall

my_dataset_task_1:
- rouge
- MyCustomMetric

Table 3: Benchmark configuration - contains a list of
datasets and tasks with a list of metrics per task.

datasets:
my_dataset:
tasks:

my_dataset_task_0:
task_type: classification
key: Task-0
model_output_parser: AParser

my_dataset_task_1:
task_type: generation
key: Task-1

column_input: prompt
column_reference: response
description: My dataset
reference_split_parser: AnotherParser
metadata:
format: csv
version: December 11, 2024
source: gcs
path: gs://path/to/my/dataset.csv

Table 4: Dataset configuration - contains metadata for
loading the dataset, a list of task definitions & informa-
tion about output parsing.

Input Prompt
Provide responses to the following questions in
JSON with the key as the question number for the
provided context.

I called to check on the status of my order.
Can you please let me know about it?

Task-0: Classify the statement as
either positive, negative or neutral.
Task-1: Provide a short summary of the passage.
Expected output
{“Task-0”: “neutral”, “Task-1”: “A person
called to check on the status of their order.”}

Table 5: An example of a multi-query prompt along with
its expected output. The evaluation tool can interpret
such prompts and also reliably evaluate such outputs.

rations are shareable and reusable between runs,
allowing for greater transparency and reproducibil-
ity. Resulting reports and output files have the
configuration embedded within to allow for disam-

biguation between evaluation results.
Reliability and Extensibility: Component

blueprints can be easily extended in a low-code
environment to incorporate new blueprints. For ex-
ample, a new parser for processing model outputs
can be added, or a custom metric for evaluation can
be created. This also ensures reliable evaluation for
specific business use cases.

Robustness: Allows the evaluation of both
metric-based performance and runtime statistics
(i.e., memory usage and latency), optimized LLMs
(e.g., llama.cpp). In addition, it supports processing
and parsing of multi-purpose/multi-query (Laskar
et al., 2024b) prompts (as shown in Table 5).

Privacy Preservation: No need to use the tool
via public APIs. Thus, no risk of privacy concerns
when evaluating models on customer data.

Parallelism: We implement data parallelism so
that multiple model instances can be loaded into
multiple GPUs to significantly speed up inference
through the benchmark. This supports different
types of model implementations, such as PyTorch,
llama.cpp, Tensorflow, etc.

5 Conclusion

In this paper, we demonstrate an industry-tailored
LLM evaluation tool, which ensures flexibility, re-
liability, privacy preservation, and reproducibility
in the evaluation of LLMs in real-world scenar-
ios. No-code environment makes the utilization of
this tool straightforward for people with no coding
background. We believe that this paper will provide
necessary insights on building an easy-to-use eval-
uation tool for real-world industrial usage to ensure
a fair and reproducible evaluation of LLMs. Along-
side providing some sample commands to use the
proposed LLM evaluation tool (see Appendix A),
it has been open-sourced and currently available at
https://github.com/talkiq/llm-evaluate.

Limitations

The tool loads evaluation data directly in CPU
memory and, therefore, if the evaluation dataset
is extremely large, it will need to be partitioned
into smaller chunks manually by the end users for
processing. GPU memory statistics are only avail-
able for NVIDIA’s hardware accelerators and CPU
memory usage is not reported. Since the focus
is to provide support for models fine-tuned on in-
house datasets for business-oriented tasks, we do
not provide a boilerplate for in-context learning.

https://github.com/talkiq/llm-evaluate


292

Ethics and Broader Impact Statement

This tool is intended for real-world industrial sce-
narios to ensure robustness, reliability, flexibility,
and reproducibility in LLM evaluation. Therefore,
it does not pose any ethical concerns.

References
Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-

liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Zi-
wei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do,
Yan Xu, and Pascale Fung. 2023. A multitask, mul-
tilingual, multimodal evaluation of chatgpt on rea-
soning, hallucination, and interactivity. Preprint,
arXiv:2302.04023.

Stella Biderman, Hailey Schoelkopf, Lintang Sutawika,
Leo Gao, Jonathan Tow, Baber Abbasi, Alham Fikri
Aji, Pawan Sasanka Ammanamanchi, Sidney Black,
Jordan Clive, Anthony DiPofi, Julen Etxaniz, Ben-
jamin Fattori, Jessica Zosa Forde, Charles Fos-
ter, Mimansa Jaiswal, Wilson Y. Lee, Haonan Li,
Charles Lovering, et al. 2024. Lessons from the
trenches on reproducible evaluation of language mod-
els. Preprint, arXiv:2405.14782.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple llm inference acceleration frame-
work with multiple decoding heads. arXiv preprint
arXiv:2401.10774.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. 2024. A sur-
vey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology,
15(3):1–45.

OpenCompass Contributors. 2023. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

Fahim Dalvi, Maram Hasanain, Sabri Boughorbel,
Basel Mousi, Samir Abdaljalil, Nizi Nazar, Ahmed
Abdelali, Shammur Absar Chowdhury, Hamdy
Mubarak, Ahmed Ali, et al. 2023. Llmebench: A
flexible framework for accelerating llms benchmark-
ing. arXiv preprint arXiv:2308.04945.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Xue-Yong Fu, Md Tahmid Rahman Laskar, Elena
Khasanova, Cheng Chen, and Shashi Tn. 2024. Tiny
titans: Can smaller large language models punch
above their weight in the real world for meeting sum-
marization? In Proceedings of the 2024 Conference
of the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies (Volume 6: Industry Track), pages 387–394,
Mexico City, Mexico. Association for Computational
Linguistics.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Md Tahmid Rahman Laskar, Sawsan Alqahtani, M Sai-
ful Bari, Mizanur Rahman, Mohammad Abdul-
lah Matin Khan, Haidar Khan, Israt Jahan, Amran
Bhuiyan, Chee Wei Tan, Md Rizwan Parvez, et al.
2024a. A systematic survey and critical review on
evaluating large language models: Challenges, limi-
tations, and recommendations. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 13785–13816.

Md Tahmid Rahman Laskar, M Saiful Bari, Mizanur
Rahman, Md Amran Hossen Bhuiyan, Shafiq Joty,
and Jimmy Huang. 2023a. A systematic study and
comprehensive evaluation of ChatGPT on benchmark
datasets. In Findings of the Association for Com-
putational Linguistics: ACL 2023, pages 431–469,
Toronto, Canada. Association for Computational Lin-
guistics.

Md Tahmid Rahman Laskar, Xue-Yong Fu, Cheng Chen,
and Shashi Bhushan TN. 2023b. Building real-world
meeting summarization systems using large language
models: A practical perspective. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing: Industry Track, pages
343–352, Singapore. Association for Computational
Linguistics.

Md Tahmid Rahman Laskar, Elena Khasanova, Xue-
Yong Fu, Cheng Chen, and Shashi Bhushan Tn.
2024b. Query-OPT: Optimizing inference of large
language models via multi-query instructions in meet-
ing summarization. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing: Industry Track, pages 1140–1151, Mi-
ami, Florida, US. Association for Computational Lin-
guistics.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Sander Schulhoff, Michael Ilie, Nishant Balepur, Kon-
stantine Kahadze, Amanda Liu, Chenglei Si, Yin-
heng Li, Aayush Gupta, HyoJung Han, Sevien Schul-
hoff, et al. 2024. The prompt report: A system-
atic survey of prompting techniques. arXiv preprint
arXiv:2406.06608.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,

https://arxiv.org/abs/2302.04023
https://arxiv.org/abs/2302.04023
https://arxiv.org/abs/2302.04023
https://arxiv.org/abs/2405.14782
https://arxiv.org/abs/2405.14782
https://arxiv.org/abs/2405.14782
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://aclanthology.org/2024.naacl-industry.33
https://aclanthology.org/2024.naacl-industry.33
https://aclanthology.org/2024.naacl-industry.33
https://aclanthology.org/2024.naacl-industry.33
https://aclanthology.org/2023.findings-acl.29
https://aclanthology.org/2023.findings-acl.29
https://aclanthology.org/2023.findings-acl.29
https://doi.org/10.18653/v1/2023.emnlp-industry.33
https://doi.org/10.18653/v1/2023.emnlp-industry.33
https://doi.org/10.18653/v1/2023.emnlp-industry.33
https://doi.org/10.18653/v1/2024.emnlp-industry.86
https://doi.org/10.18653/v1/2024.emnlp-industry.86
https://doi.org/10.18653/v1/2024.emnlp-industry.86
https://arxiv.org/abs/2303.08774


293

Adrià Garriga-Alonso, et al. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Zhenyu Wu, YaoXiang Wang, Jiacheng Ye, Jiangtao
Feng, Jingjing Xu, Yu Qiao, and Zhiyong Wu. 2023.
Openicl: An open-source framework for in-context
learning. arXiv preprint arXiv:2303.02913.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

A Appendix

% llm-evaluate --help

Usage: llm-evaluate [OPTIONS]
COMMAND [ARGS]...

Options
--help Show this message and exit.

Commands
benchmark Run a model against

predefined benchmarks.
stats-runtime Get stats on

model's runtime.

Command 1: Available commands in the proposed tool;
metrics-based evaluation via benchmark and runtime
latency metrics via stats-runtime.

% llm-evaluate benchmark --help

Usage: llm-evaluate benchmark
[OPTIONS] PROFILE

Run a model against pre-defined benchmarks.

Arguments
* profile TEXT Path to YAML configuration

profile for the model.
[default: None]
[required]

Options
--benchmarks TEXT Optionally specify only a

few select benchmarks.
e.g. --benchmark demo

Command 2: Benchmarking command - runs the
metrics-based evaluation. It requires a YAML file con-
taining the necessary configuration. Some optional ar-
guments have been omitted for brevity.

% llm-evaluate stats-runtime --help
Usage: llm-evaluate stats-runtime

[OPTIONS] PROFILE

Get stats on model's runtime.

Arguments
* profile TEXT Path to YAML configuration

profile for the model.
[default: None]
[required]

Command 3: Runtime statistics command - runs the
runtime analysis of the model. It requires a YAML file
containing the necessary configuration. Some optional
arguments have been omitted for brevity.

% llm-evaluate benchmark \
--benchmarks my-benchmark \
model-profile.yaml

my_dataset@some-version:
my_dataset_task_0:

accuracy: 12.0
f1-macro: 13.0
f1-micro: 14.0
f1-weighted: 15.0
precision-macro: 16.0
precision-micro: 17.0
precision-weighted: 18.0
recall-macro: 19.0
recall-micro: 19.0
recall-weighted: 18.0

my_dataset_task_1:
rouge1: 11.0
rouge2: 12.0
rougeL: 13.0
my-custom-metric: 99.0

Command 4: Sample output for the benchmark com-
mand. It contains performance-based metrics as defined
in the configuration for the model over the selected
benchmark’s datasets.



294

% llm-evaluate stats-runtime model-profile.yaml

Report
------
gpu_memory:

mean: 9.089
p01: 7.006
p95: 9.434
p99: 9.434
peak: 9.434
stdev: 0.762

inference_stats:
input_tokens:
mean: 842.095
p01: 1.0
p95: 2955.35
p99: 3268.04
stdev: 879.697

latency_s:
mean: 0.228
p01: 0.037
p95: 1.32
p99: 1.66
stdev: 0.394

output_tokens:
mean: 3.158
p01: 2.0
p95: 5.0
p99: 5.0
stdev: 1.3

time_per_token_ms:
mean: 89.386
p01: 8.106
p95: 462.976
p99: 790.43
stdev: 165.487

load_stats:
mean: 1.107
p01: 0.955
p95: 1.247
p99: 1.259
stdev: 0.155

Command 5: Sample output for the runtime statistics command. The output contains runtime statistics for the model
such as the GPU peak memory used, model load time, number of input & output tokens, and the inference latency.


	Introduction
	Case Study: Evaluating a Real-World Industrial Feature Powered by LLMs
	System Details
	Key Components
	Initial Configuration
	Evaluation options
	Invoking the Tool

	Advantage of the proposed LLM Evaluation Tool
	Conclusion
	Appendix

