
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track, pages 546–560
January 19–24, 2025. ©2025 Association for Computational Linguistics

546

Transforming Code Understanding: Clustering-Based Retrieval for
Improved Summarization in Domain-Specific Languages

Baban Gain1, Dibyanayan Bandyopadhyay1, Samrat Mukherjee1, Aryan Sahoo1,

Saswati Dana3, Palanivel Kodeswaran3, Sayandeep Sen3, Asif Ekbal4, Dinesh Garg3,
1Indian Institute of Technology Patna, 2IBM Research, India

2Indian Institute of Technology Jodhpur
{gainbaban,dibyanayan,samratpisv123,aryansahoo.7277,asif.ekbal}@gmail.com

{sdana027,palani.kodeswaran,sayandes,garg.dinesh}@in.ibm.com

Abstract
A domain-specific extension of C language
known as extended Berkeley Packet Filter
(eBPF) has gained widespread acceptance for
various tasks, including observability, security,
and network acceleration in the cloud commu-
nity. Due to its recency and complexity, there
is an overwhelming need for natural language
summaries of existing eBPF codes (particu-
larly open-source code) for practitioners and
developers, which will go a long way in eas-
ing the understanding and development of new
code. However, being a niche Domain-Specific
Language (DSL), there is a scarcity of avail-
able training data. In this paper, we investi-
gate the effectiveness of LLMs for summariz-
ing low-resource DSLs, in the context of eBPF
codes. Specifically, we propose a clustering-
based technique to retrieve in-context examples
that are semantically closer to the test example
and propose a very simple yet powerful prompt
design that yields superior-quality code sum-
mary generation. Experimental results show
that our proposed retrieval approach for prompt
generation improves the eBPF code summa-
rization accuracy up to 12.9 BLEU points over
other prompting techniques. The codes are
available at https://github.com/babanga
in/ebpf_summ.

1 Introduction

This paper addresses the highly industry-relevant
challenge of automatically generating summaries
for code written in domain-specific languages
(DSLs), where the availability of training data is
often limited. While Large Language Models
(LLMs) have shown remarkable progress in sum-
marizing code written in widely-used programming
languages (Liu et al., 2021; Zhang et al., 2020)
like C, Java, and Python, their performance signifi-
cantly drops when tasked with summarizing code
in niche domain-specific languages—even when
these DSLs are built on top of popular languages
(as demonstrated in the experiments section).

Prominent examples of DSLs include
CUDA (NVIDIA et al., 2020) and OpenGL (Woo
et al., 1999), which extend C for specialized tasks
such as GPU programming and graphics rendering.
Although syntactically similar to their base lan-
guage, these DSLs introduce unique control flow
structures, domain-specific data manipulations,
and low-level hardware interactions. Consequently,
they pose challenges for both human developers
and LLMs trying to analyze and understand this
specialized code.

Customizing large language models (LLMs) for
domain-specific languages (DSLs) is challenging
due to limited training data. To address this, we use
prompt engineering for domain adaptation rather
than LLM-specific adjustments.

We found that enriching prompts with semanti-
cally similar (code, summary) examples improves
LLM performance. To identify these examples, we
introduce a clustering-based method that groups
functionally similar codes using a distance met-
ric. This approach enhances the accuracy of LLM-
generated summaries during inference.

Our experiments demonstrate that even with a
modest corpus of approximately 160 annotated
eBPF code samples, our clustering-based approach
significantly enhances the performance of the one-
shot model, achieving a remarkable 300% improve-
ment in BLEU score compared to the zero-shot
baseline.
extended Berkeley Packet Filter (eBPF): eBPF is
a rapidly growing technology (Vieira et al., 2020)
that allows for the programmability of the Linux
kernel, enabling the addition of new features and
the optimization of existing kernel capabilities to
meet specific business needs. Hyperscalers have
widely adopted eBPF, with notable applications in
observability and debugging (as seen with Netflix),
networking (used by Meta, Cloudflare, and Google
GKE), and security (integrated by Google K8s).

For a detailed tutorial on eBPF, we refer read-

https://github.com/babangain/ebpf_summ
https://github.com/babangain/ebpf_summ

547

static __inline int filter (struct __sk_buff *skb)

{

char pkt_fmt [] = ""MAC_FILTER: pkt skb contain mac: %x%x\n"";

 …

bpf_memcpy (iface_mac, bytes, ETH_ALEN);

bytes = bpf_map_lookup_elem (& iface_ip_map, & (idx));

if (bytes == NULL) {

bpf_trace_printk (map_error, sizeof (map_error), ipstr);

return TC_ACT_OK;

}

 …

if (compare_mac (eth->h_dest, iface_mac) == 1) {

return TC_ACT_OK;

}

__u8 *pkt_mac = (__u8 *) eth->h_source;

__be32 pkt_ip = ip->saddr;

if (compare_mac (pkt_mac, iface_mac) == 0) {

…

return TC_ACT_SHOT;

}

 …

ADD_PASS_STAT (idx, inf);

return TC_ACT_OK;

}

Machine Summary : This code is a BPF eBPF program that filters
IPv4 packets. It extracts the source and destination ports from the
packet and updates the flow_table_v4 map. If the L4 protocol is TCP,
tuple.ip_proto is set to 1. If it is UDP, tuple.ip_proto is set to 0. The
packet is dropped if the ports are not able to get extracted.

Figure 1: A sample eBPF code with incorrect LLM
(WizardCoder) generated summary

ers to the official documentation (eBPF). Figure
1 presents a code snippet of the eBPF function
filter() (eBPF), which checks whether a packet’s
MAC and IP addresses match those of the network
interface and drops the packet if they do not. This
code snippet highlights three key features of the
eBPF language:

1) Hookpoint specificity: The Linux kernel ex-
poses various hookpoints, such as tracepoints, func-
tion entry and exit, and packet reception, where
eBPF code can be attached. Depending on the
hookpoint, the input parameters and capabilities
of the eBPF program vary. In this example, the
code is attached to the TC hookpoint in the kernel’s
network stack.

2) eBPF helper functions: eBPF provides a set of
specialized helper functions, such as bpf_redirect,
which are used within eBPF programs to interact
with and modify kernel state.

3) eBPF maps: eBPF includes a mechanism
called "maps" that facilitates data sharing between
user-space and kernel-space, as well as between
different kernel-space programs.

As seen in Figure 1, the eBPF code summary
output by WizardCoder (Luo et al., 2023) for the
filter() function under zero-shot setting had no
relevance to the given code snippet. We illustrate
the limitations and challenges of current models in
Table 3. These examples underscore the need for
tailoring large language models (LLMs) to emerg-

ing domain-specific languages (DSLs), whose us-
age is rapidly expanding in niche fields, particularly
in the domain of systems operations, where high
performance, extensibility, and intelligent manage-
ment are paramount.

In this context, our prompting technique demon-
strates significantly superior performance—a 300%
improvement in code summarization compared to
zero-shot baselines across multiple LLMs. Remark-
ably, this performance boost is achieved using a
relatively small dataset consisting of 160 human-
annotated functions. This highlights the potential
of the proposed clustering-based approach to en-
hance LLM summarization capabilities for other
DSLs, particularly in data-scarce environments.
Contributions: To the best of our knowledge, this
work is the first to address the industry-critical prob-
lem of leveraging large language models (LLMs)
for code summarization in low-resource languages,
such as eBPF. While we focus on a single domain-
specific language (DSL), we believe the approach is
generalizable due to common characteristics shared
by popular DSLs—namely, their derivation from
widely-used programming languages with perfor-
mant LLMs. Although experimenting with other
DSLs is outside the scope of this work, our contri-
butions are as follows:

i) We propose a clustering-based approach (Section
2.2) for selecting examples in in-context learn-
ing. Our results demonstrate that this approach
improves performance across all tested models.

ii) We benchmark state-of-the-art code summariza-
tion models for eBPF code, evaluating both zero-
shot and one-shot settings (Section 4). Notably,
WizardCoder-15B achieves the best performance
in the one-shot setting (see Table 1).

iii) We conduct a human evaluation of the generated
summaries (Section 4.3) and publicly release the
ratings, which can be leveraged for further tuning
of generative models.

2 Methodology

eBPF codes are domain-specific, and thus, it is plau-
sible that the language models are not trained on
these eBPF codes. To benchmark their capabilities
on eBPF summarization, we opt for two strategies:
i) we consider zero-shot inference of decoder-only
Large Language Models (LLMs) (Brown et al.,
2020; Hoffmann et al., 2022). ii) we design a clus-
tering strategy to prompt the LLMs with few-shot
in-context examples, as discussed next.

548

Unixcoder-
base-nine

eBPF Code,
Summary Pairs

Code
Clusters

Summary

K-means
clustering

NN Matching Prints Hello
World, when
invoked.

AI Model

Test Code

###Human:
int hello ()
{bpf_trace_printk("Hello, World!
\\n");
return 0;
}(Query code)
###Assistant:

Selected
Code

Generated Prompt

###Human:
int bpf_filter (struct sk_buff
*skb)
{
return filter (skb);
}

###Summary:This is a wrapper
function which calls
the base function filter with the
same argument
passed to it and returns its
value

eBPF Code

+

Code Representations

Figure 2: Prompting with “Nearest Code selection within the Cluster”: For a query code at the test time,
its cluster index is first determined, and the nearest code example for the test case is extracted from that cluster.
Subsequently, the corresponding codes and annotations pairs are used as its one-shot in-context prompt. Prompt
format given here is used for Codellama model.

2.1 Source-code Clustering

We begin by clustering a given set of eBPF source
codes and utilizing these clusters to retrieve in-
context few-shot examples for querying large lan-
guage models (LLMs). In our scenario, the use of
in-context prompts also reduces the reliance on a
large quantity of domain-specific language (DSL)
annotated data, which would otherwise be neces-
sary for training the LLM. The steps of our cluster-
ing approach are detailed below.

Extracting Code Representations: Given a set
of n eBPF code samples (c1, c2, . . . , cn), we ex-
tract code-specific representations (r1, r2, . . . , rn)
by passing the samples through a feature extrac-
tion module, such as UnixCoder (Guo et al., 2022),
which is trained on programming language tasks.
These representations are obtained by applying av-
erage pooling to the final layer output of the model.
This process is mathematically expressed as:

ri = AvgPool(UnixCoder(ci)) (1)

Clustering: The code representations are then
clustered using the k-means algorithm. To deter-
mine the optimal number of clusters, c, we em-
ploy the Elbow method (Kodinariya and Makwana,
2013), which helps identify the most appropriate
value for k in k-means clustering.

Constructing In-Context Examples: Figure 2
illustrates the process of constructing in-context
examples. At test time, we generate the code rep-
resentation using the UnixCoder model. Applying
k-means to this representation allows us to iden-
tify the corresponding cluster index, denoted by
p. By iterating through the examples in cluster p
and calculating their Euclidean distance from the

test code’s feature embedding (as defined in Equa-
tion 1). Euclidean distance is used in clustering
because it effectively measures geometric proxim-
ity, enabling the grouping of similar data points
while aligning naturally with variance-minimizing
objectives like in k-means. We select the example
with the smallest distance. This example is then
used as a one-shot in-context prompt.

2.2 Prompt Design

To effectively leverage the capabilities of LLMs in
inference mode, we adopt three distinct strategies
for designing one-shot prompts.

Random One-Shot (Sro): For each input code,
we randomly select an example from the dataset
and use the corresponding code-summary pair as
the prompt for the model.

Random Code Selection within the Cluster
(Srs): For each test code, we extract its features
using UnixCoder and determine its associated clus-
ter. A random example from this cluster is then
selected as the representative example to be used
in the prompt.

Nearest Code Selection within the Cluster
(Sncs) This method, as detailed in Figure 2 and
Section 2.1, involves finding the closest example
within the cluster to which the test code is mapped.
The nearest example is then used as the one-shot
prompt.

In Section 4, we demonstrate the positive impact
of our clustering methodology through both auto-
matic and human evaluations, which show notable
performance improvements across all models.

549

Model Params Zero-Shot Random One-shot (Sro)

BLEU Rouge-1 Rouge-2 Rouge-L BERTScore BLEU Rouge-1 Rouge-2 Rouge-L BERTScore

Deepseek-Coder 6.7B 3.6 0.2068 0.0406 0.1886 0.8304 1.2 0.1458 0.0179 0.1310 0.6856

Codellama-Instruct 7B 2.4 0.1992 0.0428 0.1820 0.7567 2.8 0.1336 0.0259 0.1197 0.5479
WizardCoder-Python 7B 4.0 0.2260 0.0444 0.2020 0.8405 2.9 0.2165 0.0419 0.1953 0.8380
Mistral-OpenOrca 7B 4.1 0.2240 0.0359 0.2008 0.8411 3.2 0.2055 0.0335 0.1814 0.8491
Zephyr-beta 7B 3.6 0.2150 0.0358 0.1899 0.8416 3.9 0.2116 0.0378 0.1849 0.8424

WizardCoder 15B 4.2 0.2352 0.0478 0.2095 0.8437 4.8 0.2216 0.0435 0.1961 0.8483

(a) Comparison of Zero-shot with Random one-shot based prompting.

Model Params Random Code selection within the Cluster (Srs) Nearest Code selection within the Cluster (Sncs)

BLEU Rouge-1 Rouge-2 Rouge-L BERTScore BLEU Rouge-1 Rouge-2 Rouge-L BERTScore

Deepseek-Coder 6.7B 2.3 0.1628 0.0333 0.1483 0.7331 7.2 0.2437 0.0774 0.2216 0.7650

Codellama-Instruct 7B 4.9 0.1540 0.0459 0.1393 0.5491 13.0 0.2146 0.0891 0.1952 0.8517
WizardCoder-Python 7B 3.6 0.2351 0.0517 0.2117 0.8387 5.9 0.2636 0.0697 0.2381 0.8477
Mistral-OpenOrca 7B 5.1 0.2242 0.0513 0.2006 0.8341 14.7 0.3402 0.1378 0.3112 0.8701
Zephyr-beta 7B 4.8 0.2316 0.0541 0.2086 0.8404 7.9 0.2804 0.0809 0.2474 0.8551

WizardCoder 15B 7.9 0.2803 0.0787 0.2520 0.8548 17.7 0.3509 0.1550 0.3210 0.8663

(b) Comparison of “Random Code selection within the Cluster” with “Nearest Code selection within the cluster”

Table 1: Comparison of different models based on automatic evaluation metrics. The top performing model within
the 7B category is highlighted in bold. Overall, top performer is highlighted with underline

3 Experimental Setup
In the experimental setup, we utilize commented
datasets for eBPF source code obtained from the
eBPF-DevSecTools repository (eBPF, 2023). This
comprehensive repository includes source code
from various eBPF projects, such as notable ones
like Cilium (Cilium, 2018) and Katran (Katran,
2018), as well as utility collections like BCC (bcc,
2015). For evaluation, we use SacreBLEU (Pap-
ineni et al., 2002; Post, 2018), reporting the geo-
metric mean up to 4-grams.
Dataset: A total of 160 functions were annotated
by students and professionals with sufficient do-
main knowledge and annotation proficiency. These
functions were manually annotated with summaries
at the function level, and in some cases, at the line
level as well. We extracted features from the sum-
maries using the Unixcoder-base-nine model and
calculated pairwise similarity, ensuring a set of 136
deduplicated examples with an average summary
length of 52 words per example.

4 Results

In Section 4.1, we present the overall performance
through a quantitative evaluation of model outputs.
Subsequently, in Section 4.2, we compare the per-
formance of various prompting strategies. Finally,
in Section 4.3, we present the results of a human
evaluation conducted by experienced professionals
on a subset of our dataset.

4.1 Quantitative Evaluation

Our experimental results, summarized in Ta-
ble 1a, demonstrate the performance of recent large
language models using zero-shot and one-shot
prompts with various strategies. The WizardCoder-
15B model (Luo et al., 2023) consistently outper-
forms the other models across all prompting strate-
gies and evaluation metrics. Notably, performance
improves from a BLEU score of 4.2 in the zero-
shot setting to 4.8 with random one-shot prompting.
Further enhancements are observed when employ-
ing Srs, achieving a BLEU score of 7.9, with the
highest BLEU score of 17.7 obtained using our
proposed clustering technique, Sncs.

In the zero-shot setting, the 7B models exhibit
inconsistent performance across the various met-
rics. Zephyr-beta (Tunstall et al., 2023) ranks sec-
ond in BERTScore, Mistral-OpenOrca (Mukherjee
et al., 2023) achieves the second-highest BLEU
score, while WizardCoder-Python 7B performs
well on several ROUGE metrics. When utilizing
Sro or Srs as prompting strategies, the quality of
in-context examples leads to inconsistent perfor-
mance across both models and metrics. The soft-
prompt design employed by the Sncs technique
proves to be the most effective strategy, achiev-
ing a BLEU score of 17.7 and a BERTScore of
0.8663. Among the 7B models, Mistral-OpenOrca
consistently performs well in the optimal one-shot
setting, with CodeLlama-Instruct (Roziere et al.,

550

2023) ranking third in terms of BLEU score. In con-
trast, Deepseek-Coder (DeepSeek, 2023) does not
demonstrate competitive performance compared to
the other LLMs considered in this study.

4.2 Qualitative Insights into Prompting
Strategies

In this section, we examine the effects of different
prompting methods and model parameter adjust-
ments, providing a comprehensive understanding
of their impact on overall performance.

4.2.1 Zero-shot vs. Sncs

Our qualitative case study reveals a clear distinc-
tion between zero-shot and contextual few-shot
scenarios. In the absence of additional training
examples (zero-shot conditions), the models, par-
ticularly Codellama, struggled with complex code
structures, leading to a substantial number of in-
stances where the models failed to generate any
summaries. However, as we shifted to one-shot
prompt, a significant improvement became evident.
The inclusion of contextual code-summary pairs
was crucial in addressing the issue of non-summary
generation seen in zero-shot conditions.

Moreover, our study consistently observed per-
formance improvements across all models, culmi-
nating in a remarkable 300% increase in BLEU
score (from 4.2 in zero-shot to 17.7 in one-shot)
when employing one-shot prompts. This enhance-
ment highlights the positive effect of integrating
contextual information and task-specific examples
in improving the code summarization capabilities
of language models. Examples of Zero-Shot vs.
Sncs are provided in Appendix E.

4.2.2 Sncs vs. Sro

While it is well-established that prompts can
enhance the quality of generated outputs, the
relevance and quality of the examples used in
the prompt significantly affect the performance.
When random examples from the dataset are em-
ployed, the quality of the generated summaries
degrades substantially (e.g., Mistral-OpenOrca’s
BLEU score drops from 14.7 to 3.2), as shown in
row 4 of Table 1a and Table 1b. Similar trends
were observed across other models, underscoring
the importance of selecting appropriate in-context
examples for optimal results.

4.2.3 Zero-shot vs. Sro

We observed mixed results when using random
examples for one-shot prompts compared to zero-

shot. For instance, Codellama-Instruct (row 1 of
Table 1a) showed an improvement in BLEU score,
while ROUGE and BERTScore declined. Although
the BLEU score improved for the three models,
it decreased for the other three. In the case of
WizardCoder, the random one-shot strategy had
a negative impact on the 7B models but yielded
positive results for the 15B model, suggesting that
larger models exhibit better in-context learning ca-
pabilities. Upon further inspection of randomly
chosen examples, we found that models such as
WizardCoder-7B, Deepseek-Coder, and Mistral of-
ten mimicked the patterns and phrases from the
random one-shot examples, leading to a decrease
in performance.

4.2.4 Effect of Model Parameters
We observe that larger models, such as
WizardCoder-15B, demonstrate significant
performance improvements with our proposed
approach. For instance, the BLEU score increased
from 4.2 in the zero-shot setting to 17.7 when using
Sncs. In contrast, the smaller WizardCoder-7B
model saw only a modest improvement, with a
BLEU score rising from 4.0 to 5.9. This suggests
that larger models are more adept at capturing the
properties of the code from the provided examples.

4.3 Manual Evaluation
Evaluating code summarization is inherently chal-
lenging due to the varying levels of granularity at
which summaries can be written. In addition to
automatic metric evaluations, we conducted a man-
ual evaluation of the model-generated summaries
produced by the proposed approach Sncs, as de-
tailed in Table 2. A total of 90 code-summary pairs
were evaluated by four domain experts, resulting in
360 individual evaluations. To measure inter-rater
agreement, 30 pairs were shared among the eval-
uators1. For each of the six LLMs, we randomly
selected 15 data points from our test set along with
their corresponding model-generated summaries,
and these were provided to the experts for evalua-
tion. The experts, each with over a year of expe-
rience in eBPF code, assessed both common and
unique summaries. Specifically, 5 of the 15 sum-
maries were shared across annotators, while the
remaining 10 were distinct. Details on inter-rater
agreement can be found in Appendix H, and the
annotation guidelines are provided in Appendix A.

1The evaluators are experienced industry professionals
with significant expertise in the task.

551

Model Expert 1 Expert 2 Expert 3 Expert 4 Average

Codellama-Instruct 1.33 1.27 1.13 2.00 1.43

WizardCoder-Python [7B] 2.87 1.80 1.93 2.53 2.28

Deepseek-Coder 2.43 2.30 2.83 3.60 2.79

Mistral-OpenOrca 2.37 2.77 2.90 2.93 2.74

Zephyr-beta 3.20 2.77 3.00 3.10 3.02
WizardCoder [15B] 2.97 2.77 2.67 3.27 2.92

Table 2: Experts’ ratings on 0 to 4 scale. Higher score indicates a better quality of summary

To eliminate potential bias, the annotators were
presented with the generated summaries only, with-
out any identifying information regarding the mod-
els, descriptions, or references. Summaries were
rated on a scale from 0 to 4, with 0 representing
the lowest score and 4 representing the highest.
For each model, we calculated the average rat-
ing assigned by each expert, as shown in Table
2. The Zephyr-beta model emerged as the top per-
former, achieving an impressive average rating of
3.02 (out of 4). The WizardCoder-15B model fol-
lowed closely with an average rating of 2.92, and
the Deepseek-Coder-7B model ranked third with
an average rating of 2.79.

Interestingly, when we compared these results
with BLEU scores, the top three models in terms of
BLEU were WizardCoder-15B, Mistral-OpenOrca-
7B, and Codellama-Instruct. Despite its high
BLEU score, Codellama-Instruct received the low-
est average rating (1.43) from the manual evalua-
tion, highlighting a significant discrepancy between
automatic and human evaluations. This suggests
that BLEU may not be a reliable metric for eval-
uating concise code summarization. Furthermore,
BERTScore and ROUGE showed similar results
for Codellama-Instruct-7B, despite its lower man-
ual evaluation scores. These findings underscore
the need for developing more reliable metrics that
can better capture the nuances and quality of con-
cise code summarization. Additional insights into
challenging cases are provided in Appendix F.

5 Related Work

The evolution of code summarization, driven by
(Haiduc et al., 2010)’s early work, initially focused
on analyzing source code as text for generating
objective-oriented programming language descrip-
tions. Later, (Moreno et al., 2013) incorporated
part-of-speech tagging but focused on keywords,
overlooking control flows and data dependencies.
Recently, LLMs (Feng et al., 2020; Guo et al.,
2020; Ahmad et al., 2021; Wang et al., 2021; Cas-

sano et al., 2024; Ahmed and Devanbu, 2023) have
demonstrated significant progress in developing AI
systems that solve a wide variety of code/program-
ming language-related tasks as well. Sate-of-art
LLMs (Radford et al., 2019; Wang and Komat-
suzaki, 2021; Black et al., 2022) are able to per-
form well on natural language descriptions with
minimal examples. Min et al. (2022) showed that
using random labels instead of actual labels in in-
context examples does not hurt performance by a
large margin. Liu et al. (2022) use a based approach
to select examples for in-context learning.

However, the existing labeled benchmark
datasets for code summarization mainly originate
from public repositories or coding competitions.
To address this, we utilize human-annotated eBPF
codes (eBPF, 2023) for explanation generation,
marking a pioneering effort in generating expla-
nations for eBPF code.

6 Conclusion

This paper brings attention to the critical issue of
low performance exhibited by large language mod-
els (LLMs) in summarizing code written in low-
resource domain-specific languages (DSLs), using
eBPF as a candidate language. To the best of our
knowledge, this is the first study to leverage LLMs
for eBPF code summarization.

We propose a straightforward clustering-based
technique to retrieve functionally similar code,
which serves as in-context examples for effectively
querying LLMs to generate eBPF code summaries.
Experimental results demonstrate that our approach
improves the summarization accuracy of various
LLMs by 12.9 BLEU points over random one-shot
examples.

While the results pertain specifically to eBPF,
the shared characteristics of popular DSLs, such as
their derivation from mainstream programming lan-
guages (for which performant LLMs exist), provide
confidence in the generalizability of the approach.
Experimentation with other DSLs is beyond the

552

scope of the current work and is part of our planned
future research.

Acknowledgment

We sincerely thank Dushyant Behl and Sachee
Mishra for their invaluable contributions in manu-
ally rating the quality of code summaries, which
significantly enhanced the evaluation process for
this work. Baban Gain and Dibyanayan Bandy-
opadhyay gratefully acknowledge the Prime Min-
ister’s Research Fellowship (PMRF) program for
providing financial support and enabling this re-
search.

References
Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and

Kai-Wei Chang. 2021. Unified pre-training for pro-
gram understanding and generation. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655–2668,
Online. Association for Computational Linguistics.

Toufique Ahmed and Premkumar Devanbu. 2023.
Few-shot training llms for project-specific code-
summarization. In Proceedings of the 37th
IEEE/ACM International Conference on Automated
Software Engineering, ASE ’22, New York, NY,
USA. Association for Computing Machinery.

bcc. 2015. BPF Compiler Collection (BCC). https:
//github.com/iovisor/bcc.

Sidney Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang,
Michael Pieler, Usvsn Sai Prashanth, Shivanshu Puro-
hit, Laria Reynolds, Jonathan Tow, Ben Wang, and
Samuel Weinbach. 2022. GPT-NeoX-20B: An open-
source autoregressive language model. In Proceed-
ings of BigScience Episode #5 – Workshop on Chal-
lenges & Perspectives in Creating Large Language
Models, pages 95–136, virtual+Dublin. Association
for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Federico Cassano, John Gouwar, Francesca Lucchetti,
Claire Schlesinger, Anders Freeman, Carolyn Jane
Anderson, Molly Q Feldman, Michael Greenberg,
Abhinav Jangda, and Arjun Guha. 2024. Knowledge
transfer from high-resource to low-resource program-
ming languages for code llms. Proc. ACM Program.
Lang., 8(OOPSLA2).

Cilium. 2018. Cilium : ebpf-based networking, security,
and observability. https://github.com/cilium/
cilium/.

DeepSeek. 2023. Deepseek coder: Let the code write
itself. https://github.com/deepseek-ai/Deep
Seek-Coder.

eBPF. ebpf documentation. https://ebpf.io/what
-is-ebpf/.

eBPF. ebpf filter.

eBPF. 2023. ebpf-projects-annotations. https://gi
thub.com/eBPFDevSecTools/annotations.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. arXiv
preprint arXiv:2203.03850.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

Sonia Haiduc, Jairo Aponte, Laura Moreno, and An-
drian Marcus. 2010. On the use of automated text
summarization techniques for summarizing source
code. 17th Working Conference on Reverse Engi-
neering.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Katran. 2018. katran : A high performance layer 4 load
balancer. https://engineering.fb.com/2018/
05/22/open-source/open-sourcing-katran-a
-scalable-network-load-balancer/.

Trupti M. Kodinariya and Prashant R. Makwana. 2013.
Review on determining number of cluster in k-means
clustering.

Terry K Koo and Mae Y Li. 2016. A guideline of
selecting and reporting intraclass correlation coeffi-
cients for reliability research. Journal of chiropractic
medicine, 15(2):155–163.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.1145/3551349.3559555
https://doi.org/10.1145/3551349.3559555
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.1145/3689735
https://doi.org/10.1145/3689735
https://doi.org/10.1145/3689735
https://github.com/cilium/cilium/
https://github.com/cilium/cilium/
https://github.com/deepseek-ai/DeepSeek-Coder
https://github.com/deepseek-ai/DeepSeek-Coder
https://ebpf.io/what-is-ebpf/
https://ebpf.io/what-is-ebpf/
https://github.com/ebpf-networking/bpf-filter
https://github.com/eBPFDevSecTools/annotations
https://github.com/eBPFDevSecTools/annotations
https://doi.org/10.1109/WCRE.2010.13
https://doi.org/10.1109/WCRE.2010.13
https://doi.org/10.1109/WCRE.2010.13
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://api.semanticscholar.org/CorpusID:10090179
https://api.semanticscholar.org/CorpusID:10090179
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013

553

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Shangqing Liu, Yu Chen, Xiaofei Xie, Jingkai Siow,
and Yang Liu. 2021. Retrieval-augmented generation
for code summarization via hybrid gnn. Preprint,
arXiv:2006.05405.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11048–11064,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Laura Moreno, Jairo Aponte, Giriprasad Sridhara, An-
drian Marcus, Lori Pollock, and K. Vijay-Shanker.
2013. Automatic generation of natural language
summaries for java classes. In 2013 21st Inter-
national Conference on Program Comprehension
(ICPC), pages 23–32.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of gpt-4. arXiv preprint
arXiv:2306.02707.

NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek.
2020. Cuda, release: 10.2.89.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,

Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

C. Spearman. 1904. The proof and measurement of as-
sociation between two things. The American Journal
of Psychology, 15(1):72–101.

Lewis Tunstall, Edward Beeching, Nathan Lambert,
Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine
Fourrier, Nathan Habib, et al. 2023. Zephyr: Di-
rect distillation of lm alignment. arXiv preprint
arXiv:2310.16944.

Marcos A. M. Vieira, Matheus S. Castanho, Racyus
D. G. Pacífico, Elerson R. S. Santos, Eduardo P.
M. Câmara Júnior, and Luiz F. M. Vieira. 2020. Fast
packet processing with ebpf and xdp: Concepts, code,
challenges, and applications. ACM Comput. Surv.,
53(1).

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A
6 Billion Parameter Autoregressive Language Model.
https://github.com/kingoflolz/mesh-trans
former-jax.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-
derstanding and generation. arXiv preprint
arXiv:2109.00859.

Mason Woo, Jackie Neider, Tom Davis, and Dave
Shreiner. 1999. OpenGL programming guide: the
official guide to learning OpenGL, version 1.2.
Addison-Wesley Longman Publishing Co., Inc.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun,
and Xudong Liu. 2020. Retrieval-based neural
source code summarization. In Proceedings of the
ACM/IEEE 42nd International Conference on Soft-
ware Engineering, ICSE ’20, page 1385–1397, New
York, NY, USA. Association for Computing Machin-
ery.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

A Annotation Guidelines

The following guidelines were provided to the ex-
perts during the human evaluation of the outputs.
• 4=> The summary describes the code perfectly,

and there is no unrelated information in the sum-
mary. If one looks at the summary, s/he will
understand what the code is doing without look-
ing at the code.

• 3=> The summary describes the code very well,
missing only some trivial points or containing
some extra trivial information.

https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://arxiv.org/abs/2006.05405
https://arxiv.org/abs/2006.05405
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.1109/ICPC.2013.6613830
https://doi.org/10.1109/ICPC.2013.6613830
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
https://doi.org/10.1145/3371038
https://doi.org/10.1145/3371038
https://doi.org/10.1145/3371038
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1145/3377811.3380383

554

Function Name Description Model Query Mistral-Openorca Zephyr Wizardcoder

XDP_DROP XDP_DROP is a helper for
pkt_stop_processing_drop_packet. When
XDP_DROP is returned, it indicates that
the XDP program has chosen to drop the
packet, preventing it from continuing through
the regular network stack for additional
processing.

Given a code containing XDP_DROP, is XDP_DROP
related to pkt_stop_processing_drop_packet in any
way?

Yes No No

bpf_map_lookup_elem In eBPF, bpf_map_lookup_elem is a helper
function used to retrieve values associated with
keys in BPF maps. It facilitates efficient access
and manipulation of shared data between eBPF
programs and the kernel or user space.

Is bpf_map_lookup_elem helper function related to
map_read in any way?

No Yes No

bpf_redirect In eBPF, bpf_redirect is a helper function that
redirects packets to a specified network inter-
face. It enables custom packet forwarding or
load balancing within eBPF programs, allow-
ing them to influence packet routing in the
network stack.

Is bpf_redirect helper function related to
pkt_alter_or_redo_processing_or_interface in
any way?

Yes No Yes

Table 3: Examples showing the limitations of Large Language Models in understanding domain-specific details;
We prompt the models with some domain-specific functions and their related functions/variables and ask (“Model
Query” column) if they are related. Note that the actual answer to all the questions is “Yes”. However, the models
are generating “No” indicating that these models do not have any knowledge of the internal workings of DSLs.

• 2=> The summary is good, but it is difficult to
understand after reading it once or twice. The
summary is wrong at one or two points but not
too critical. The readers need to read it multiple
times or look at the code thoroughly to under-
stand it.

• 1=> The summary is on a similar topic to the
code, but it misunderstood what the code is do-
ing (i.e., the logic is explained wrongly in the
summary)

• 0=> The summary is not at all related to the code/
Summary not generated at all

• Use ratings of 3.5, 2.5, 1.5, and 0.5 for sum-
maries that do not belong to the aforementioned
categories.

A.1 Challenges of using LLMs for
domain-specific query

Unfortunately, traditional code summarization
models are not well-suited for summarizing eBPF
codes due to the complexity of eBPF codes, limited
understanding of kernel concepts, and data sparsity.
Particularly, the users of domain-specific exten-
sion languages have different expectations from
the LLMs compared to their base PLs.

B Results with Two-Shot prompts

We investigate the effectiveness of a clustering
method using two-shot prompts. Our experiments
involve two models: WizardCoder-15B, which
achieves the highest automatic metric scores in
the one-shot setting, and Zephyr-beta-7B, which re-

ceives the best manual ratings. 2 From Table 4, we
observe consistent improvements in (Sncs) com-
pared to (Srs). However, the gains with two shots
are minimal compared to one (Table 1) shot in
(Srs). We observed a slight decline in the BLEU
and Rouge-2 compared to (Sncs), which is likely
due to the fact that the additional example used
as an in-context example is not as relevant as the
nearest example.

C Models

In recent times, LLMs like ChatGPT have garnered
significant attention. Various LLMs have been de-
veloped and trained on programming languages and
natural language datasets. These models are readily
applicable for inference without additional modifi-
cations. We employ them in inference mode with
a one-shot example utilizing both prompts with
random examples and dynamic in-context prompts
generated obtained via clustering.
• Codellama: Codellama is a fine-tuned version

of Llama2 having infilling capabilities, zero-shot
instruction following ability, as well as support
for large input contexts for programming tasks.

• WizardCoder: Similar to Codellama, Wizard-
Coder is obtained from Llama2, and it has simi-
lar capabilities. Unlike other major code LLMs,
WizardCoder is trained with code-specific in-
structions.

• Deepseek-Coder: The Deepseek-Coder model

2In cases where the maximum length limit was exceeded
for two-shot prompts (observed in two examples), we used
the corresponding outputs from the one-shot setting under
identical experimental conditions.

555

Model Params Random Code selection within the Cluster (Srs) Nearest Code selection within the Cluster (Sncs)

BLEU Rouge-1 Rouge-2 Rouge-L BERTScore BLEU Rouge-1 Rouge-2 Rouge-L BERTScore

Zephyr-beta 7B 4.7 0.2287 0.0498 0.2071 0.8450 6.9 0.2615 0.0695 0.2279 0.8510
WizardCoder 15B 9.2 0.2828 0.0823 0.2565 0.8551 17.1 0.3562 0.1514 0.3247 0.8673

Table 4: Comparison of “Random Code selection within the Cluster” with “Nearest Code selection within the
cluster” on Two-shot prompts

is pre-trained on 2 Trillion tokens over more than
80 programming languages. The training data
consists of 87% code and 13% natural language
text. Further, it was fine-tuned on 2B tokens of
instructions.

• Mistral-OpenOrca: Mistral-OpenOrca is ob-
tained by fine-tuning Mistral-7B with Openorca,
which is a dataset containing instructions.

• Zephyr-beta: Zephyr-beta is also a fine-tuned
version of Mistral. It was trained on publicly
available as well as synthetic datasets using Di-
rect Preference Optimization (DPO).

D Prompt Template

Below is an instruction that describes a task.
Write a response that appropriately
completes the request.

Instruction:
Generate a short and concise summary for the

following code. Do not refer to the example
code in the generated summary. The first
code is only for example. Code: {Example
code}

Summary: {Summary of the Example code}
Now, summarize the following. Code: {Current

code}
Summary:

Response:

Example 1: This represents the prompt format we used
for WizardCoder models. We use similar prompt for-
mats for other models with corresponding instruction
templates.

E Code Examples

In this section, we present three distinct eBPF
codes, featured in Table 5 for the comparison
of generated summary between 0-shot and our
proposed approach, Sncs. The selection of these
codes aims to showcase our experimentation on
both larger and smaller codebases, illustrating that
our approach consistently yields superior results
across all cases.

• Code ID: D1 - ARP Handling Code

– Project Name: cilium 3

int tail_handle_arp (struct __ctx_buff
*ctx) { union macaddr mac = NODE_MAC;
union macaddr smac; struct trace_ctx
trace = { .reason =
TRACE_REASON_CT_REPLY, .monitor =
TRACE_PAYLOAD_LEN,} ; __be32 sip;
__be32 tip; int ret; struct
bpf_tunnel_key key = {} ; struct
vtep_key vkey = {} ; struct
vtep_value *info; if (unlikely
(ctx_get_tunnel_key (ctx, &key,
sizeof (key), 0) < 0)) return
send_drop_notify_error (ctx, 0,
DROP_NO_TUNNEL_KEY, CTX_ACT_DROP,
METRIC_INGRESS); if (!arp_validate
(ctx, &mac, &smac, &sip, &tip) ||
!__lookup_ip4_endpoint (tip)) goto
pass_to_stack; vkey.vtep_ip = sip &
VTEP_MASK; info = map_lookup_elem (&
VTEP_MAP, & vkey); if (!info) goto
pass_to_stack; ret =
arp_prepare_response (ctx, & mac,
tip, & smac, sip); if (unlikely (ret
!= 0)) return send_drop_notify_error
(ctx, 0, ret, CTX_ACT_DROP,
METRIC_EGRESS); if
(info->tunnel_endpoint) return
__encap_and_redirect_with_nodeid
(ctx, info->tunnel_endpoint,
SECLABEL, WORLD_ID, &trace); return
send_drop_notify_error (ctx, 0,
DROP_UNKNOWN_L3, CTX_ACT_DROP,
METRIC_EGRESS); pass_to_stack :
send_trace_notify (ctx,
TRACE_TO_STACK, 0, 0, 0,
ctx->ingress_ifindex, trace.reason,
trace.monitor); return CTX_ACT_OK; }

• Code ID: D2 - IPv4 Hashing Code
– Project Name: suricata 4

static __always_inline int ipv4_hash
(struct __sk_buff *skb) { __u32
nhoff; __u32 src, dst; nhoff =
skb->cb[0]; src = load_word (skb,
nhoff + offsetof (struct iphdr,
saddr)); dst = load_word (skb, nhoff
+ offsetof (struct iphdr, daddr));
#if 0 char fmt [] = "Got addr: %x ->
%x at %d\n"; bpf_trace_printk (fmt,
sizeof (fmt), src, dst, nhoff);

3https://github.com/cilium/cilium/blob/8f606b
afb696076609a01f88204d895576043950/bpf/bpf_overl
ay.c#L353

4https://github.com/OISF/suricata/blob/master
/ebpf/lb.c#L42

https://github.com/cilium/cilium/blob/8f606bafb696076609a01f88204d895576043950/bpf/bpf_overlay.c#L353
https://github.com/cilium/cilium/blob/8f606bafb696076609a01f88204d895576043950/bpf/bpf_overlay.c#L353
https://github.com/cilium/cilium/blob/8f606bafb696076609a01f88204d895576043950/bpf/bpf_overlay.c#L353
https://github.com/OISF/suricata/blob/master/ebpf/lb.c#L42
https://github.com/OISF/suricata/blob/master/ebpf/lb.c#L42

556

Code ID D.1 D.2 D.3

Model Mistral CodeLlama Mistral

zero-shot - The code is a BPF program that hashes the source and destination
IP addresses of an IPv4 packet.

#endif /* ENABLE_ROUTING */ }

Sncs Handle ARP pack-
ets and prepare
response for ARP
packets.

This code defines a function called ipv4_hash that takes a
struct __sk_buff *skb as an argument. The function uses
the source and destination IP addresses of the packet, which
are loaded from the saddr and daddr fields of the IP header,
respectively. The function then returns the sum of the source and
destination IP addresses as the final hash value. The code also
includes a comment that prints a trace message to the kernel log
using bpf_trace_printk.

Handling egress ipv6 traffic. It marks
the traffic if it has a remote endpoint
destination and restores ct_state from
per packet lb handling in the previous
tail call. Also enabling the per packet
load balancing in the previous tail call.

Table 5: Comparison between summary generated in Zero-shot and “Nearest Code selection within the Cluster” for
the respective code ID given in the columns.

#endif return src + dst; }

• Code ID: D3 - egress IPv6 Code
– Project Name: cilium 5

static __always_inline int
handle_ipv6_from_lxc (struct
__ctx_buff *ctx, __u32 *dst_id) {
struct ct_state ct_state_on_stack
__maybe_unused, *ct_state,
ct_state_new = {}; struct
ipv6_ct_tuple tuple_on_stack
__maybe_unused, *tuple; #ifdef
ENABLE_ROUTING union macaddr
router_mac = NODE_MAC; #endif struct
ct_buffer6 *ct_buffer; void *data,
*data_end; struct ipv6hdr *ip6; int
ret, verdict = 0, l4_off, hdrlen,
zero = 0; struct trace_ctx trace = {
.reason = TRACE_REASON_UNKNOWN,
.monitor = 0,} ; __u32 __maybe_unused
tunnel_endpoint = 0; __u8
__maybe_unused encrypt_key = 0; enum
ct_status ct_status; bool
hairpin_flow = false; __u8
policy_match_type =
POLICY_MATCH_NONE; __u8 audited = 0;
bool __maybe_unused dst_remote_ep =
false; __u16 proxy_port = 0; bool
from_l7lb = false; bool
emit_policy_verdict = true; if
(!revalidate_data (ctx, &data,
&data_end, &ip6)) return DROP_INVALID;

if (1) { const union v6addr *daddr =
(union v6addr *) &ip6->daddr; struct
remote_endpoint_info *info; info =
lookup_ip6_remote_endpoint (daddr);
if (info && info->sec_label) {
*dst_id = info->sec_label;
tunnel_endpoint =
info->tunnel_endpoint; encrypt_key =
get_min_encrypt_key (info -> key);
#ifdef ENABLE_WIREGUARD if
(info->tunnel_endpoint != 0 &&
!identity_is_node (info->sec_label))
dst_remote_ep = true; #endif /*
ENABLE_WIREGUARD */ } else { *dst_id

5https://github.com/cilium/cilium/blob/main/b
pf/bpf_lxc.c#L389

= WORLD_ID; } cilium_dbg (ctx, info ?
DBG_IP_ID_MAP_SUCCEED6 :
DBG_IP_ID_MAP_FAILED6, daddr->p4,
*dst_id); } #ifdef
ENABLE_PER_PACKET_LB #if
!defined(DEBUG) &&
defined(TUNNEL_MODE) if
(!revalidate_data (ctx, &data,
&data_end, &ip6)) return
DROP_INVALID; #endif
lb6_ctx_restore_state (ctx,
&ct_state_new, &proxy_port); #endif
/* ENABLE_PER_PACKET_LB */ ct_buffer
= map_lookup_elem (&
CT_TAIL_CALL_BUFFER6, & zero); if
(!ct_buffer) return
DROP_INVALID_TC_BUFFER; if
(ct_buffer->tuple.saddr.d1 == 0 &&
ct_buffer->tuple.saddr.d2 == 0)
return DROP_INVALID_TC_BUFFER; #if
HAVE_DIRECT_ACCESS_TO_MAP_VALUES
tuple = (struct ipv6_ct_tuple *)
&ct_buffer->tuple; ct_state = (struct
ct_state *) &ct_buffer->ct_state;
#else memcpy (&tuple_on_stack,
&ct_buffer->tuple, sizeof
(tuple_on_stack)); tuple =
&tuple_on_stack; memcpy
(&ct_state_on_stack,
&ct_buffer->ct_state, sizeof
(ct_state_on_stack)); ct_state =
&ct_state_on_stack; #endif /*
HAVE_DIRECT_ACCESS_TO_MAP_VALUES */
trace.monitor = ct_buffer->monitor;
ret = ct_buffer->ret; ct_status =
(enum ct_status) ret; trace.reason =
(enum trace_reason) ret; #if
defined(ENABLE_L7_LB) if (proxy_port
> 0) { cilium_dbg3 (ctx, DBG_L7_LB,
tuple->daddr.p4, tuple->saddr.p4,
bpf_ntohs (proxy_port)); verdict =
proxy_port; emit_policy_verdict =
false; goto skip_policy_enforcement;
} #endif /* ENABLE_L7_LB */ if
((ct_status == CT_REPLY || ct_status
== CT_RELATED) &&
ct_state->proxy_redirect) { return
ctx_redirect_to_proxy6 (ctx, tuple,
0, false); }

if (hairpin_flow) { emit_policy_verdict =

https://github.com/cilium/cilium/blob/main/bpf/bpf_lxc.c#L389
https://github.com/cilium/cilium/blob/main/bpf/bpf_lxc.c#L389

557

false; goto skip_policy_enforcement;
} verdict = policy_can_egress6 (ctx,
tuple, SECLABEL, * dst_id, &
policy_match_type, & audited); if
(ct_status != CT_REPLY && ct_status
!= CT_RELATED && verdict < 0) {
send_policy_verdict_notify (ctx,
*dst_id, tuple->dport,
tuple->nexthdr, POLICY_EGRESS, 1,
verdict, policy_match_type, audited);
return verdict; }
skip_policy_enforcement : #if
defined(ENABLE_L7_LB) from_l7lb =
ctx_load_meta (ctx, CB_FROM_HOST) ==
FROM_HOST_L7_LB; #endif switch
(ct_status) { case CT_NEW : if
(emit_policy_verdict)
send_policy_verdict_notify (ctx,
*dst_id, tuple->dport,
tuple->nexthdr, POLICY_EGRESS, 1,
verdict, policy_match_type, audited);
ct_recreate6 :
ct_state_new.src_sec_id = SECLABEL;
ret = ct_create6 (get_ct_map6
(tuple), & CT_MAP_ANY6, tuple, ctx,
CT_EGRESS, & ct_state_new, verdict >
0, from_l7lb); if (IS_ERR (ret))
return ret; trace.monitor =
TRACE_PAYLOAD_LEN; break; case
CT_REOPENED : if
(emit_policy_verdict)
send_policy_verdict_notify (ctx,
*dst_id, tuple->dport,
tuple->nexthdr, POLICY_EGRESS, 1,
verdict, policy_match_type, audited);
case CT_ESTABLISHED : if (unlikely
(ct_state->rev_nat_index !=
ct_state_new.rev_nat_index)) goto
ct_recreate6; break; case CT_RELATED
: case CT_REPLY : policy_mark_skip
(ctx); hdrlen = ipv6_hdrlen (ctx, &
tuple -> nexthdr); if (hdrlen < 0)
return hdrlen; l4_off = ETH_HLEN +
hdrlen; #ifdef ENABLE_NODEPORT #
ifdef ENABLE_DSR if (ct_state->dsr) {
ret = xlate_dsr_v6 (ctx, tuple,
l4_off); if (ret != 0) return ret; }

else # endif /* ENABLE_DSR */ if
(ct_state->node_port) {
send_trace_notify (ctx,
TRACE_TO_NETWORK, SECLABEL, *dst_id,
0, 0, trace.reason, trace.monitor);
ctx->tc_index |=
TC_INDEX_F_SKIP_RECIRCULATION;
ep_tail_call (ctx,
CILIUM_CALL_IPV6_NODEPORT_REVNAT);
return DROP_MISSED_TAIL_CALL; }
#endif /* ENABLE_NODEPORT */ if
(ct_state->rev_nat_index) { struct
csum_offset csum_off = {} ;
csum_l4_offset_and_flags
(tuple->nexthdr, &csum_off); ret =
lb6_rev_nat (ctx, l4_off, & csum_off,
ct_state -> rev_nat_index, tuple, 0);
if (IS_ERR (ret)) return ret;
policy_mark_skip (ctx); } break;
default : return DROP_UNKNOWN_CT; }
hairpin_flow |= ct_state->loopback;
if (!from_l7lb && redirect_to_proxy
(verdict, ct_status)) { proxy_port =

(__u16) verdict; send_trace_notify
(ctx, TRACE_TO_PROXY, SECLABEL, 0,
bpf_ntohs (proxy_port), 0,
trace.reason, trace.monitor); return
ctx_redirect_to_proxy6 (ctx, tuple,
proxy_port, false); } if
(!revalidate_data (ctx, &data,
&data_end, &ip6)) return
DROP_INVALID; if (is_defined
(ENABLE_ROUTING) || hairpin_flow) {
struct endpoint_info *ep; ep =
lookup_ip6_endpoint (ip6); if (ep) {
#ifdef ENABLE_ROUTING if (ep->flags &
ENDPOINT_F_HOST) { #ifdef
HOST_IFINDEX goto to_host; #else
return DROP_HOST_UNREACHABLE; #endif
} #endif /* ENABLE_ROUTING */
policy_clear_mark (ctx); return
ipv6_local_delivery (ctx, ETH_HLEN,
SECLABEL, ep, METRIC_EGRESS,
from_l7lb); } } #if
defined(ENABLE_HOST_FIREWALL) &&
!defined(ENABLE_ROUTING) if (*dst_id
== HOST_ID) { ctx_store_meta (ctx,
CB_FROM_HOST, 0); tail_call_static
(ctx, &POLICY_CALL_MAP, HOST_EP_ID);
return DROP_MISSED_TAIL_CALL; }
#endif /* ENABLE_HOST_FIREWALL &&
!ENABLE_ROUTING */ #ifdef TUNNEL_MODE
ifdef ENABLE_WIREGUARD if
(!dst_remote_ep) # endif /*
ENABLE_WIREGUARD */ { struct
endpoint_key key = {} ; union v6addr
*daddr = (union v6addr *)
&ip6->daddr; key.ip6.p1 = daddr->p1;
key.ip6.p2 = daddr->p2; key.ip6.p3 =
daddr->p3; key.family =
ENDPOINT_KEY_IPV6; ret =
encap_and_redirect_lxc (ctx,
tunnel_endpoint, encrypt_key, & key,
SECLABEL, & trace); if (ret ==
IPSEC_ENDPOINT) goto
encrypt_to_stack; else if (ret !=
DROP_NO_TUNNEL_ENDPOINT) return ret;
} #endif if (is_defined
(ENABLE_HOST_ROUTING)) return
redirect_direct_v6 (ctx, ETH_HLEN,
ip6); goto pass_to_stack; #ifdef
ENABLE_ROUTING to_host : if
(is_defined (ENABLE_HOST_FIREWALL) &&
*dst_id == HOST_ID) {
send_trace_notify (ctx,
TRACE_TO_HOST, SECLABEL, HOST_ID, 0,
HOST_IFINDEX, trace.reason,
trace.monitor); return ctx_redirect
(ctx, HOST_IFINDEX, BPF_F_INGRESS); }
#endif pass_to_stack : #ifdef
ENABLE_ROUTING ret = ipv6_l3 (ctx,
ETH_HLEN, NULL, (__u8 *) &
router_mac.addr, METRIC_EGRESS); if
(unlikely (ret != CTX_ACT_OK)) return
ret; #endif if (ipv6_store_flowlabel
(ctx, ETH_HLEN, SECLABEL_NB) < 0)
return DROP_WRITE_ERROR; #ifdef
ENABLE_WIREGUARD if (dst_remote_ep)
set_encrypt_mark (ctx); else #elif
!defined(TUNNEL_MODE) # ifdef
ENABLE_IPSEC if (encrypt_key &&
tunnel_endpoint) {
set_encrypt_key_mark (ctx,

558

encrypt_key); # ifdef IP_POOLS
set_encrypt_dip (ctx,
tunnel_endpoint); # endif /* IP_POOLS
*/ # ifdef ENABLE_IDENTITY_MARK
set_identity_mark (ctx, SECLABEL); #
endif /* ENABLE_IDENTITY_MARK */ }
else # endif /* ENABLE_IPSEC */
#endif /* ENABLE_WIREGUARD */ {
#ifdef ENABLE_IDENTITY_MARK ctx->mark
|= MARK_MAGIC_IDENTITY;
set_identity_mark (ctx, SECLABEL);
#endif } #ifdef TUNNEL_MODE
encrypt_to_stack : #endif
send_trace_notify (ctx,
TRACE_TO_STACK, SECLABEL, *dst_id, 0,
0, trace.reason, trace.monitor);
cilium_dbg_capture (ctx,
DBG_CAPTURE_DELIVERY, 0); return
CTX_ACT_OK; }

F Error analysis

In our evaluations, several key observations have
been identified:
1. The models specifically fail on long codes
due to the max length constraint of LLMs as
well as information overload from multiple code
components.

2. Model outputs are verbose (line-by-line) and do
not reflect human annotations, which are intuitive
explanations of the source code. This indicated
domain adaptation for kernel-based codes (e.g.,
eBPF) is an important problem to address.

3. The outputs observed from clustering are good
but need improvement. We found the tendency of
the models to refer and compare to the one-shot
example, even when specifically requested in the
prompt to generate the summaries independently.

G Chain-of-thought prompting

Chain-of-though (CoT) prompt is a technique
where a model is prompted to generate step-by-step
explanations of a query. Then, generate an answer
based on the prompt as well as the explanations as a
context. Due to the paucity of step-by-step explana-
tions in code summarization, we explore CoT under
zero-shot settings. Here, we prompt the models to
generate a granular/line-by-line summary followed
by a paragraph with a concise summary. We ob-
serve that the models are not following the instruc-
tions, specifically for longer codes. To accommo-
date longer responses due to granular explanations,
we set max_new_tokens to 2048, compared to 256
of non-CoT-based prompts. Since we are only in-

Rater 1 Rater 2 Rater 3 Rater 4

Rater 1 1 0.8991 0.7392 0.4711
Rater 2 0.8857 1 0.9449 0.7806
Rater 3 0.5768 0.6983 1 0.8611
Rater 4 0.3479 0.6957 0.7084 1

Table 6: Pairwise inter-rater agreement. The lower-
triangular matrix represents the Spearman Rank Co-
efficient (italics), whereas the upper-triangular matrix
represents the Pearson Correlation Coefficient;

terested in the concise summary, we extract the
paragraph starting after "Concise summary" in the
output. Since the models generate different patterns
to create concise summary paragraphs, we manu-
ally inspect the outputs by searching "concise" and
including all the patterns. In case such a paragraph
is absent from the output due to any reason, we
keep the whole output. In Mistral-OpenOrca-7B,
we achieved a BLEU score of 3.5 (compared to 4.1
on standard zero-shot), ROUGE-1, ROUGE-2, and
ROUGE-L of 0.2092, 0.0341, and 0.1816 (com-
pared to 0.2240, 0.0359 and 0.2008 in standard
zero-shot), indicating a decline in output quality
due to the CoT method. Specifically, we found
that the model is hallucinating in some instances
(repeating the same line, printing information from
instruction-tuning data), which contributes to low-
ering the quality of outputs. In WizardCoder-15B,
we observed way too many patterns for the con-
cise paragraph to effectively extract the concise
summary. Although the CoT-based method could
generate better summaries when prompted with
similar examples with step-by-step summaries, to
the best of our knowledge, these types of datasets
are unavailable for code summarization, making
them not so useful in our setup.

H Inter-rater Agreement

To evaluate the consistency of the ratings assigned
by different raters, we calculated the pairwise inter-
rater agreement using two statistical methods: the
Pearson Correlation Coefficient and the Spearman
Rank Coefficient (Spearman, 1904). The Pearson
Correlation Coefficient assesses the linear relation-
ship between the ratings, while the Spearman Rank
Coefficient evaluates the monotonic relationship
between the rank orders assigned by the raters. Ta-
ble 6 presents the results of these analyses.
The analysis of the inter-rater agreement using both
Pearson and Spearman coefficients provides a com-

559

prehensive understanding of the consistency among
raters. Given that there were four raters, lower
correlation values in some pairwise comparisons
are expected due to the increased variability in in-
dividual assessments. The generally high Pear-
son Correlation Coefficients suggest that the raters
largely agree in their linear assessments. Mean-
while, the Spearman Rank Coefficients highlight
that the raters also exhibit a reasonable degree of
agreement in their rank orders, though this agree-
ment is less pronounced in some cases. We calcu-
late the Interclass Correlation Coefficient (ICC) of
the ratings. Specifically, we consider ICC3, which
is suitable when we have a fixed set of raters for
the common examples. We obtain an ICC3 value
of 0.750, indicating a moderate to good reliability
(Koo and Li, 2016).

I Application of our method in
proprietary LLM

Proprietary LLMs (such as ChatGPT) are known to
have better-quality outputs than our studied models.
Although a full-scale comparison is out-of-scope of
the paper, we compared the results of Zero-shot vs.
our proposed method on a few examples with GPT-
4o. For zero-shot, we prompt the model with: Gen-
erate a short and concise summary of the following
code: {Current Code}. For our proposed one-shot
method, we prompt the model with Code: {Re-
trieved Code}\n Summary: {Retrieved Summary}\n
Now, generate a short and concise summary of
the following as per the style of previous example.
Code: {Current code}. We observe consistent im-
provement in quality when the model is prompted
with retrieved example (Figure 3). Specifically, we
found that the zero-shot outputs are too verbose,
even after prompting to generate a short and con-
cise summary.

J Evaluation Metrics and Strategy

Details of the models are provided in Appendix C,
and the prompt template is presented in Ap-
pendix D. To evaluate the generation of eBPF
code explanations, we design a unified prompt to
enable effective dual-task performance. We em-
ployed widely-used metrics, including BLEU (Pa-
pineni et al., 2002), ROUGE-L (Lin, 2004), and
BERTScore (Zhang et al., 2019). Furthermore, we
report the ROUGE score, as it is the most reliable
lexical metric for summarization. Additionally, we
conduct a human evaluation to assess the relevance

of the generated summaries to the input code and
their grammatical correctness.

560

(a) Zero-shot

(b) Ours

Figure 3: Example of output when the zero-shot prompt is used to summarize using GPT-4o vs. one-shot with our
proposed retrieval method.

	Introduction
	Methodology
	Source-code Clustering
	Prompt Design

	Experimental Setup
	Results
	Quantitative Evaluation
	Qualitative Insights into Prompting Strategies
	Zero-shot vs. Sncs
	Sncs vs. Sro
	Zero-shot vs. Sro
	Effect of Model Parameters

	Manual Evaluation

	Related Work
	Conclusion
	Annotation Guidelines
	Challenges of using LLMs for domain-specific query

	Results with Two-Shot prompts
	Models
	Prompt Template
	Code Examples
	Error analysis
	Chain-of-thought prompting
	Inter-rater Agreement
	Application of our method in proprietary LLM
	Evaluation Metrics and Strategy

