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Abstract

Recently, large language models (LLMs) have
shown remarkable performance across various
natural language processing tasks, thanks to
their vast amount of knowledge. Nevertheless,
they often generate unreliable responses. A
common example is providing a single biased
answer to an ambiguous question that could
have multiple correct answers. To address this
issue, in this study, we discuss methods to de-
tect such ambiguous samples. More specifi-
cally, we propose a classifier that uses a rep-
resentation from an intermediate layer of the
LLM as input. This is based on observations
from previous research that representations of
ambiguous samples in intermediate layers are
closer to those of relevant label samples in the
embedding space, but not necessarily in higher
layers. The experimental results demonstrate
that using representations from intermediate
layers detects ambiguous input prompts more
effectively than using representations from the
final layer. Furthermore, in this study, we pro-
pose a method to train such classifiers without
ambiguity labels, as most datasets lack labels
regarding the ambiguity of samples, and evalu-
ate its effectiveness.

1 Introduction

Due to the unprecedentedly large scale of data and
the enormous size of models that can be trained
on it, the recently proposed large language mod-
els (LLMs) have been able to retain a significant
amount of knowledge. Furthermore, through in-
struction tuning, LLMs have learned to provide
natural language responses to input prompts for var-
ious natural language understanding (NLU) tasks,
such as sentiment analysis and natural language
inference (NLI), structured in the form of natu-
ral language instructions. This naturally enables
LLMs to perform well on NLU tasks that were
not observed during the instruction tuning (Ouyang
et al., 2022; Sanh et al., 2022; Lee et al., 2023; Zhao

Prompt Premise: The newspaper pub-
lishes just one letter a week from
a reader.
Hypothesis: There are many let-
ters submitted each week, but
only one is chosen.
Is this hypothesis entailed by the
premise?
Candidates: {entailment,
neutral, contradiction}
Answer:

Ambiguity Entailment: 50%
Distribution Neutral: 47%

Contradiction: 3%
Generated Entailment
Response

Table 1: An ambiguous sample from ChaosNLI dataset
(Nie et al., 2020). In this example, we might naturally
assume that one of the numerous letters will be selected
and published in the newspaper. However, if the news-
paper is not well-known, the newspaper company may
only receive one or two letters from readers each week.
Therefore, we cannot necessarily conclude that the hy-
pothesis is correct (i.e., neutral). Here, "ambiguity dis-
tribution" refers to the label distribution obtained from
the evaluations of 100 annotators.

et al., 2023). Nevertheless, LLMs often generate
unreliable responses to users’ inputs. Especially
due to these reliability issues, it may be difficult for
service providers to offer their LLMs, which have
required significant investment to develop, leading
to serious setbacks. Given the recent growth in
the market for applications based on LLMs, this
problem should be addressed.

The most well-known cause for generating un-
reliable responses is hallucination behavior. This
refers to the behavior where LLMs respond with
a tone of high confidence in incorrect informa-
tion (Azaria and Mitchell, 2023; Zhao et al., 2023;
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Huang et al., 2024). This issue has been exten-
sively addressed by numerous researchers (Azaria
and Mitchell, 2023; Huang et al., 2024). Another
reason is the response behavior of LLMs, which
often provide a single biased answer to an ambigu-
ous question that could have multiple correct an-
swers, as shown in Table 1. Ideal LLMs should
indicate whether such questions are ambiguous and
encourage alternatives such as using multi-label
classification models or judgments from experts
to help users make better decisions without bias.
Particularly, since it is well-known that numerous
ambiguous samples exist in NLU tasks (Uma et al.,
2021), it is crucial to determine whether a given
sample is ambiguous. Nevertheless, research on
determining whether input prompts are ambiguous
or not has not been relatively well-explored, and
only a few impractical methods have been proposed
(Lee et al., 2023; Portillo Wightman et al., 2023).

In this study, we discuss methods for classifying
whether input prompts for NLU tasks are ambigu-
ous or not before generating responses. Tradition-
ally, NLU tasks have been addressed as classifica-
tion problems in encoder-based language models
such as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019). Park and Park (2023) discov-
ered that in the embedding space represented by an
intermediate layer of a fine-tuned encoder-based
language model (i.e., hidden states corresponding
to the [CLS] tokens from each layer), ambiguous
samples are located close to samples with related
labels. However, these relationships disappear in
higher layers, and samples with the same label are
close together but far from samples with different
labels. If intermediate representations of LLMs
(i.e., the hidden states of the last input tokens) ex-
hibit these characteristics, then it would be feasible
to classify ambiguous prompts easily using a clas-
sifier based on these intermediate representations.
However, instruction-following LLMs are trained
as autoregressive language models, and they have
learned numerous tasks simultaneously rather than
a specific task. Therefore, it is uncertain whether
the same characteristics observed in the intermedi-
ate layers of encoder-based models would similarly
manifest.

To address this research question, we first con-
struct datasets to train and evaluate the ambiguity
of input prompts using existing datasets from sen-
timent analysis and NLI tasks. The ambiguity of
each sample is determined based on evaluations
from multiple annotators for that sample. Using

such dataset, we train a classifier that uses a rep-
resentation from a layer of LLMs as input. The
experimental results demonstrate that using repre-
sentations from intermediate layers classifies am-
biguous samples with significantly higher accuracy
than those from the final layer. This suggests that
LLMs encode knowledge about ambiguity in their
intermediate layers.

Furthermore, we find that the accuracy in de-
tecting ambiguous samples significantly decreases
when training a classifier with a combination of
datasets from various NLU tasks. We also observe
that performance significantly decreases when eval-
uated on datasets from tasks or domains different
from those used for training. This suggests that the
definition of ambiguity is both task- and domain-
dependent in NLU tasks. Consequently, a chal-
lenge arises in acquiring training datasets for each
task or domain to assess ambiguity. In particular,
unlike the datasets used in this study, most datasets
do not provide evaluation information from indi-
vidual annotators. To address this data scarcity
issue, we also propose a loss function that uses
training dynamics (i.e., the phenomenon where a
deep learning model learns easy samples early in
training and difficult samples later.) (Arpit et al.,
2017; Swayamdipta et al., 2020). We assume that
ambiguous samples would be difficult examples
because it is challenging for the model to deter-
mine which label to learn for them. In this study,
we demonstrate that by using this loss function,
it is possible to create a classifier capable of as-
sessing ambiguity using readily available datasets
annotated with single labels for a given NLU task.

2 Related Work

In encoder-based language models, various cali-
bration methods have been proposed to adjust the
probability distribution from the classifier so that
the entropy of the probability distribution is high
for ambiguous samples (Wang et al., 2022; Park
and Park, 2023; Park et al., 2024). Unlike classifi-
cation tasks in encoder-based models, LLMs do not
provide probability distributions for labels. Instead,
they offer probabilities for the next token. These
probabilities are based on a text generation perspec-
tive, making them difficult to interpret as probabili-
ties for labels. To address this issue, various meth-
ods have been proposed that repeatedly generate re-
sponses and aggregate them to produce probability
distributions (Lee et al., 2023; Portillo Wightman
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NLI Task
# Training and validation sets
Premise: [Premise]
Hypothesis: [Hypothesis]
Does the premise entail the hypothesis?
Options: entailment, contradiction, and neutral
Answer:
# Evaluation set
Can we conclude the following hypothesis
from the premise?
Premise: [Premise]
Hypothesis: [Hypothesis]
Candidates: entailment, contradiction, and
neutral
Answer:
Sentiment Analysis
# Training and validation sets
Text: [Text]
What is the sentiment of this text?
Options: positive, negative, and neutral
Answer:
# Evaluation set
Input text: [Text]
How would this input text be described in
terms of sentiment?
Options: positive, negative, and neutral
Answer:

Table 2: Examples of prompt templates that we used
in this study. Different multiple templates were used
to train and evaluate the models; however, only one
example was described for each stage due to space limi-
tations.

et al., 2023). These approaches are known to help
LLMs provide somewhat calibrated distributions.
However, running LLMs multiple times—ranging
from a few dozen to a few hundred times—to obtain
distributions is impractical for real-world applica-
tions. Therefore, this study discusses methods for
determining ambiguity in a single inference, as op-
posed to those that repeatedly generate responses
to obtain distributions. Furthermore, there has been
an attempt to have LLMs generate confidence val-
ues for their responses in textual form (Lin et al.,
2022).

3 Proposed Method

In this study, we verify whether the representations
(i.e., hidden states of the last input tokens) from in-
termediate layers contain knowledge that can judge

the ambiguity of input prompts. To do this, we
first automatically construct annotated datasets in-
dicating whether each input prompt is ambiguous
or not across various NLU tasks (§3.1). Then, we
train classifiers that use representations of input
prompts from the instruction-following LLMs as
inputs (§3.2).

3.1 Datasets for Detecting Ambiguity

We first create datasets where each sample is anno-
tated to indicate whether it is ambiguous or not. To
automatically construct these datasets, we use exist-
ing datasets that are used for multi-label classifica-
tion or those that contain multiple annotations per
sample. Specifically, we use three datasets for sen-
timent analysis and NLI tasks. For sentiment analy-
sis, we employ the GoEmotions dataset (Demszky
et al., 2020), which is a multi-label emotion and
sentiment analysis dataset. For the NLI tasks, we
use the SNLI (Bowman et al., 2015) and MNLI de-
velopment and test datasets (Williams et al., 2018),
which contain multiple annotations (5 or 100) per
sample.

For multi-label datasets, samples annotated with
multiple labels are considered ambiguous. For the
NLI datasets, we follow criteria from previous re-
search (Jiang and de Marneffe, 2022) to classify
samples as ambiguous or non-ambiguous. If all
five annotators provide the same label, the sample
is considered non-ambiguous. If two labels receive
at least two votes each (e.g., 3/2/0 or 2/2/1), the
sample is considered ambiguous. Additionally, a
subset of samples from SNLI and MNLI is anno-
tated by 100 annotators in the ChaosNLI dataset
(Nie et al., 2020). We use this information to an-
notate each sample: samples where the majority
label receives more than 80 votes out of 100 are
considered unambiguous, while samples where the
majority label receives less than 60 votes are con-
sidered ambiguous. As in the previous study (Jiang
and de Marneffe, 2022), samples receiving between
60 and 80 votes are excluded because it is difficult
to determine whether they are ambiguous or not.

Finally, the texts in the entire dataset are mod-
ified into the format of input prompts for LLMs.
To simulate scenarios where actual users employ
instruction-following LLMs, the prompts used dur-
ing training are constructed differently from those
used during the evaluation stage. Examples of
the prompt templates we used are illustrated in
Table 2. The statistics of the constructed dataset
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SNLI MNLI GoEmotions
Unamb. Amb. Unamb. Amb. Unamb. Amb.

Train 1,935 1,935 2,160 2,160 1,683 1,683
Validation 215 215 240 240 186 187
Test 536 536 602 602 468 467

Table 3: Statistics of our datasets. "Unamb." and "Amb." stand for unambiguous sample and ambiguous sample,
respectively.

are described in Table 31.

3.2 Classifier for Detecting Ambiguous
Samples

We train a classifier that uses a representation from
a layer of an LLM as input to determine whether
input samples are ambiguous or not. This repre-
sentation corresponds to the hidden state of the
last token in the input prompt. If our hypothesis
hold true, representations from intermediate layers
should effectively distinguish between ambiguous
and unambiguous samples, leading to high clas-
sification accuracy. In this work, we employ a
three-layer multi-layer perceptron (MLP) as the
classifier, with ReLU activation functions applied
to each layer.

4 Experiments

In this section, we quantitatively evaluate how help-
ful representations from intermediate layers are in
judging ambiguity.

4.1 Experimental Settings

As instruction-following LLMs, we use instruction-
tuned OPT-IML-1.3B (Iyer et al., 2023), LLaMA
2-7B and 13B (Touvron et al., 2023). These mod-
els have 24, 32, and 40 layers and 2,048, 4,096,
and 5,120 hidden units, respectively. We use three-
layer MLP classifiers to detect ambiguous samples.
For OPT-IML-1.3B, the configuration is 2,048-
512-128-2 for the hidden units. For LLaMA 2-
7B, the configuration is 4,096-1,024-256-2, and
for LLaMA 2-13B, it is 5,120-1,024-256-2 hidden
units.

The classifiers mentioned earlier were all trained
with a batch size of 64, and the learning rate was
set to 5e-3 with a linear decay. The AdamW opti-
mizer (Loshchilov and Hutter, 2019) was used to
update the parameters of all classifiers, with the
weight decay set to 0.01. The optimal numbers of

1These datasets are available at https://github.com/
hancheolp/ambiguity_detection.

SNLI MNLI GoEmo.
OPT (1.3B)
24th layer 78.48 86.93 54.33
20th layer 79.01 88.82 57.97
16th layer 77.12 85.34 50.05
12th layer 71.30 88.87 54.26
LLaMA 2 (7B)
32th layer 69.77 86.90 55.72
28th layer 72.76 83.17 55.90
24th layer 75.10 88.01 55.61
20th layer 75.87 85.20 57.29
16th layer 77.12 87.57 49.98
LLaMA 2 (13B)
40th layer 77.74 86.74 56.86
36th layer 78.64 86.63 57.90
32th layer 78.51 86.99 56.68
28th layer 78.61 86.88 55.62
24th layer 78.70 88.73 54.83
20th layer 74.84 86.85 55.86

Table 4: Evaluation results for classifying ambiguous
samples across three LLMs of different sizes. Each
classifier was trained and evaluated on the samples from
each dataset without combining other datasets.

epochs for classifiers using representations from
LLaMA 2-7B and 13B were selected between 20
and 25 epochs based on accuracy on the valida-
tion sets, while for classifiers using representations
from OPT, the optimal numbers of epochs were
chosen between 35 and 40. In this study, we use
accuracy as the main evaluation metric.

4.2 Results
Since LLMs have a large number of layers, experi-
ments are conducted on some intermediate layers,
including the final layer, similar to a previous study
that analyzed the characteristics of intermediate
layers in LLMs (Azaria and Mitchell, 2023). As
shown in Table 4, we can observe that using rep-
resentations from the intermediate layers is more
effective in determining the ambiguity of samples
than using representations from the final layers.

https://github.com/hancheolp/ambiguity_detection
https://github.com/hancheolp/ambiguity_detection
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SNLI MNLI GoEmo.
32th layer 66.79 56.98 48.87
28th layer 65.95 56.89 48.24
24th layer 70.52 55.73 50.16
20th layer 71.27 56.73 49.63
16th layer 70.62 58.22 52.30

Table 5: Evaluation results when the classifiers are
trained only on NLI datasets. The sentiment analysis
dataset was not used for training. In this case, we use
representations from LLaMA 2-7B.

SNLI MNLI GoEmo.
32th layer 50.00 50.00 50.05
28th layer 50.00 50.00 49.95
24th layer 70.80 55.65 54.97
20th layer 71.83 54.82 55.72
16th layer 71.55 58.14 53.69

Table 6: Evaluation results when the classifier are
trained on all datasets combined. In this case, we use
representations from LLaMA 2-7B.

SNLI MNLI
32th layer 68.66 60.88
28th layer 65.76 54.57
24th layer 72.67 61.71
20th layer 74.16 69.27
16th layer 68.28 70.68

Table 7: Evaluation results when the proposed loss
function described in Equation 1 are used.

It has been also confirmed that detecting ambigu-
ous samples in more subjective tasks such as sen-
timent analysis is more challenging than in NLI
tasks. Furthermore, since the optimal intermediate
layer varies across tasks and models, identifying
such layer for each task appears to be a new chal-
lenge for the future.

5 Discussion

In this section, we discuss two research questions.
First, whether learning ambiguity in one task en-
ables judgment of ambiguity in another task. To
address this, we combined two NLI datasets and
trained classifiers with representations from var-
ious layers, then evaluated using samples from
sentiment analysis tasks. As shown in Table 5,
we found that the classifiers are unable to judge
ambiguity at all for the tasks that they were not
trained on (i.e., sentiment analysis). Notably, when
combining datasets from different domains of the

same task for training, the performance degraded
compared to when this was not done (see Tables 4
and 5).

Furthermore, we found that performance de-
graded across all tasks and domains when training
on the combined datasets. (see Table 4 and Table 6).
These results suggest that ambiguity is task and
domain-specific. Therefore, the challenge arises
of creating a dataset for each task and domain to
address this issue. To tackle this, we propose a loss
function based on well-known training dynamics:

L(x) = λ(−logpgt)+(1−λ)(1−pgt)(−logpamb)
(1)

where x is the input prompt, pgt is the predicted
probability for the ground truth label of the original
task (e.g., for an NLI task, the probability for one
of the labels: entailment, neutral, or contradiction)
and pamb is the probability that a given sample is
ambiguous. Both pgt and pamb are calculated by
passing the output logits of a classifier that uses
representations from an LLM as input through a
softmax layer. To achieve this, the number of out-
put neurons in the final layer of the classifier is
adjusted to be the number of labels for each task
plus one (for the label indicating that a given sam-
ple is ambiguous). It is known that deep learning
models start by learning easy samples in the early
stages of training and progress to harder samples
later on (Arpit et al., 2017). Therefore, we assume
that if the pgt value is low in the early stages of
training, the sample is ambiguous and difficult to
judge with a specific label. The hyperparameter λ
is tuned using a small set of labeled validation sam-
ples that indicate whether a sample is ambiguous
or not. As shown in Table 7, it can be observed that
by training with the proposed loss function, it is
possible to train classifiers to determine ambiguity
even without labels for ambiguity.

The second research question is whether, similar
to encoder-based models, the embedding spaces of
the intermediate layers better represents the ambi-
guity of samples compared to the final layer. To ad-
dress this, we investigated how the representations
of samples that are annotated as "entailment" in
the original dataset but deemed ambiguous through
this study are distributed in the embedding space.
As shown in Figure 1, ambiguous samples at the
lower layers are positioned between two different
labels (i.e., entailment and contradiction), while
in the higher layers, these samples are largely dis-
tanced from those that correspond to "contradic-
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Figure 1: Visualization of feature representations from SNLI samples using t-SNE. The representations are extracted
from layers in LLaMA 2-7B.

tion". Therefore, similar to encoder-based language
models, we find that ambiguous samples are better
represented in the lower layers of decoder-based
LLMs as well.

6 Conclusion

In this study, we found that using representations
from intermediate layers allows for a more accu-
rate assessment of the ambiguity in input prompts.
This enables LLMs to evaluate the ambiguity of
inputs before generating responses for tasks that
require such judgment. In future work, we will
explore methods for automatically annotating the
ambiguity of samples in NLU datasets, particularly
when evaluation results from multiple annotators
per sample are unavailable. Furthermore, we will
investigate techniques for automatically selecting
the optimal intermediate layer that most effectively
supports the assessment of input prompt ambiguity.

Limitations

We have verified that using representations from
the intermediate layers of LLMs are more helpful
to capture ambiguous samples than the knowledge
from the final layer. However, the method for se-
lecting the optimal layer was not addressed in this
study. Additionally, since the definition of ambi-
guity varies across tasks and domains, there is a
need to construct datasets that assess ambiguity of
samples for each task and domain. We discussed a
method to address these issue, but there is a need
for improvement as the performance is lower than
using datasets designed specifically for judging am-
biguity. In this study, we explored relatively small-
sized LLMs with fewer than 13 billion parameters,
but future research may need to investigate larger-
scale models.
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in readers.
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