
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track, pages 496–504
January 19–24, 2025. ©2025 Association for Computational Linguistics

496

LLM-Friendly Knowledge Representation for Customer Support

Hanchen Su Wei Luo Wei Han Yu Liu
Yufeng Zhang Cen Zhao Joy Zhang Yashar Mehdad

Airbnb Inc., USA
{hanchen.su, wei.luo, wei.han, elaine.liu

wayne.zhang, mia.zhao, joy.zhang, yashar.mehdad}@airbnb.com

Abstract
We propose a practical approach by integrating
Large Language Models (LLMs) with a frame-
work designed to navigate the complexities of
Airbnb customer support operations. In this
paper, our methodology employs a novel re-
formatting technique, the Intent, Context, and
Action (ICA) format, which transforms poli-
cies and workflows into a structure more com-
prehensible to LLMs. Additionally, we de-
velop a synthetic data generation strategy to
create training data with minimal human in-
tervention, enabling cost-effective fine-tuning
of our model. Our internal experiments (not
applied to Airbnb products) demonstrate that
our approach of restructuring workflows and
fine-tuning LLMs with synthetic data signif-
icantly enhances their performance, setting a
new benchmark for their application in cus-
tomer support. Our solution is not only cost-
effective but also improves customer support,
as evidenced by both accuracy and manual pro-
cessing time evaluation metrics.

1 Introduction

Customer support at Airbnb aims to assist users in
resolving a wide range of issues throughout their
journey. The effectiveness of service delivery re-
lies on a thorough understanding of Airbnb-specific
knowledge, including policies, workflows, and trou-
bleshooting manuals. Airbnb agents leverage spe-
cialized training and cognitive skills to apply this
knowledge to resolve customers issues. As a result,
customer support is a complex challenge in Airbnb.

In recent years, the fast development of Large
Language Models (LLMs) provides technical
breakthroughs that can scale and automate work-
flows in solving complex problems. It not only
enhances automation efficiency but also allows hu-
man agents to focus on more complex and sensi-
tive issues, optimizing the allocation of resources
and improving agent’s productivity and overall cus-
tomer satisfaction.

Figure 1: Intelligent customer support: generate the cor-
rect response based on internal workflows and context
data

Figure 1 illustrates a typical application in as-
sisting a customer support application: when a
customer poses a question, the system automat-
ically retrieves relevant context information and
workflows tailored to the user query and intent.
The LLM within the system then uses this context,
along with other available information, to generate
appropriate responses. Although this approach may
seem straightforward on the surface, developing an
effective solution entails significant complexities
to address.
The Complexity of Internal Policy and Work-
flow Documents These documents are typically
written in complex terminology and technical jar-
gon that requires special training for human agents
to understand and follow. They often consist of
lengthy, colloquial text with convoluted workflows
that may not be mutually exclusive, which results
in difficulty for LLMs to parse, understand, and
reason over. To ensure that an LLM can effectively
interpret business knowledge, they need to be refor-
mulated into a format that is digestible by LLMs



497

(i.e., LLM-friendly). This rewriting and editing pro-
cess requires the expertise and domain knowledge
of experienced human agents, leading to significant
costs that are often prohibitively expensive.
Limitations of Larger LLMs Larger and higher-
quality language models can be slower and more
costly. This is important in enterprise application
since latency and cost are two important factors
in system design. Additionally, they do not have
internal domain knowledge specific to enterprises’
customer support and products.
Training Data Creation The process of collect-
ing data for model training is complex and costly.
In particular, implicit knowledge which is critical
to effective problem solving does not exist in ex-
plicit format. Primarily to reduce the operation
cost, agents often do not fully document the knowl-
edge used and contextual data checked during the
resolution process.

To solve the above-mentioned problems, we
propose an end-to-end solution for LLM-based
workflow-driven customer support automation.
The rest of the paper will focus on the two key
areas of this solution:

• ICA: LLM-friendly knowledge represen-
tation To enhance the interpretability and
reasoning accuracy of LLMs in customer sup-
port tasks, we propose a new format called
Intent, Context, and Action (ICA) to simplify,
structure and represent the business knowl-
edge.

• Fine-tuning LLM to improve comprehen-
sion and reasoning over ICA Following the
effective trend of levering data augmentation
approaches (Liu et al., 2024) and the power of
Chain of Thought (CoT) (Wang et al., 2023),
we develop a synthetic data generation ap-
proach to create training data with minimal
human involvement. Subsequently, we utilize
this synthetic dataset to fine-tune our model,
thereby enhancing our LLM’s performance
using in-domain knowledge.

Our internal experiments demonstrate that this
combined strategy enhances the performance of
LLMs in the customer support reasoning tasks.
This solution is intended solely for exploratory
purposes which is not, and will not be, applied
to Airbnb products. However, we hope that our
solution can help with developing AI Agents for
other business domains tackling similar problems.

2 Related Work

While knowledge simplification and content refor-
matting is a straightforward strategy to enhance
the quality and interpretability of traditional ML
models, there hasn’t been a lot of work in sim-
plifying knowledge and content reformatting for
LLMs. Various types of text rewriting have been
explored, including paraphrasing (Siddique et al.,
2020; Xu et al., 2012), style transfer (Riley et al.,
2020; Zhang et al., 2020; Reif et al., 2021), and sen-
tence fusion (Mallinson et al., 2022). RewriteLM,
an instruction-tuned large language model designed
for cross-sentence text rewriting, was introduced
by (Shu et al., 2023). (Zhang et al., 2024) high-
lighted how knowledge editing can be utilized to
implement factual updates with minimal impact
on the model’s performance and flexibility across
different knowledge domains. To our knowledge,
our study is among the first to explore the trans-
formation of unstructured, complex text workflows
into pseudocode to enhance LLM performance in
specific domain tasks.

To minimize the effort of human annotation, con-
temporary studies in synthetic data generation are
focusing on leveraging LLMs for data augmenta-
tion. This includes the generation of instructions,
input, and output examples directly from a lan-
guage model, followed by the removal of any in-
valid samples prior to their utilization in fine-tuning
the base model (Wang et al., 2022). Other notable
contributions in this area include the work of (He
et al., 2019; Xie et al., 2020; Huang et al., 2022)
who demonstrated the efficacy of incorporating
synthetically generated data into training. (Schick
et al., 2022) introduced the PEER methodology,
which employs LLMs to infill missing data points
that are subsequently used to train other models.
The closest work to our synthetic data generation
solution is STaR (Zelikman et al., 2022) which
leverages CoT to generate synthetic rationales and
filters out those leading to wrong answers for fine-
tuning LLMs to improve their reasoning.

In the domain of customer support, the integra-
tion of generative AI, particularly through LLMs,
promises significant improvements in efficiency
and service quality(Wei et al., 2023). (Reinhard
et al.) identifies several customer support activi-
ties such as transferring, escalating, generations
and retention, that can be enhanced by LLMs. In
a practical application, (Brynjolfsson et al., 2023)
observed a significant productivity increase among



498

Figure 2: Converting workflows in one document from
original (rich text) format to the ICA format.

a large number of customer support agents after in-
troducing an LLM-based conversational assistant,
specifically for novice and low-skilled employees.
This further highlights a significant gap in the lit-
erature, underscoring the need for more empirical
studies to demonstrate the practicality of LLMs in
automating tasks to improve customer support pro-
ductivity and to define the necessary requirements
for the effective deployment of more advanced tech-
nologies.

3 Business Knowledge Representation as
ICA Pseudocode

Customer support problems can be treated as a
Knowledge Base Question Answering problem
(e.g., Baek et al. (2023)): Given a user query and
a knowledge base of workflows and policies, what
is the correct response? This highlights the sig-
nificance of business knowledge, along with the

importance of their formatting and structure, in im-
proving comprehension for both human agents and
LLMs.

To this aim, we conducted an in-depth analysis
of existing customer support workflows of Airbnb
and identified a pattern of “Intent, Contexts, Ac-
tions” (ICA) which covers nearly all workflows that
human agents needs to follow in order to respond
to user queries. A typical workflow instructs when
a user reaches out to customer support agent with
a certain “Intent" (I), based on the conditions and
the “Contexts" (C) of the user issue, what “Actions"
(A) human agents should take. These ICA work-
flow business knowledge are often defined by the
business functions in explicit format, or “implicit”
tribal knowledge based on experiences of human
agents from solving similar issues in the past.

Existing “knowledge” such as workflows are pre-
sented in a way that human agents can read and in-
terpret with specific training and experience. These
workflows are not consistently structured and not
designed for LLMs to understand and interpret.
Some workflows are represented as a mixture of
structured information (e.g., hierarchy tree in in-
structions and tables) and unstructured data (e.g.,
text and image), stored in a rich text format includ-
ing headings, markups, hyperlinks, lists, items, and
tabular data with a complex textual descriptions of
the conditions and policies around different actions
and solutions. Tables, for example, are compact
representations for trained human agents to find in-
formation (in a cell) associated to its corresponding
row/column headers which are more challenging
for LLMs to digest and interpret.

In our approach, we propose to transform these
workflows to the ICA structure as a pseudocode
format. Our hypothesis is that by transforming the
existing business knowledge to ICA format, we
achieve a more LLM-friendly content, which is
easier for LLMs to understand the business logic
and to decide the right actions with higher accu-
racy. Figure 2 shows a simplified example of the
the original workflows in a rich text format and
transformed as ICA.

Compared to traditional formal representations
of business logic such as programming language
(e.g., Java, Python) or formal schema (e.g., json-
style workflow), ICA style pseudocode is much
easier to create (even by non-engineers) and main-
tain. We will show in the rest of this paper that
with the power of fine-tuned LLMs, AI Agents can
now interpret and execute business logic defined



499

Figure 3: Our solution includes: 1) Transforming the workflow into ICA format, thereby enhancing the interpretive
abilities of language models. 2) Online prediction: Retrieving relevant ICA candidates by comparing the user
query and "Intent" part of the ICAs in the knowledge base; Retrieving necessary contextual data from backbend
APIs; Utilizing LLMs to generate the action to take 3) Offline training: Addressing the scarcity of training data by
employing synthetic methods to create the necessary data. We then apply Supervised Fine-Tuning (SFT) to train the
open-source language models.

in ICA format with higher accuracy. Note that de-
tails of human efforts and cost of translation and
maintenance of ICA is described in Appendix B.

Therefore, we reframe the problem addressed by
LLMs as follows: given the business knowledge
characterized as a set of ICAs, for a user query, in-
fer the Intent, select the appropriate Action where
Contextual conditions are met, and generate corre-
sponding responses. The remainder of the paper
outlines our methodology for addressing this prob-
lem.

4 Methodology

To instruct LLMs to understand and interpret the
ICA format, we need to 1) transform our customer
support business knowledge to the ICA format, and
2) create a dataset to train (fine-tune) LLMs to
learn how to interpret and reason over ICA. Figure

3 shows the relationship of online prediction and
synthetic data generation for LLM offline training.

4.1 Transforming Business Knowledge into
ICA

We first process the existing workflows to decom-
pose, extract and detect the type of the text contents
from rich text format. Then, the extracted and de-
tected Intent, Context and Action are represented
in an intermediate decision tree that is further con-
verted to pseudocode which can be reviewed and
edited by knowledge writers of content and opera-
tion team. See Appendix A and B for more details.

When transforming each workflow to ICA, we
substitute the content of each action with an ID
starting from 1, while preserving the mapping be-
tween the IDs to contents in an action map. Then
in the training data synthesis, only the action ID is



500

synthesized. In online action prediction, the LLM
only generates the action ID and the actual content
of the action is further queried from the action map.
This approach provides multiple advantages: It im-
proves the accuracy of the output by simplifying
generated content and enabling a direct comparison
between the action IDs generated by the LLM and
the ground truth labels in evaluation, facilitating the
acquisition of quantitative metrics for model train-
ing iteration. Additionally, it allows for a reduction
in the token size of the prompt and the output for
online prediction, thereby decreasing latency.

4.2 Fine-tuning LLMs to Interpret ICAs
through Synthetic Data

We use a randomized synthesis method to generate
supervised fine-tuning data format for our training
data. One training instance consists of the user
query, context data and candidate ICA workflows
in pseudocode in the prompt, the CoT rationale
(Wei et al., 2023) and action to take in the response.
Our assumption is that the LLM can learn to under-
stand the ICA format after being exposed to a vast
amount of randomly generated data. Even though
the synthesized data does not reflect the real busi-
ness knowledge, the synthetic data is still effective
in ‘teaching’ the LLMs about the format. Figure
4 shows the three-step process of synthesizing the
training instance. See Appendix C for more details.

5 Experiments

5.1 Experimental Setup

We conducted a series of internal offline and online
experiments to evaluate the quality and effective-
ness of our proposed approach. In the online ex-
periments, we predict actions to take derived from
our methodology, as outlined in the paper, as a rec-
ommendation for agents to solve customer support
inquiries based on the current conversation between
the customer and the agent. Agents and cases were
randomly assigned to control and treatment groups,
with each group managing over 5,000 case assign-
ments to ensure sufficient statistical power. To
maintain focus on our primary research objectives
and control for extraneous variables, we standard-
ized the knowledge retrieval process across all ex-
perimental groups. This involved mapping user
intentions to the top three most relevant original
knowledge articles, which were then translated into
ICA formats appropriate for each group. For each
experimental group, models are selected based on

their performance measured by offline evaluation
metrics calculated from a dataset comprised of cus-
tomer support conversations between customers
and agents. Each instance in the dataset is labeled
by human annotators with the appropriate action to
take.
Evaluation Metrics For offline evaluation, we use
Accuracy (ACC) calculated as the number of cases
with correct action prediction divided by the total
number of the evaluation dataset. We also measure
Average Latency (AL) based on the average time
required to produce a response for each data point.
For online evaluation, we use Average Manual Pro-
cessing Time (AMPT) to evaluate the productivity
of our solution. AMPT indicates the time spent
to solve a case manually in different experimental
settings. This metric indicates the effectiveness of
our approach in saving time through reduced man-
ual efforts which is directly linked to operational
cost. ACC and AL directly affect the overall perfor-
mance: inaccurate suggestions can mislead agents,
resulting in erroneous solutions and prolonged cus-
tomer interactions. Latency will affect the agent
waiting time for the suggestions and longer waiting
time can result in a negative impact in customer
satisfaction and also agent efficiency.
LLMs We selected two anonymized larger LLMs:
Model 1 and Model 2, along with smaller LLMs:
Mixtral-8x7B-Instruct-v0.1 (Mixtral-8x7B) and
Mistral-7B-Instruct-v0.2 (Mistral-7B) for compari-
son. Model training and serving details are docu-
mented in Appendix D.

5.2 Experimental Results

Model CoT ACC
Rich Text ICA

Model 1
w/o 0.57 0.70 (+0.13)
w/ 0.65 (+0.08) 0.92 (+0.25)

Model 2
w/o 0.55 0.67 (+0.12)
w/ 0.61 (+0.06) 0.89 (+0.34)

Mixtral w/o 0.39 0.61 (+0.22)
-8x7B w/ 0.43 (+0.04) 0.82 (+0.43)
Mistral w/o 0.16 0.51 (+0.35)

-7B w/ 0.23 (+0.07) 0.70 (+0.54)

Table 1: The ICA format and CoT can greatly enhance
the model’s accuracy with no fine-tuning.

ICA format and CoT can enhance the accuracy.
Table 1 illustrates the impact of ICA format and
CoT on the accuracy of models. Taking Model 1



501

Figure 4: Three steps of generating synthetic training data: 1) Sample user query and context data randomly to
establish a matched branch. 2) Incorporating additional divergent branches to construct the decision trees. 3)
Developing pseudocode, detailing the reasoning process, and deriving the label from the trees, then integrating these
components to assemble the training dataset.

as an instance, the baseline accuracy without the
application of CoT format or ICA stands at 57%.
By employing ICA format alone, we observe a
13% enhancement in accuracy. An additional 8%
increase is achieved through the utilization of CoT,
and a substantial improvement of 25% is realized
when both ICA format and CoT are applied concur-
rently. The result also indicates that the ICA format
consistently improves the accuracy of all models
compared to the rich text format. This proves the
effectiveness of our proposed ICA format for the
knowledge representation in customer support ap-
plications. In addition, the results show that incor-
porating CoT further enhances the accuracy for all
models in both rich text and ICA formats. This
improvement is significantly more pronounced in

the ICA format. Furthermore, we observe that the
smaller models also exhibit notable accuracy gains
with the ICA format and CoT, albeit starting from
lower accuracy compared to larger LLMs. Among
all LLMs, Model 1 demonstrates the highest quality
when no fine-tuning is performed.

Fine-tuning with synthetic data improves accu-
racy and latency. Table 2 demonstrates the ef-
ficacy of our synthetic data generation strategy
in enhancing the performance of Mixtral-8x7B
and Mistral-7B models through fine-tuning. By
integrating synthetic data with CoT methods, we
achieve performance levels nearly comparable to
those of larger models (85%, 86% vs. 89%, 92%).
This improvement is substantial and justifiable for
real-world business applications (e.g., customer



502

Model Fine- CoT ACC ALTuning

Model 1 -
w/o 0.70 16.6s
w/ 0.92 46.4s

Model 2 -
w/o 0.67 15.9s
w/ 0.89 44.2s

Mixtral-8x7B
w/o

w/o 0.61 11.3s
w/ 0.82 20.0s

w/
w/o 0.67 4.7s
w/ 0.86 8.0s

Mistral-7B
w/o

w/o 0.51 5.7s
w/ 0.70 12.0s

w/
w/o 0.61 1.9s
w/ 0.85 4.5s

Table 2: For smaller open-source LLMs, fine-tuning
with synthetic data can enhance the accuracy and la-
tency.

support), as smaller models exhibit significantly
lower latency. Thus, the fine-tuning with synthetic
data not only boosts accuracy but also reduces la-
tency if used with the right-size open-source LLM.
The primary reason for the decreased latency with
fine-tuning is that the models produce fewer output
tokens compared to their non-fine-tuned counter-
parts due to the fine-tuning data.

However, while CoT enhances the accuracy of
the models, it also increases latency across vari-
ous scenarios, particularly in larger LLMs, which
may hinder their use in real-time applications. The
smaller Mistral-7B model, do not face this issue,
exhibiting latencies nearly tenfold lower than the
larger models. This advantage makes fine-tuning
smaller models, with CoT, more viable for real-
time applications despite the increased latency
caused by CoT.

Based on these results, Model 1 without CoT,
Model 1 with CoT and fine-tuned Mistral-7B with
CoT are selected for online experiment testing the
impact on AMPT. Details of model selection is
described in Appendix E.

Suggested Action AMPT
No suggested action NA (base)

Model 1 w/ CoT +3%
Model 1 w/o CoT -3%

Fine-tuned Mistral-7B w/ CoT -13%

Table 3: Compared with other methods, our solution
decreases manual processing time by 13% over baseline.

Our solution decreases manual processing time
significantly Table 3 illustrates the online evalu-
ation result of manual processing time compared
with no suggested action. During the online exper-
iment, we found that using a smaller, fine-tuned
model (Mistral-7B) with Chain of Thought (CoT)
decreased AMPT by 13%. In contrast, while Model
1 yielded higher quality outcomes, it increased
AMPT when used with CoT due to greater latency,
and only slightly reduced AMPT (3%) without CoT.
Removing CoT, however, led to a notable decrease
in accuracy, resulting in more incorrect actions.

6 Conclusion

We propose a novel solution to enhance customer
support efficiency by addressing three key chal-
lenges: complex internal knowledge, latency in
larger LLMs, and scarcity of training data. Our
results demonstrate that: (i) the ICA format signif-
icantly improves model accuracy, (ii) fine-tuning
smaller open-source LLMs can effectively reduce
latency and agent work time, and (iii) our synthetic
data generation method efficiently created training
data, enhancing model performance. This pioneer-
ing work not only showcases the application of
LLMs in assisting customer support tasks but also
sets the stage for future research into reformatting
business knowledge across complex domains like
legal and finance.

References
Jinheon Baek, Alham Fikri Aji, and Amir Saffari. 2023.

Knowledge-augmented language model prompting
for zero-shot knowledge graph question answering.
arXiv preprint arXiv:2306.04136.

Stefan Behnel. 2005. lxml.

Erik Brynjolfsson, Danielle Li, and Lindsey Ray-
mond. 2023. Generative ai at work. Preprint,
arXiv:2304.11771.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio
Ranzato. 2019. Revisiting self-training for
neural sequence generation. arXiv preprint
arXiv:1909.13788.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.
Large language models can self-improve. arXiv
preprint arXiv:2210.11610.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient

https://lxml.de/tutorial.html
https://arxiv.org/abs/2304.11771


503

memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611–626.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe
Zhang, Jinmeng Rao, Steven Zheng, Daiyi Peng, Diyi
Yang, Denny Zhou, and Andrew M. Dai. 2024. Best
practices and lessons learned on synthetic data for
language models. Preprint, arXiv:2404.07503.

Jonathan Mallinson, Jakub Adamek, Eric Malmi, and
Aliaksei Severyn. 2022. Edit5: Semi-autoregressive
text-editing with t5 warm-start. arXiv preprint
arXiv:2205.12209.

Emily Reif, Daphne Ippolito, Ann Yuan, Andy Coenen,
Chris Callison-Burch, and Jason Wei. 2021. A recipe
for arbitrary text style transfer with large language
models. arXiv preprint arXiv:2109.03910.

Philipp Reinhard, Mahei Manhai Li, Christoph Peters,
and Jan Marco Leimeister. Generative ai in customer
support services: A framework for augmenting the
routines of frontline service employees.

Leonard Richardson. 2004. Beautiful soup.

Parker Riley, Noah Constant, Mandy Guo, Girish
Kumar, David Uthus, and Zarana Parekh. 2020.
Textsettr: Few-shot text style extraction and tunable
targeted restyling. arXiv preprint arXiv:2010.03802.

Timo Schick, Jane Dwivedi-Yu, Zhengbao Jiang, Fabio
Petroni, Patrick Lewis, Gautier Izacard, Qingfei You,
Christoforos Nalmpantis, Edouard Grave, and Sebas-
tian Riedel. 2022. Peer: A collaborative language
model. arXiv preprint arXiv:2208.11663.

Lei Shu, Liangchen Luo, Jayakumar Hoskere, Yun
Zhu, Yinxiao Liu, Simon Tong, Jindong Chen, and
Lei Meng. 2023. Rewritelm: An instruction-tuned
large language model for text rewriting. Preprint,
arXiv:2305.15685.

AB Siddique, Samet Oymak, and Vagelis Hristidis.
2020. Unsupervised paraphrasing via deep reinforce-
ment learning. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge
discovery & data mining, pages 1800–1809.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2023. Self-consistency improves chain
of thought reasoning in language models. Preprint,
arXiv:2203.11171.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage models with self-generated instructions. arXiv
preprint arXiv:2212.10560.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and
Quoc V Le. 2020. Self-training with noisy student
improves imagenet classification. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 10687–10698.

Wei Xu, Alan Ritter, William B Dolan, Ralph Grishman,
and Colin Cherry. 2012. Paraphrasing for style. In
Proceedings of COLING 2012, pages 2899–2914.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. Star: Bootstrapping reasoning with
reasoning. Preprint, arXiv:2203.14465.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng
Wang, Shumin Deng, Mengru Wang, Zekun Xi,
Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan
Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang,
Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang,
Xiaowei Zhu, Jun Zhou, and Huajun Chen. 2024. A
comprehensive study of knowledge editing for large
language models. Preprint, arXiv:2401.01286.

Yi Zhang, Tao Ge, and Xu Sun. 2020. Parallel data aug-
mentation for formality style transfer. arXiv preprint
arXiv:2005.07522.

A Intermediate Decision Tree for ICA
Transformation and Training Data
Synthesis

A workflow can be transformed to a tree structure,
with the root node representing the condition on
Intent, the internal nodes representing conditions
on Contexts, and the leaf nodes representing the
Actions. This decision tree can be interconverted
with the pseudocode format, where the conditions
of root node and internal nodes correspond to if-
else clauses and actions of leaf nodes correspond
to then-do blocks. This intermediate decision tree
will be used in the processes of ICA transformation
from original rich text and training data synthesis.

B ICA Transformation from Rich Text

Since the HTML containing the original business
knowledge in rich text is also in a tree structure,
we used HTML parsing tools such as Beautiful
Soup (Richardson, 2004) and lxml (Behnel, 2005)
to decompose and extract the text contents from
the knowledge while retaining the relationships in
the XML tree. Then a binary classifier trained on
human labeled data is applied on the extracted con-
tent to determine whether it is 1) a condition on
intent/context or 2) a description of an action to
take. This classification result is used to decide
whether the content serves as a leaf node in the
intermediate decision tree. The trees are further
converted to pseudocode format programmatically

https://arxiv.org/abs/2404.07503
https://arxiv.org/abs/2404.07503
https://arxiv.org/abs/2404.07503
https://beautiful-soup-4.readthedocs.io/en/latest/
https://arxiv.org/abs/2305.15685
https://arxiv.org/abs/2305.15685
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2401.01286
https://arxiv.org/abs/2401.01286
https://arxiv.org/abs/2401.01286


504

and then reviewed, edited and corrected by our hu-
man knowledge writers from content and operation
team. The entire process takes months for the trans-
formation of the whole knowledge base. However,
this process is a one-time effort for the existing
legacy knowledge. For new knowledge creation
and future updates, knowledge writers can directly
create new business logic and edit existing ones in
ICA format.

C Training Data Synthesis

For the training data synthesis process, we initially
created two datasets: one is the pool of the condi-
tions on the intent and context from our internal
business knowledge base. The other is a pool of
user query and context data from the historical data
gathered from loggings of queries and API returned
data, with private and sensitive data anonymized or
removed.

With these two datasets, we can synthesize a
training instance by the following three steps as
illustrated in Figure 4:

• Synthesize a matched branch We randomly
sample a user query, a list of context data, and
a tree branch consists of one intent condition
and multiple context conditions that all can be
satisfied by the query and context data.

• Synthesize divergent branches Upon con-
structing the matched branch, it remains neces-
sary to generate several divergent branches to
facilitate the construction of decision trees. A
divergent branch is defined as follows: within
a particular branch, there exists more than
one node that does not align with the user’s
query or associated context data. The genera-
tion of a divergent branch may be achieved ei-
ther through the modification of certain nodes
within the matched branch (if the node is the
root node, a new tree will be created) or by
incorporating an irrelevant branch.

• Synthesize the CoT The CoT can help LLM
understand the rationale of the action pre-
diction. Given our understanding of which
branch is matched and the rationale behind
the non-matching status of the other branches
during the branch generation phase, we are
capable of producing the corresponding rea-
soning process as the CoT: We construct a
list of descriptions of nodes in the matched

branch and nodes leading to mismatch of cor-
responding branch to explain the final action
prediction.

• Convert the synthesized decision trees to
ICA format and create the SFT instance
Following the synthesis of all branches in the
preceding phase, it is feasible to transform the
decision trees into ICA format. We put the
synthesized user query, context and ICA in
the instruction part while the CoT and action
in the label part to create an SFT instance.

D SFT and Model Serving Settings

During training, we use eight A100 GPUs to fine-
tune the backbone model with bf16 float precision.
Batch size per device is set to 8, training epoch is
set to 5, the gradient accumulation step is set to 1
and the max token length is set to 4096. We opti-
mize the model using AdamW optimizer and the
learning rate is set to a fixed value of 5e-6. Both
LoRA and Full-Parameter fine-tuning are tested
and the model with the best performance are se-
lected. In the online prediction phrase, for pro-
prietary LLMs, we directly call their interfaces
to predict; for open-source models, we use an
NVIDIA A100 GPU to serve Mistral-7B, and use
eight NVIDIA A100 GPUs to serve other models.
The max output token length is set to 512. Addi-
tionally, we leverage vllm (Kwon et al., 2023) to
speed up the prediction process.

E Model Selection for Online Experiment

To minimize dilution of statistical power and en-
sure the experiment’s completion within an accept-
able timeframe, we limited the number of exper-
imental groups to four. Models with an offline
accuracy (ACC) below 70% were excluded, based
on historical experiments indicating that sugges-
tions with accuracy below this threshold signifi-
cantly affect the AMPT. Between Mixtral-8x7B
and Mistral-7B, we selected fine-tuned Mistral-
7B with Chain of Thought (CoT) for its balanced
performance—exhibiting high ACC and low AL,
and substantially lower serving costs compared to
Mixtral-8x7B.


	Introduction
	Related Work
	Business Knowledge Representation as ICA Pseudocode
	Methodology
	Transforming Business Knowledge into ICA
	Fine-tuning LLMs to Interpret ICAs through Synthetic Data

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion
	Intermediate Decision Tree for ICA Transformation and Training Data Synthesis
	ICA Transformation from Rich Text
	Training Data Synthesis
	SFT and Model Serving Settings
	Model Selection for Online Experiment

