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Abstract

Quantum computing is rapidly evolving in both
physics and computer science, offering the
potential to solve complex problems and ac-
celerate computational processes. The devel-
opment of quantum chips necessitates under-
standing the correlations among diverse exper-
imental conditions. Semantic networks built
on scientific literature, representing meaning-
ful relationships between concepts, have been
used across various domains to identify knowl-
edge gaps and novel concept combinations.
Neural network-based approaches have shown
promise in link prediction within these net-
works. This study proposes initializing node
features using LLMs to enhance node repre-
sentations for link prediction tasks in graph
neural networks. LLMs can provide rich de-
scriptions, reducing the need for manual fea-
ture creation and lowering costs. Our method,
evaluated using various link prediction mod-
els on a quantum computing semantic network,
demonstrated efficacy compared to traditional
node embedding techniques. The code and
data are available at: https://github.com/
boxorange/QC-LinkPrediction

1 Introduction

Quantum computing is an active area of research
in both physics and computer science, due to its po-
tential to solve complex quantum physics problems
and significantly accelerate certain computational
processes (Shor, 1997; Montanaro, 2016; Arute
et al., 2019). However, the current limitations of
hardware hinder the practical application of quan-
tum computers (Krantz et al., 2019; Kjaergaard
et al., 2020), and the further development of ro-
bust quantum processors involves an increasingly
wide range of conditions (Huang et al., 2021; Mar-
tinis, 2021), material characteristics (Murray, 2021;
Place et al., 2021), and physical phenomena. Un-
derstanding the correlations among these variables
and predicting their potential interconnections in

the future is crucial for experimental progress. Sci-
entific literature serves as a vital resource for ac-
quiring this knowledge, as it encompasses a vast
array of research work.

A semantic network represents meaningful rela-
tionships between concepts, and researchers con-
structed a semantic network based on co-occurring
concepts from scientific literature, utilizing it to
identify knowledge gaps, missing connections be-
tween concepts, and novel combinations not previ-
ously considered (Rzhetsky et al., 2015; Krenn and
Zeilinger, 2020). In recent years, Graph Neural
Networks (GNNs) demonstrated promising predic-
tive capabilities for link prediction within the graph
forms of semantic networks (Zhang and Chen,
2018; Li et al., 2023). A significant challenge in
creating semantic networks is the provision of suf-
ficient initial features for nodes within a graph. In
many real-world graph datasets, node features are
often either missing or insufficient, potentially hin-
dering link prediction models for effective learning
and prediction (Zhao et al., 2017).

This study aims to initialize node features us-
ing Large Language Models (LLMs). LLMs have
demonstrated exceptional performance across vari-
ous question-answering tasks and information re-
trieval systems in zero-shot conditions (Kamalloo
et al., 2023; Zhu et al., 2023), significantly improv-
ing text embeddings (Wang et al., 2023). These
embeddings serve as initial node representations
for link prediction tasks in GNNs. The rationale
behind this approach is that LLMs, trained on ex-
tensive datasets from diverse literature and online
sources, can provide rich descriptions of relevant
concepts. This method enhances the feature set
available for GNN training and reduces the reliance
on human-curated feature creation. Additionally, it
has the potential to produce more reliable node rep-
resentations compared to traditional connectivity-
based embeddings, particularly when connectiv-
ity data is lacking. In cold-start link prediction
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problems (Sedhain et al., 2014; Zhang and Wang,
2015; Tang and Wang, 2022), where nodes lack
edges, informative node features become critical
(Zhao et al., 2017), contributing to the generation
of structural information and facilitating link for-
mation (Müller et al., 2024). Our approach offers a
straightforward yet impactful method for node fea-
ture initialization using LLMs, without the need for
external resources or dependency on graph struc-
ture. We evaluated this method through various link
prediction models, conducting a comparative anal-
ysis with widely-used node embedding techniques
within a quantum computing semantic network.

2 Creation of Semantic Network for
Quantum Computing

The construction of a concept network from scratch
necessitates significant human resources and time.
As an alternative, we utilize the pre-existing seman-
tic network of quantum physics. SEMNET (Krenn
and Zeilinger, 2020) was developed to forecast
future research trends in quantum physics. It is
based on scientific publications in the field of quan-
tum physics and includes a list of human-compiled
quantum physics concepts derived from books and
Wikipedia. In SEMNET, nodes represent physical
concepts, and edges indicate the co-occurrence of
two concepts in an article’s title or abstract.

Our domain experts in quantum physics have
scrutinized the list of concepts, selecting those that
have a high correlation with quantum computing
research. Certain concepts were revised, and addi-
tional ones that appeared to be pertinent to quantum
computing research, such as "quasiparticle poison-
ing," were incorporated. This process resulted in a
compilation of 3,001 quantum computing concepts.

Given the lack of a corpus upon which SEMNET

was created, we scraped all articles under the quan-
tum physics category on arXiv that contained at
least a pair of quantum computing concepts. This
resulted in a total of 136,122 papers spanning from
2007 to 2024 (as of June 15, 2024). Appendix A il-
lustrates the number of quantum computing papers
published on arXiv over time.

3 LLM-powered Concept Feature
Embedding

We derived quantum computing concept features
from LLMs using a question-answering prompt.
For this purpose, we employed a selection of
state-of-the-art LLMs, specifically Gemini-1.0-pro

(Gemini-Team et al., 2023), Mixtral (Jiang et al.,
2024), and LLaMA 3 (Meta-AI, 2024). The fol-
lowing example illustrates a query prompt and the
corresponding answer generated by an LLM.

Query: What are the features of quasiparticle in
quantum computing?

Answer:
1. **Wave-Particle Duality:** Quasiparticles ex-
hibit both wave-like and particle-like behavior.
They can be described by a wave function, which
determines their quantum state and allows them to
interfere with each other. At the same time, they
can also behave as localized particles with well-
defined energy and momentum.
2. **Collective Behavior:** Quasiparticles often
arise from the collective behavior of many inter-
acting particles. They emerge as excitations of a
quantum system, such as a solid or a liquid, and
represent the quantum mechanical description of
these collective modes.
3. **Quasiparticle Energy and Momentum:**
Quasiparticles have a well-defined energy and
momentum, which are related to their wave-like
properties. The energy and momentum of a quasi-
particle are typically not the same as the energy
and momentum of the individual particles that make
up the system.
...

We utilized the Google AI Text Embedding
model (Google-AI, 2024), text-embedding-004, to
generate text embeddings from the concept fea-
tures produced by the LLMs. Figure 1 illustrates
the node features derived from the LLMs, which
are used in the link prediction models.

4 Experiments

We evaluated the initial node representations gener-
ated by LLMs in a transductive experimental setup,
where models predict edges between existing nodes
in the graph. The models were trained on histori-
cal concept connections and tasked with predicting
future, unknown connections. The evaluation was
performed using various link prediction algorithms.

4.1 Experiment Setup

Dataset An undirected homogeneous (binary)
graph, also known as a single relational graph, was
constructed for the purpose of link prediction. The
dataset was divided into three subsets based on spe-
cific time intervals, a common approach for time
series data in link prediction tasks (chronological
splitting). The training set encompassed the period
from 2007 to 2021 and included 428,079 edges.
The validation set corresponded to the year 2022
and contained 25,011 edges. The test set covered
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Figure 1: The overview of future link predictions in the quantum computing semantic network using LLM-generated
initial node features. In the example graph, solid lines indicate past established connections, while dotted lines
represent a subset of potential future connections to be predicted by the model for relevance.

the most recent year, from 2023 to 2024, compris-
ing 50,063 edges. The dataset was distributed with
an approximate ratio of 85:5:10 for training, vali-
dation, and testing, respectively.

Link Prediction Models & Baselines We con-
ducted an evaluation of the proposed node fea-
tures across three classes of link prediction models:
(1) Multi-layer Perceptron (MLP), (2) message-
passing mechanism-based GNNs including Graph-
SAGE (Hamilton et al., 2017), GCN (Kipf and
Welling, 2016a), and GAE (Kipf and Welling,
2016b), and (3) GNNs with pair-wise information
methods, specifically NCN (Wang et al., 2024b)
and BUDDY (Chamberlain et al., 2023) that lever-
age common neighbor information and sub-graph
features to further capture the relation between the
nodes for potential links respectively. The selec-
tion of these GNN models was based on their high
ranking in recent comprehensive evaluations of link
prediction methods (Li et al., 2023).

We conducted a comparative analysis of the embed-
dings generated by LLMs with those produced by
widely recognized node embedding methods, in-
cluding DeepWalk (Perozzi et al., 2014), LINE
(Tang et al., 2015), and node2vec (Grover and
Leskovec, 2016). These methods were employed
in previous studies comparing node feature initial-
ization techniques (Duong et al., 2019; Zhu et al.,
2021; Berahmand et al., 2021; Cui et al., 2022).

Implementation Details & Evaluation Setting
The experiments were conducted using 4×NVIDIA
A100 80GB GPUs. Specifically, the Mixtral-8x7B-
Instruct (46B) and LLaMA-3 (70B) models were
executed on 4×NVIDIA A100 80GB GPUs to gen-
erate concept features. All link prediction meth-
ods were performed on a single NVIDIA A100
80GB GPU. The Google Gemini-1.0-pro and text-
embedding-004 models were accessed via the Gem-
ini APIs. The maximum number of generated to-
kens per query was set to 512 for all models, and
the default embedding size of 768, as produced by
the Google text embedding model, was employed.
To maintain consistency, node embeddings of size
768 were also generated using the baseline meth-
ods. In terms of latency, the Gemini-pro model
required approximately 3 hours, the Mixtral model
6 hours, and the LLaMA-3 (70B) model 8 hours
to generate features related to quantum computing
concepts. The text embedding process was com-
pleted in less than 2 minutes.
We followed the hyper-parameter ranges for the
models employed in the comprehensive link pre-
diction evaluation (Li et al., 2023). For the model
evaluation, we measured the area under the receiver
operating characteristic curve (AUROC) and av-
erage precision (AP), which are commonly used
metrics for link prediction tasks in homogeneous
graphs. These metrics provide a robust and com-
prehensive assessment of the model’s performance
(Yang et al., 2015; Zhu et al., 2021). Each experi-
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Node Embedding
MLP GCN GraphSAGE

AUROC AP AUROC AP AUROC AP
DeepWalk 82.48 ± 0.19 80.72 ± 0.12 88.98 ± 0.14 87.80 ± 0.17 86.40 ± 0.21 84.51 ± 0.24
LINE 83.92 ± 0.48 81.94 ± 0.52 86.95 ± 0.03 85.51 ± 0.02 83.25 ± 2.62 80.48 ± 4.11
node2vec 84.82 ± 0.20 82.75 ± 0.25 88.27 ± 0.18 86.76 ± 0.28 87.06 ± 0.14 85.31 ± 0.20
Gemini-1.0-pro 86.56 ± 0.20 84.62 ± 0.26 89.63 ± 0.05 88.39 ± 0.05 88.79 ± 0.12 87.33 ± 0.14
LLaMA3 (70B) 86.15 ± 0.24 84.18 ± 0.29 89.52 ± 0.06 88.29 ± 0.07 88.67 ± 0.09 87.16 ± 0.11
Mixtral-8x7B (46B) 87.02 ± 0.22 85.14 ± 0.27 89.61 ± 0.08 88.38 ± 0.11 88.87 ± 0.10 87.45 ± 0.18

Node Embedding
GAE NCN BUDDY

AUROC AP AUROC AP AUROC AP
DeepWalk 86.18 ± 0.10 84.39 ± 0.10 88.92 ± 0.17 87.52 ± 0.21 87.84 ± 0.07 86.31 ± 0.10
LINE 86.56 ± 0.01 85.13 ± 0.01 88.83 ± 0.06 87.42 ± 0.08 87.63 ± 0.02 86.13 ± 0.02
node2vec 81.89 ± 0.44 80.12 ± 0.43 88.98 ± 0.12 87.66 ± 0.15 88.55 ± 0.08 87.18 ± 0.08
Gemini-1.0-pro 87.27 ± 0.12 85.35 ± 0.13 89.07 ± 0.25 87.46 ± 0.28 88.79 ± 0.07 87.35 ± 0.09
LLaMA3 (70B) 86.89 ± 0.11 85.03 ± 0.11 88.90 ± 0.24 87.33 ± 0.27 88.55 ± 0.04 87.09 ± 0.06
Mixtral-8x7B (46B) 86.77 ± 0.15 84.91 ± 0.14 88.99 ± 0.27 87.44 ± 0.25 88.87 ± 0.06 87.40 ± 0.08

Table 1: Comparison of LLM-generated node embeddings with other node embeddings in link prediction methods
on a homogeneous, undirected graph representing quantum computing concept relations in a transductive setting.
Bold indicates the best score among all initial node embeddings in the model.

ment was repeated ten times with different random
seeds to ensure the reliability of the results.

4.2 Node Embedding Comparison Results
Table 1 presents the link prediction results using
baseline and LLM-powered node embeddings. The
majority of models initialized with LLM-generated
embeddings demonstrated higher performance than
their baseline counterparts. Among the methods
evaluated, Gemini and Mixtral typically emerged
as the top performers, although no clear winner was
identified, while Llama showed slightly weaker per-
formance. Notably, the LLM-generated features
resulted in more significant improvements in MLP
and message passing GNNs (GCN, GraphSAGE,
GAE) than in the GNN with pair-wise information
methods (NCN, BUDDY). This can be attributed
to the fact that MLP and GNNs relying on message
passing mechanisms are generally more impacted
by the initial node embeddings compared to those
models that incorporate additional link specific in-
formation. Message passing aggregates informa-
tion from a node’s neighborhood, and if the initial
embedding already captures substantial informa-
tion, it can have a stronger influence on the final
embedding.

We further compared node feature initialization
methods on isolated (zero-degree) nodes, which
pose significant challenges for GNNs (Ahn and
Kim, 2021; Zanardini and Serrano, 2024). We
identified 30 isolated nodes in the training data and

1,382 connections to these in the test data. The
evaluation results are presented in Appendix B.
Although the baseline methods exhibited higher
performance in certain instances, particularly with
the GCN in conjunction with LINE, the represen-
tations produced by LLMs were generally more
effective in identifying previously unseen connec-
tions to isolated nodes. Furthermore, they yielded a
more consistent performance in comparison to the
baseline methodologies. For these isolated nodes,
the content of the node features is crucial for the
link prediction task due to the absence of connec-
tivity information. The baseline models typically
generate node embeddings based on the connec-
tivity information of a graph, which may result in
inadequate embeddings for isolated nodes. In con-
trast, embeddings generated by LLMs are robust
against the absence of link connectivity informa-
tion and can thus produce reliable representations
for isolated nodes.

4.3 Merging LLM embeddings
We conducted an evaluation incorporating features
from various models. To merge conceptual fea-
tures derived from multiple LLMs, we employed
mean- and max-pooling on the embeddings, and
we extracted concise conceptual features from
the outputs of three LLMs using the Gemini-pro
model. The prompt used was: "Summarize this
text about the features of {KEYWORD}. Text:
{CONCATENATED FEATURES FROM THE LLMS}".



299

Models Embedding AUROC AP

MLP

Mixtral 87.02 ± 0.22 85.14 ± 0.27
Mean pool 86.95 ± 0.17 4.96 ± 0.19
Max pool 87.06 ± 0.18 85.16 ± 0.19
LLM-Blender 86.71 ± 0.17 84.70 ± 0.17
Summarized 86.72 ± 0.14 84.81 ± 0.21

GCN

Gemini Pro 89.63 ± 0.05 88.39 ± 0.05
Mean pool 89.68 ± 0.08 88.45 ± 0.09
Max pool 89.58 ± 0.06 88.33 ± 0.09
LLM-Blender 89.60 ± 0.04 88.37 ± 0.08
Summarized 89.59 ± 0.06 88.37 ± 0.08

NCN

Gemini Pro 89.07 ± 0.25 87.46 ± 0.28
Mean pool 89.08 ± 0.22 87.64 ± 0.23
Max pool 88.96 ± 0.24 87.47 ± 0.25
LLM-Blender 88.96 ± 0.22 87.40 ± 0.20
Summarized 88.84 ± 0.23 87.29 ± 0.25

Table 2: Comparison of different merging methods of
LLM-generated feature embeddings. Bold indicates the
best score in the model, and italic denotes performance
degradation relative to the standalone embedding.

Furthermore, we evaluated a method to select the
optimal response for each query from three distinct
models, utilizing LLM-Blender (Jiang et al., 2023).
This ensembling framework chooses the top score
answer from multiple LLMs through a specialized
pairwise comparison technique and a generative fu-
sion module. These merged embeddings were com-
pared against the leading LLM node embeddings
across different models, including MLP, GCN (top
performance among message-passing models), and
NCN (the highest scorer in GNNs with pairwise
information). The comparative analysis, presented
in Table 2, highlights that simple techniques such
as mean or max pooling can effectively merge em-
beddings. While these methods reduce the need for
more complex approaches, certain pooling strate-
gies exhibited performance degradation compared
to standalone embeddings.

4.4 Time Decayed Embedding

Additionally, we incorporated time-decay informa-
tion from the dataset. In future trend predictions
involving time series data, time-decayed informa-
tion can be important for maintaining the relevance
of recent data and highlighting recent changes. To
leverage the time-decay information of concept
pairs over time, we developed time-decayed node
representations based on co-occurrence matrices
by year. These representations can be integrated
with the LLM feature embeddings to enhance the

Models Embedding AUROC AP

MLP

Gemini 86.56 ± 0.20 84.62 ± 0.26
Gemini + TD 87.85 ± 0.24 86.25 ± 0.35
LLaMA3 86.15 ± 0.24 84.18 ± 0.29
LLaMA3 + TD 87.26 ± 0.20 85.62 ± 0.27
Mixtral 87.02 ± 0.22 85.14 ± 0.27
Mixtral + TD 87.94 ± 0.28 86.33 ± 0.32

GCN

Gemini 89.63 ± 0.05 88.39 ± 0.05
Gemini + TD 89.65 ± 0.09 88.46 ± 0.09
LLaMA3 89.52 ± 0.06 88.29 ± 0.07
LLaMA3 + TD 89.61 ± 0.04 88.40 ± 0.07
Mixtral 89.61 ± 0.08 88.38 ± 0.11
Mixtral + TD 89.65 ± 0.05 88.47 ± 0.05

NCN

Gemini 89.07 ± 0.25 87.46 ± 0.28
Gemini + TD 89.14 ± 0.27 87.75 ± 0.27
LLaMA3 88.90 ± 0.24 87.33 ± 0.27
LLaMA3 + TD 89.08 ± 0.20 87.61 ± 0.19
Mixtral 88.99 ± 0.27 87.44 ± 0.25
Mixtral + TD 89.04 ± 0.24 87.51 ± 0.22

Table 3: Link prediction performance using Time-
Decayed (TD) embedding concatenation. Bold indi-
cates the best score among all embeddings.

model’s capabilities. The time-decayed embed-
dings serve as optional auxiliary data in time series
analyses, as they cannot function as standalone
embeddings due to the potential lack of connec-
tions between concepts, which would result in non-
informative embeddings. A comprehensive expla-
nation of the time-decayed embedding generation
process is available in the Appendix C. Table 3
shows the performance of MLP, GCN, and NCN
models with concatenated node embeddings with
LLM features and time-decayed representations.
The incorporation of time-decayed information in
the node representation enhanced all models predic-
tive capability, with the MLP model demonstrating
the greatest improvement.

5 Implications of Model Predictions: An
Analytical Review by Domain Scientists

Our domain scientists examined the connections
commonly predicted correctly by the top three mod-
els. While many of the link predictions correspond
to fundamental concept connections that have ex-
isted within the field of quantum information sci-
ence for many years (e.g., “nonlinear oscillator”
and “transmon,” “Hilbert space” and “quantum in-
formation,” etc.), some of the emerging connec-
tions within the test set seem timely and point to-
wards recent trends and scientific breakthroughs
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within the field. Two examples relevant to quantum
engineering that were observed within the data set
are listed below.

The models accurately predicted a breakthrough
in the coherent control of magnons (Xu et al., 2023).
Methods for coupling classical magnons to pho-
ton cavities have been in development for the past
decade (Huebl et al., 2013; Tabuchi et al., 2015;
Boventer et al., 2018, 2020), and the recent develop-
ment of nonclassical coherent control of magnons
built on this prior work. Therefore, it can be con-
cluded that the models recognized the trend toward
coherently controlled quantum magnonics for its
prediction.

Likewise, the models recognized the importance
of phonon engineering to the performance of su-
perconducting qubits (Kitzman et al., 2023). This
concept connection, which emerged naturally with
the field of superconducting technologies, has been
vitally important within the context of recent stud-
ies (Wilen et al., 2021; Yelton et al., 2024) on
gamma and muon ray impacts on superconduct-
ing quantum devices, wherein phonons serve as the
mediating particle for qubit decoherence from such
high-energy particles. Indeed, phonon engineering
will likely prove to be an essential component of
quantum engineering in the coming years.

6 Related Work

LLMs have shown impressive performance across
numerous NLP tasks, particularly in node classifi-
cation on graphs (Fatemi et al., 2024; Chen et al.,
2024). However, they struggle to capture graph
structural information (Wang et al., 2024a) and face
scalability issues (Hu et al., 2020) due to higher
prediction costs compared to GNNs. Despite this,
LLMs provide valuable semantic knowledge, par-
ticularly for node feature initialization, enhancing
GNN performance in link prediction. In this study,
we employed three advanced LLMs: Google’s
Gemini Pro (Gemini-Team et al., 2023), a multi-
modal model for complex reasoning, Mixtral-8x7B
(Jiang et al., 2024), which supports long sequences
and efficient inference, and Meta’s Llama 3 (Meta-
AI, 2024), known for its optimized architecture and
versatility across tasks.

GNNs have become a powerful method for ho-
mogeneous link prediction. Architectures like
GCN (Kipf and Welling, 2016a), GraphSAGE
(Hamilton et al., 2017), and GAE (Kipf and
Welling, 2016b) encode node features and graph

topology into low-dimensional embeddings for pre-
dicting link likelihood between nodes. Variational
autoencoders (VAEs) (Ahn and Kim, 2021) further
enhance representation learning by encoding data
into a latent space for reconstruction. GNNs excel
in capturing higher-order relationships and learning
expressive node representations, outperforming tra-
ditional heuristic methods, especially in large, com-
plex networks. Recent approaches like BUDDY
(Chamberlain et al., 2023) and NCN (Wang et al.,
2024b) improve link prediction by leveraging pair-
wise information, including subgraphs and com-
mon neighbor data.

DeepWalk (Perozzi et al., 2014), LINE (Tang
et al., 2015), and node2vec (Grover and Leskovec,
2016) are network embedding methods. DeepWalk
applies Skip-Gram to node sequences generated
by random walks, while LINE preserves local and
global structures by optimizing first and second-
order proximities. Node2vec introduces flexibility
with biased random walks, interpolating between
BFS and DFS using two parameters. These meth-
ods are essential for tasks such as link prediction,
node classification, and recommendation systems.

7 Conclusion and Future Work

Our proposed approach offers a promising avenue
for enhancing the performance of link prediction
models, particularly in scenarios where initial node
features are sparse or inadequate. This method not
only enriches the feature set available for model
training but also improves the model’s ability to
capture and represent complex patterns within the
data. We applied this method to a quantum com-
puting semantic network constructed from relevant
scientific literature, and the models with node fea-
ture initialization by LLMs outperformed baseline
node embedding methods across various link pre-
diction models. Our approach is easily extendable
to other graph datasets in different domains that
lack adequate node features.

In this study, we focused exclusively on featur-
izing nodes within a graph, although edge features
are also crucial for training models. Unlike node
features, generating edge features via LLMs may
not be practical due to the significantly higher num-
ber of edges compared to nodes. More effective
edge feature generation methods by LLMs, such
as clustering edges based on the characteristics
of the involved nodes, will be explored in future
research. Additionally, our experiments were lim-
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ited to static graph settings. Dynamic GNNs and
time-dependent graph methods could potentially
improve prediction capabilities. Future work will
aim to refine this approach further and explore its
applicability in other graph-based learning tasks.
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Node Embedding
MLP GCN GraphSAGE

AUROC AP AUROC AP AUROC AP
DeepWalk 71.57 ± 1.33 49.80 ± 1.96 49.18 ± 2.16 19.95 ± 1.60 53.26 ± 1.84 22.18 ± 1.85
LINE 69.53 ± 5.64 50.06 ± 6.79 87.01 ± 0.10 68.21 ± 0.72 65.91 ± 11.62 39.25 ± 15.08
node2vec 53.28 ± 3.40 23.40 ± 4.72 51.80 ± 0.71 21.34 ± 0.91 49.67 ± 0.22 19.31 ± 0.01
Gemini-1.0-pro 81.37 ± 1.16 62.91 ± 1.10 58.40 ± 9.04 28.42 ± 8.27 70.70 ± 4.63 40.85 ± 7.63
LLaMA3 (70B) 84.79 ± 1.09 65.09 ± 2.78 56.06 ± 12.38 27.67 ± 10.48 72.54 ± 3.49 42.58 ± 4.42
Mixtral-8x7B (46B) 85.55 ± 1.43 69.02 ± 1.91 51.28 ± 13.48 23.88 ± 10.68 75.92 ± 4.01 45.25 ± 5.38

Node Embedding
GAE NCN BUDDY

AUROC AP AUROC AP AUROC AP
DeepWalk 68.82 ± 3.50 42.41 ± 4.90 29.81 ± 18.98 17.45 ± 15.45 76.56 ± 3.50 48.86 ± 4.84
LINE 86.95 ± 0.09 68.48 ± 0.74 60.85 ± 1.60 38.64 ± 1.04 80.09 ± 3.44 52.26 ± 3.01
node2vec 36.34 ± 8.40 15.16 ± 2.82 42.40 ± 11.97 17.23 ± 5.38 79.59 ± 1.16 52.99 ± 3.47
Gemini-1.0-pro 89.23 ± 0.24 70.99 ± 0.72 69.96 ± 13.01 39.05 ± 15.39 85.17 ± 2.40 58.19 ± 2.80
LLaMA3 (70B) 88.95 ± 0.37 70.01 ± 1.22 69.23 ± 16.72 40.42 ± 17.79 85.68 ± 2.26 57.57 ± 2.44
Mixtral-8x7B (46B) 88.67 ± 0.38 70.64 ± 0.81 67.11 ± 15.40 38.10 ± 17.71 83.68 ± 4.50 55.82 ± 5.11

Table 4: Comparison of LLM-generated node embeddings with other node embeddings in link prediction methods
on 1,382 edges to 30 isolated nodes in the quantum computing concept graph.

recent data, which is often more indicative of future
behavior than older data. This is crucial in scenar-
ios like stock market analysis where recent trends
are more predictive. Second, it allows models to
adapt quickly to changes by emphasizing recent
data, which reflects current underlying processes
more accurately. Third, time decay reduces noise
by minimizing the influence of older, potentially
irrelevant data, thus focusing on meaningful pat-
terns. Fourth, it enhances computational efficiency
by potentially discarding less important older data.
Finally, time-decayed information aids in anomaly
detection by highlighting recent unusual behav-
iors. In summary, time-decayed information en-
ables models to focus on the most pertinent data,
adapt to changes, reduce noise, improve efficiency,
and identify anomalies, thus providing a robust tool
for time series analysis and trend prediction.

We utilized time decay information of pairs of
concepts over time to represent node embeddings.
To this end, we created co-occurrence matrices by
each year. We then converted the co-occurrence
matrices to PPMI (Positive Point-wise Mutual In-
formation) matrices that are useful in word-word
co-occurrence matrices as it addresses issues of nor-
malization, sparsity, and noise reduction, thereby
enhancing the quality and utility of semantic repre-
sentations derived from such matrices. We adopted
an exponential time decay function that assigns de-
creasing weights or importance to past events or
observations based on their age or distance from

the present. In the context of time series data or
decay processes, an exponential decay function is
commonly expressed as: N(t) = N0e

−λt where: t
is the time elapsed since the event or observation. λ
is a decay constant that determines how quickly the
weight decreases over time. After applying the time
decay function, the matrices were aggregated and
then the dimension of the aggregated matrix was
reduced to the same embedding size to the LLM
feature embedding by the SVD (Singular Value
Decomposition). This time decayed embeddings
were concatenated with the LLM feature embed-
dings. Algorithm 1 illustrates the node embedding
generation procedure.

Algorithm 1 Time-Decayed Node Embedding Gen-
eration Procedure
Require: Co-occurrence matrices for each year
Ensure: Node embeddings

1: Convert co-occurrence matrices to PPMI ma-
trices

2: for each year do
3: Apply exponential time decay function:

N(t) = N0e
−λt

4: end for
5: Aggregate the matrices
6: Reduce the dimension of the aggregated matrix

to the same embedding size as the LLM feature
embedding using SVD

7: Concatenate the time decayed embeddings
with the LLM feature embeddings
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