
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track, pages 358–365
January 19–24, 2025. ©2025 Association for Computational Linguistics

358

XTR meets ColBERTv2: Adding ColBERTv2 Optimizations to XTR

Riyaz Ahmed Bhat and Jaydeep Sen
IBM Research, India

riyaz.bhat@ibm.com, jaydesen@in.ibm.com

Abstract

XTR (Lee et al., 2023) introduced an effi-
cient multi-vector retrieval method that ad-
dresses the limitations of the ColBERT (Khat-
tab and Zaharia, 2020) model by simplifying
retrieval into a single stage through a modified
learning objective. While XTR eliminates the
need for multistage retrieval, it doesn’t incor-
porate the efficiency optimizations from Col-
BERTv2 (Santhanam et al., 2022), which im-
prove indexing and retrieval speed. In this
work, we enhance XTR by integrating Col-
BERTv2’s optimizations, showing that the
combined approach preserves the strengths of
both models. This results in a more efficient
and scalable solution for multi-vector retrieval,
while maintaining XTR’s streamlined retrieval
process. We have released the code as an addi-
tion to the PrimeQA (PrimeQA, 2023) toolkit.

1 Introduction

Retrieval refers to the task of retrieving relevant
documents from a larger corpus of documents,
given a search query. Retrieval is one of the
most active research fields in NLP owing to its
many applications such as semantic search (Fazz-
inga and Lukasiewicz, 2010), Open-domain Ques-
tion Answering (Voorhees and Tice, 2000; Chen
and Yih, 2020), Retrieval Augmented Generation
(RAG) (Cai et al., 2019; Lewis et al., 2020; Guu
et al., 2020). Research in Retrieval technologies
has been evolving through multiple paradigms
which can broadly be divided into (1) Sparse Re-
trievers (Robertson and Zaragoza, 2009) (2) Dense
Retrievers (Karpukhin et al., 2020; Chang et al.,
2019; Guu et al., 2020; Xu et al., 2022; Khattab and
Zaharia, 2020; Luan et al., 2021; Santhanam et al.,
2022) and very recently (3) Differential Search
Index based retrievers (Tay et al., 2022). Each
paradigm of retrievers has its advantages and disad-
vantages stemming from the methodology adopted
and the limitations in those. Therefore, in practi-

cal applications, we have seen hybrid approaches
that employ different kinds of retrievers to build a
robust pipeline for accurate retrieval.

Sparse retrievers rely on lexical overlap to re-
trieve relevant documents. They largely follow
bag-of-words based similarity notions to score the
documents using TF-IDF score. The most popu-
lar sparse retriever called BM25 (Robertson and
Zaragoza, 2009) introduces robustness in using tf-
idf scores for scoring documents. Sparse retrievers
often employ an inverted index for word search
which is very fast and easy to maintain. Although
sparse retrievers are easy to use and interpretable,
their accuracy is mainly limited by the need for
relevant keyword overlaps for accurate document
retrieval. Dense retrievers (Karpukhin et al., 2020;
Chang et al., 2019; Guu et al., 2020; Xu et al., 2022;
Khattab and Zaharia, 2020; Luan et al., 2021; San-
thanam et al., 2022) try to address this problem by
using neural models to encode words into an em-
bedding space. Dense retrievers compute semantic
similarity in the embedding space, where two dif-
ferent words if semantically similar, should have
their embedding vectors close to each other and
hence would produce a good similarity match.

Multi-vector retrievers like ColBERT (Khattab
and Zaharia, 2020) are more effective than single-
vector models like DPR (Karpukhin et al., 2020)
because they can capture finer semantic details be-
tween queries and documents. This makes them
better suited for handling complex queries and re-
trieving more relevant results, while single-vector
models tend to miss subtle nuances due to their
limited representational capacity. However, index
management for multi-vector retrievers is resource-
intensive and demands specialized techniques to
reduce memory footprint. ColBERTv2 (Santhanam
et al., 2022) tackles this challenge by implementing
strategies such as token representation compres-
sion, an aggressive residual compression mecha-
nism, and a denoised supervision approach, which

359

help reduce the memory footprint without compro-
mising retrieval performance. Despite these opti-
mizations, ColBERT still suffers from slow infer-
ence due to its multi-stage retrieval process, which
involves token similarity computation, gathering,
and reranking. To simplify this process, XTR (Lee
et al., 2023) has recently proposed limiting Col-
BERT’s retrieval to just the token similarity stage
by modifying the training objective.

The optimizations proposed by ColBERTv2 and
XTR for multi-vector retrieval are complementary,
and integrating them into a unified system can fur-
ther improve retrieval performance. In this work,
we propose exactly that, and propose ColXTR. We
adopt the XTR training objective to train ColXTR,
with some modifications. Unlike XTR, we intro-
duce a projection layer to reduce the dimension-
ality of the encoded token vectors during training,
thereby minimizing both query and index space
costs. After training, we apply optimizations from
ColBERTv2 and adapt XTR’s inference which re-
lies on missing token imputation to further enhance
both indexing and retrieval efficiency.

Our contributions are as follows:

• We develop, ColXTR, a multi-vector retrieval
model that integrates the strengths of both
ColBERTv2 and XTR.

• We empirically show that our novel compres-
sion techniques proposed on top of XTR re-
duce the index size by 97%, thus making it a
lightweight system for practical usage.

2 Related Work

Classical IR models like BM25 (Robertson and
Zaragoza, 2009) etc retrieve a ranked set of docu-
ments based on their lexical overlap with the query
tokens. Due to its simplicity and strong perfor-
mance on many domain-specific datasets, it is still
considered as a strong baseline. With the popularity
of neural language models like BERT (Devlin et al.,
2018) etc, the use of such neural language mod-
els to obtain continuous representations for words
(tokens) or documents has become quite popular.
These neural language model based IR systems can
be broadly classified into two categories a) single
vector and b) multi-vector approaches.

Single vector approaches obtain a single vector
representation (v ∈ Rd) for the query and the doc-
uments. Usually, cosine similarity is used to com-
pare the representation of the query and the docu-
ment and obtain a similarity score. The documents

are ordered based on their similarity score and the
top-k similar documents are retrieved. (Karpukhin
et al., 2020) used separate encoders to encode both
the query and the documents. They used BM25 to
obtain negative passages for the contrastive loss. In
addition, the authors also used in-batch negatives
during training. (Chang et al., 2019; Guu et al.,
2020; Xu et al., 2022) rely on data augmentation
techniques like Inverse Cloze Tasks to create data
for training.

Multi-vector approaches on the other hand ob-
tain multiple vectors per query or documents. The
reasoning behind this is that a single vector repre-
sentation will be unable to capture the fine interac-
tions between the query and the document needed
to retrieve the relevant document. ColBERT (Khat-
tab and Zaharia, 2020) obtains contextualized rep-
resentation from BERT for every sub-word token
in the query and the document separately. They cal-
culate the similarity of each query token represen-
tation with all the document token representations
and the maximum similarity score is noted. The fi-
nal similarity score is the summation of all the max-
imum similarity scores per token obtained in the
previous step. (Luan et al., 2021) use a single vec-
tor per query but multiple vectors to represent the
documents. ColBERTv2 (Santhanam et al., 2022)
adopt the late interaction of ColBERT (Khattab and
Zaharia, 2020). While ColBERT obtains negative
documents from a model like BM25, ColBERTv2
uses ColBERT to retrieve top-k documents for a
given query. The retrieved query-documents pairs
are passed through a cross-encoder to obtain a
similarity score. The model is trained using KL-
Divergence loss to distill the cross-encoder scores.
Recently, XTR (Lee et al., 2023) proposed an effi-
cient multi-vector retrieval method that addresses
the limitation of the ColBERT model. More details
about the XTR model are discussed in Section 3.1.

3 System Overview

Our system is built on XTR, and we use the same
notations and expressions from the original paper
to provide an overview.

3.1 XTR: Training and Inference

XTR was recently proposed to improve the training
and inference efficiency of multi-vector retrieval
models based on Colbert architecture. Unlike
single-vector retrieval models that use one dense
embedding for input text and determine similarity

360

Figure 1: XTR retrieval (figure reused from original paper)

with a dot product, multi-vector retrieval models
employ multiple dense embeddings for each query
and document. These models usually utilize all
contextualized word representations of the input
text, enhancing overall model expressiveness. For a
query Q = qni=1 and a document D = dmj=1, where
qi and dj represent d-dimensional vectors for query
tokens and document tokens, multi-vector retrieval
models determine the query-document similarity
as follows:

f(Q,D) =
n∑
i

max
j∈|D|

qTi dj =
n∑
i

m∑
i

Aijq
T
i dj

(1)

Pij = qTi djandA ∈ {0, 1}nxm denotes the
alignment matrix with Aij being the token-level
alignment between the query token vector qi and
the document token vector dj . In ColBERT, sum-
of-max operator sets Aij = 1[j=argmaxj′ (Pij′)]

,
where the argmax is over tokens from a single doc-
ument D, and 1[∗] is an indicator function.

Figure 1 demonstrates how XTR streamlines the
retrieval process for multi-vector models such as
ColBERT by using tokens retrieved in the initial
phase to score documents directly, maintaining re-
trieval performance. This is accomplished by ad-
justing the training objective to simulate the token

retrieval stage through a different alignment strat-
egy, denoted as Â. Specifically, the alignment is
defined as Âij = 1[j ∈ topkj′(Pij′)], where the
top-k operator is applied over tokens from mini-
batch documents, returning the indices of the k
largest values. The modified equation is as follows:

f(Q,D) =
1

Z

n∑
i

max
j∈|D|

Âijq
T
i dj (2)

Here, the normalizer Z denotes the count of
query tokens that retrieve at least one document
token from D. If all Âij = 0, Z is clipped to a
small values causing f(Q,D) to become 0. Dur-
ing training, the cross-entropy loss over in-batch
negatives is used, expressed as:

LCE = − log
exp f(Q,D+))∑B
b=1 exp f(Q,Db))

(3)

Scoring Documents using Retrieved Tokens:
During inference, multi-vector retrieval models
first have a set of candidate documents D̂1:C from
the token retrieval stage:

D̂1:C = D̂|dj ∈ D̂ ∧ dj ∈ top− k′(q∗) (4)

361

Here, top− k(q∗) represents a union of the top-
k′ document tokens (from the entire corpus) based
on the inner product scores with each query vector.
With n query token vectors, there are C (≤ nk′)
candidate documents. Traditional methods load en-
tire token vectors for each document and compute
equation 1 for every query and candidate docu-
ment pair. In contrast, XTR scores the documents
solely based on retrieved token similarity. This
significantly reduces computational costs during
the scoring stage by eliminating redundant inner
product computations and unnecessary (non-max)
inner products. Moreover, the resource-intensive
gathering stage, which involves loading all docu-
ment token vectors for computing equation 1, is
eliminated entirely.

Missing Similarity Imputation: During infer-
ence, k′ document tokens are retrieved for each
of the n query tokens. Assuming each document
token belongs to a unique document, this results
in C = nk′ candidate documents. In the absence
of the gathering stage, there is a single token sim-
ilarity to score each document. However, during
training with either equation 1 or equation 2, each
positive document has up to n (max) token simi-
larities to average, which tends to converge to n as
training progresses. Therefore, during inference,
the missing similarity for each query token is im-
puted by treating each candidate document as if
it were positive, with n token similarities. For ev-
ery candidate document D̂, the following scoring
function is defined:

f(Q, D̂) =
n∑
i

[max
j∈|D|

Âijq
T
i dj(1− Âij)mi] (5)

This is similar to equation 2, but it introduces
mi ∈ R, estimating the missing similarity for each
qi. The definition of Â is similar to the one in
equation 2, except that it uses k′ for the top-k op-
erator. For each qi, if Âi∗ = 0 and mi ≥ 0, qi
considers the missing similarity mi as the maxi-
mum value. Crucially, XTR eliminates the need
to recompute any qTi dj . When Âij = 1, the re-
trieval score from the token retrieval stage is al-
ready known, and when Âij = 0, there is no need
to compute it as Âijq

T
i dj = 0. Note that when ev-

ery Âij = 1, the equation becomes the sum-of-max
operator. Conversely, when no document tokens of
D̂ were retrieved for qi (i.e., Âi∗ = 0), the model

falls back to the imputed score mi. This provides
an approximate sum-of-max result, as the missing
similarity would have a score less than or equal to
the score of the last retrieved token.

4 ColBERTv2: Indexing and Retrieval

XTR uses a basic MIPS library for indexing, result-
ing in a significant increase in space requirements.
More precisely, it employs the ScaNN library (Guo
et al., 2020; Sun, 2020) to store all contextualized
vectors without compressing dimensionality. In
contrast, our approach draws inspiration from Col-
BERTv2’s (Santhanam et al., 2022) indexing strat-
egy for multi-vector models, aiming to improve
both space utilization and inference efficiency. Col-
BERTv2 achieves these enhancements by combin-
ing an aggressive residual compression mechanism
with a denoised supervision strategy.

Figure 2 shows an overview of how ColBERTv2
attempts to do efficient index management with
reduced storage. Contextualized vectors exhibit
clustering in regions that capture highly specific
token semantics, with evidence suggesting that vec-
tors corresponding to each sense of a word cluster
closely, demonstrating only minor variation due to
context (Santhanam et al., 2022). Leveraging this
regularity, a residual representation is introduced
in ColBERTv2, significantly reducing the space re-
quirements of late interaction models without any
need for architectural or training changes. In this
approach, given a set of centroids C, each vector
v is encoded as the index of its closest centroid
Ct and a quantized vector r̃ that approximates the
residual r = v − Ct. During search, the centroid
index t and residual r̃ are used to recover an ap-
proximate ṽ = Ct + r̃. Each dimension of r is
quantized into one or two bits to encode r̃.

4.1 Indexing

In the indexing stage, following ColBERTv2
we undertake a three-stage process for a given
document collection, efficiently precomputing
and organizing the embeddings for rapid nearest
neighbor search.

• Centroid Selection: In the initial stage,
we choose a set of cluster centroids C. These
centroids serve a dual purpose in supporting both
residual encoding and nearest neighbor search.
To reduce memory usage, k-means clustering is
applied to the embeddings produced by the T5

362

Figure 2: Overview of ColBERTv2 index optimization

encoder, considering only a sample of passages.

• Passage Encoding: With the centroids
selected, every passage in the corpus undergoes
encoding. This involves invoking the T5 encoder,
compressing the output embeddings, and assigning
each embedding to its nearest centroid while
computing a quantized residual. The compressed
representations are then saved to disk once a chunk
of passages is encoded.

• Index Inversion: To facilitate rapid nearest
neighbor search, the embedding IDs correspond-
ing to each centroid are grouped together, and this
inverted list is stored on disk. During search, this
enables quick identification of token-level embed-
dings similar to those in a query.

4.2 Retrieval

During the retrieval phase, we use the trained
ColXTR to encode a query, generating contextual-
ized representations denoted as Q. Following this,
we compute the inner product between these query
representations and centroids (QTC), identifying
the nearest centroids for each query token embed-
ding. Leveraging the inverted list, we then identify
the document token embeddings that are closer to
these centroids.

Subsequently, we decompress these document
token embeddings and calculate their inner product
with the corresponding query vectors. The resulting
similarity scores are organized based on document
ids. In instances where a score for a particular
query token and document token is missing, we
impute it as per the equation 5. Finally, the docu-
ments are directly reranked using these similarity
scores.

5 Experiments

We finetune the encoder of t5-base (Raffel et al.,
2020) with XTR learning objective on MSMarco
training set with a learning rate of 1-e3. XTR uses
ktrain parameter which we set to 320. We also
employ a projection layer that compresses the en-
coded representations from 768 dimensions to 128
dimensions. The model is trained on a single A100
80GB GPU, with a batch size of 48. Moreover, we
trained the model with hard negatives mined from
BM25, one per positive query/document pair in a
batch. The model is trained for 50K steps, and the
best model based on the development set is used
for the evaluation.

During retrieval, we use variable k depending
on the size of the index. For smaller indexes (>1M
documents), we set k to 500, while for larger ones,
we increased it to 100,000. For each query token,
we probed top 10 centroids.

5.1 Benchmark
We use datasets from BIER (Thakur et al., 2021)
benchmark as our evaluation benchmark. BIER is
a popular benchmark in IR community which is
a collection of 18 datasets of varying domains as
well as tasks. Because we build on top of XTR, we
chose the same subset from BIER which was used
for XTR benchmarking to be comparable. The
datasets are as follows: (1) AR: ArguAna, (2) TO:
Touché-2020, (3) FE: Fever,(4) CF: Climate-Fever,
(5) SF: Scifact, (6) CV: TREC-COVID, (7) NF: NF-
Corpus, (8) NQ: Natural Questions, (9) HQ: Hot-
potQA, (10) FQ: FiQA-2018, (11) SD: SCIDOCS,
(12) DB: DBPedia, (13) QU: Quora.

5.2 Evaluation Metric
We use Normalised Discounted Cumulative Gain
(NDCG) as our evaluation metric, psrticularly, we
report NDCG@10. As suggested in (Thakur et al.,

363

Datasets AR TO FE CF SF CV NF NQ HQ FQ SD DB QU Avg.
BM25 39.7 44.0 65.1 17.0 67.9 59.5 32.2 31.0 63.0 23.6 14.9 31.8 78.9 43.7
ColBERT 23.3 20.2 77.1 18.4 67.1 67.7 30.5 52.4 59.3 31.7 14.5 39.2 85.4 44.8
ColBERT
v2 46.3 26.3 78.5 17.6 69.3 73.8 33.8 56.2 66.7 35.6 15.4 44.6 85.2 49.9

XTR 40.7 31.3 73.7 20.7 71.0 73.6 34.0 53.0 64.7 34.7 14.5 40.9 86.1 49.1
ColXTR 49.3 29.1 73.1 12.6 71.9 69.6 34.3 41.1 61.1 33.4 15.7 27.2 81.9 46.2

Table 1: ColXTR as Retriever

2021) NDCG is a robust metric to measure retrieval
and reranker performance because it also considers
the rank of the retrieved documents while comput-
ing the score and thus is a more informative metric
than just recall.

5.3 Baselines

To compare the performance of ColXTR, we use
several baselines, including BM25, the most pop-
ular sparse retriever. Additionally, we compare
ColXTR with most relevant baselines such as Col-
BERT, ColBERTv2, the original XTR work.

5.4 Results

In this section, we review the experimental results
and optimization benefits of ColXTR in detail.

As shown in Table 1, we see BM25, as expected,
scores lower than other retrievers due to its re-
liance on lexical overlap. ColBERT improves upon
BM25, while XTR further boosts performance over
ColBERT. ColBERTv2, benefiting from distillation
training, achieves the highest scores overall. Our
system, ColXTR, performs better than ColBERT
but falls short of XTR and ColBERTv2. This drop
in accuracy can be attributed to the lack of hard
negative mining, lack of distillation training, and
the use of compressed embeddings. While Col-
BERTv2 is computationally expensive at inference,
and XTR poses challenges in index management,
ColXTR adopts XTR-style training with ColBERT-
style compressed representations to make it more
lightweight while maintaining comparable perfor-
mance.

5.5 ColXTR Optimization Impact

Here we discuss the implications of the design
choices and optimizations we have incorporated
in ColXTR in making it a lightweight system, easy
to deploy and manage.

In ColXTR we try to combine the different set
of optimizations proposed in XTR and ColBERT

together. We follow the XTR style retrieval with
missing token imputation during inference, with-
out the expensive gathering stage of ColBERT. As
reported in XTR (Lee et al., 2023), this makes the
inference 400x times faster than ColBERT.

On the other hand, XTR uses full token represen-
tations for indexing, and retaining the original size
of 768, as in XTR, would result in a significantly
larger memory footprint and overhead. Instead of
that, we applied ColBERT like approach where
we learn to compress the representation to lower
dimensions and make further optimizations with
residual compression. This reduces the index size
by a huge margin, almost a shrink of 97%, making
the index management much cheaper and easier.

Datasets
Faiss HNSW
Flat Index(in
GB)

ColBERT
index(in GB)

NQ 860 25
NFCorpus 2.4 0.091

TREC COVID 67 3
Touché 2020 481 7

Table 2: Comparison of Faiss HNSW Flat indices and
ColBERT indices in terms of size, with both using
embedding dimensions of 128.

In Table 2, we give some empirical numbers to
establish how the ColBERTv2 optimizations we
discussed in Section 4 help in reducing the index
size. Considering the first dataset, NQ, as an exam-
ple, we can see it offers almost upto 97% shrinkage
over the original index. On an average, we see
the index size reduced by 98% across 4 datasets,
which validates the need for our optimizations in
designing ColXTR making the index management
and deployment much cheaper and easier.

364

6 Conclusion

We have proposed ColXTR, an optimized multi-
vector retrieval model built on top of t5-base that
combines the best of both worlds: ColBERTv2
like index optimization and runtime optimizations
from XTR for speedy inference. We posit this is
a need of the hour for meeting industry needs for
scalability with practical resource constraints. We
empirically show that the lightweight training and
inference pipeline for ColXTR provides compet-
itive and in some cases even better performance
than state-of-the-art retrieval models, while reduc-
ing the index footprint almost by 97%. We believe
ColXTR can potentially become a default choice
for using neural retrievers in industry.

References
Deng Cai, Yan Wang, Wei Bi, Zhaopeng Tu, Xi-

aojiang Liu, and Shuming Shi. 2019. Retrieval-
guided dialogue response generation via a matching-
to-generation framework. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1866–1875, Hong Kong,
China. Association for Computational Linguistics.

Wei-Cheng Chang, X Yu Felix, Yin-Wen Chang, Yim-
ing Yang, and Sanjiv Kumar. 2019. Pre-training tasks
for embedding-based large-scale retrieval. In Inter-
national Conference on Learning Representations.

Danqi Chen and Wen-tau Yih. 2020. Open-domain
question answering. In Proceedings of the 58th an-
nual meeting of the association for computational
linguistics: tutorial abstracts, pages 34–37.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Bettina Fazzinga and Thomas Lukasiewicz. 2010. Se-
mantic search on the web. Semantic Web, 1(1-2):89–
96.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng,
David Simcha, Felix Chern, and Sanjiv Kumar. 2020.
Accelerating large-scale inference with anisotropic
vector quantization. In International Conference on
Machine Learning.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929–3938. PMLR.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and

Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research
and development in Information Retrieval, pages 39–
48.

Jinhyuk Lee, Zhuyun Dai, Sai Meher Karthik Duddu,
Tao Lei, Iftekhar Naim, Ming-Wei Chang, and Vin-
cent Y Zhao. 2023. Rethinking the role of token
retrieval in multi-vector retrieval. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2021. Sparse, dense, and attentional
representations for text retrieval. Transactions of the
Association for Computational Linguistics, 9:329–
345.

PrimeQA. 2023. Primeqa: Toolkit for open domain qa.
https://github.com/primeqa/primeqa.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Found. Trends Inf. Retr., 3(4):333–389.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei Zaharia. 2022. Col-
BERTv2: Effective and efficient retrieval via
lightweight late interaction. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 3715–3734, Seat-
tle, United States. Association for Computational
Linguistics.

Philip Sun. 2020. Announcing scann: Efficient vector
similarity search. Google AI Blog.

Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara
Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao,
Jai Gupta, et al. 2022. Transformer memory as a
differentiable search index. Advances in Neural In-
formation Processing Systems, 35:21831–21843.

https://doi.org/10.18653/v1/D19-1195
https://doi.org/10.18653/v1/D19-1195
https://doi.org/10.18653/v1/D19-1195
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1908.10396
https://arxiv.org/abs/1908.10396
https://openreview.net/forum?id=ZQzm0Z47jz
https://openreview.net/forum?id=ZQzm0Z47jz
https://doi.org/10.1162/tacl_a_00369
https://doi.org/10.1162/tacl_a_00369
https://github.com/primeqa/primeqa
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272

365

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. Beir:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

Ellen M. Voorhees and Dawn M. Tice. 2000. The TREC-
8 question answering track. In Proceedings of the
Second International Conference on Language Re-
sources and Evaluation (LREC’00), Athens, Greece.
European Language Resources Association (ELRA).

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley.
2022. Laprador: Unsupervised pretrained dense re-
triever for zero-shot text retrieval. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 3557–3569.

http://www.lrec-conf.org/proceedings/lrec2000/pdf/26.pdf
http://www.lrec-conf.org/proceedings/lrec2000/pdf/26.pdf

	Introduction
	Related Work
	System Overview
	XTR: Training and Inference

	ColBERTv2: Indexing and Retrieval
	Indexing
	Retrieval

	Experiments
	Benchmark
	Evaluation Metric
	Baselines
	Results
	ColXTR Optimization Impact

	Conclusion

