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Abstract

The quality of meeting summaries generated
by natural language generation (NLG) systems
is hard to measure automatically. Established
metrics such as ROUGE and BERTScore have
a relatively low correlation with human judg-
ments and fail to capture nuanced errors. Re-
cent studies suggest using large language mod-
els (LLMs), which have the benefit of better
context understanding and adaption of error
definitions without training on a large number
of human preference judgments. However, cur-
rent LLM-based evaluators risk masking errors
and can only serve as a weak proxy, leaving hu-
man evaluation the gold standard despite being
costly and hard to compare across studies. In
this work, we present MESA, an LLM-based
framework employing a three-step assessment
of individual error types, multi-agent discus-
sion for decision refinement, and feedback-
based self-training to refine error definition un-
derstanding and alignment with human judg-
ment. We show that MESA’s components en-
able thorough error detection, consistent rating,
and adaptability to custom error guidelines. Us-
ing GPT-4o as its backbone, MESA achieves
mid to high Point-Biserial correlation with hu-
man judgment in error detection and mid Spear-
man and Kendall correlation in reflecting er-
ror impact on summary quality, on average
0.25 higher than previous methods. The frame-
work’s flexibility in adapting to custom error
guidelines makes it suitable for various tasks
with limited human-labeled data.

1 Introduction

Meeting summaries have become integral to pro-
fessional environments (Zhong et al., 2021; Hu
et al., 2023; Laskar et al., 2023), serving as refer-
ences, updates for absentees, and reinforcements
of key topics discussed. The integration of summa-
rization services into established digital meeting

platforms (e.g., Zoom1, Microsoft Teams2, Google
Meet3) further underscores their growing relevance.
The evaluation of generated summaries remains an
ongoing problem (Kirstein et al., 2024b) and is
typically solved through costly, time-consuming
human assessment. Consequently, an automatic
evaluator is necessary, which would, if providing
insights along the scoring, also enable sophisti-
cated techniques such as feedback-based summary
refinement (Kirstein et al., 2024a) and reinforce-
ment learning from AI feedback (Lee et al., 2023).

Established automatic metrics such as ROUGE
(Lin, 2004), BERTScore (Zhang et al., 2020), and
BARTScore (Yuan et al., 2021) exhibit a relatively
low correlation with human judgment. These count-
and model-based metrics often fail to reliably de-
tect errors, leading to error masking (Kirstein et al.,
2024c), and lack sensitivity to error impact, result-
ing in inaccurate reflection of summary quality in
score (Kirstein et al., 2024a).

Recently, Large language models (LLMs) have
been proposed as evaluators for text summarization
(Liu et al., 2023a,b; Wang et al., 2024), assigning
Likert scores based on predefined guidelines. How-
ever, these approaches face limitations in meeting
summarization contexts. Current annotation guide-
lines do not cover typical errors in meeting sum-
maries, e.g., structure presentation, coreference is-
sues (Kirstein et al., 2024c), resulting in oversight
and insufficient quality assessment. Moreover, the
subjective nature of existing guidelines, e.g., ’in-
formativeness’ (Liu et al., 2023b) may lead to in-
consistent interpretations by LLMs, resulting in
unreliable evaluations (Kirstein et al., 2024a).

We introduce the meeting summary assessor
(MESA), a multi-stage LLM-based framework that
mimics the human evaluation approach (see Fig-
ure 1). MESA operates on three levels: error-

1https://www.zoom.com/en/ai-assistant
2https://copilot.cloud.microsoft
3https://support.google.com/meet/

https://www.zoom.com/en/ai-assistant
https://copilot.cloud.microsoft
https://support.google.com/meet/answer/14754931
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Figure 1: Architecture of MESA displaying the singel-aspect assessment using three stages and the self-training
mechanic for feedback-based alignment improvement with available human data.

specific evaluation, overall evaluation, and self-
training. For each error type to be considered,
an error-specific evaluation is performed that
employs a three-step process to identify poten-
tial errors, assess their impact, and assign Lik-
ert scores (0-5) (Likert, 1932), utilizing chain-of-
thought (CoT) prompting (Wei et al., 2024b) and
verbose confidence scores (0-10) (Tian et al., 2023)
to boost performance. The three-step assessment
can be carried out using a multi-agent discussion
protocol (Liang et al., 2023) where one agent gener-
ates a draft challenged and refined by other agents,
allowing for a dynamic refinement step consider-
ing different perspectives (Li et al., 2024). The
overall evaluation synthesizes the individual Lik-
ert scores into an overall rating of the error impact
(0-5) and a corresponding quality score (1-10). The
self-training mechanism, inspired by Wang et al.
(2024)’s self-teaching and Kirstein et al. (2024a)’s
feedback approach, influences the evaluation be-
havior by comparing MESA’s assessments with
available human annotations. We employ an LLM
judge (Zheng et al., 2024) to evaluate reasoning
quality and predefined categories for labeling Lik-
ert score discrepancies. The comparisons are pro-
cessed by a second LLM that generates a feedback
report pointing out how MESA should change be-
havior to better align with human judgment in scor-
ing and reasoning. This feedback is appended to
the prompts of the error-specific evaluation.

We evaluate MESA using available error defini-
tions and a modified version of QMSum Mistake
(Kirstein et al., 2024a), combining total and par-
tial omission errors. Experiments with GPT-4o4 as
the backbone model demonstrate MESA’s strong

4We will refer to this as GPT4 throughout the paper.

performance across all error types, outperforming
existing evaluators in error existence correlation
(avg. gap: ∼0.2) and severity representation (avg.
gap: ∼0.25). We observe that the self-training step
helps align with human judgment, mitigating overly
harsh scoring tendencies and reducing the false-
positive detection of error instances. The three-
step error-specific evaluation allows for a thorough
analysis, reducing false-negative detection. Our
contributions are summarized as follows:

• A multi-agent-based, self-training evaluation
framework, MESA, that outperforms baseline
metrics on meeting summary assessment.

• A thorough analysis of the components (i.e.,
three-step evaluation, single-aspect process-
ing, multi-agent discussion, self-training).

• We introduce multi-agent discussion to the
meeting summarization domain and propose
a three-step evaluation to boost performance.

2 Methodology

Key weaknesses of meeting summarization evalu-
ators include error type confusion (Kirstein et al.,
2024a), oversight of error instances (Kirstein et al.,
2024c), and risk of self-inconsistency (Wei et al.,
2024a). To address these, we develop MESA
through comparative experiments between tra-
ditional approaches and promising alternatives.
Our findings indicate that the most reliable, self-
consistent, and thorough setup combines error-type
specific single-aspect evaluators with multi-agent
discussion in a three-stage scoring process (see
Figure 1). Experiments use GPT4 backbones, gen-
erating verbose confidence scores (0-10) (Geng
et al., 2024) and chain-of-thought (CoT) (Wei et al.,
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2024b) reasoning traces for qualitative analysis.
The prompts and example outputs are provided in
Appendices A and B.

2.1 Error types and dataset

We assess the error types redundancy (RED), inco-
herence (INC), language (LAN), omission (OM),
coreference (COR), hallucination (HAL), structure
(STR), and irrelevance (IRR). The definitions (see
Appendix C) are based on Kirstein et al. (2024a),
combining total and partial omission into one.

We use the QMSum Mistake dataset (Kirstein
et al., 2024a), comprising 170 samples from aca-
demic (ICSI (Janin et al., 2003)), business (AMI
(Mccowan et al., 2005)), and parliament meetings,
summarized by language models (LED (Beltagy
et al., 2020), DialogLED (Zhong et al., 2022),
Pegasus-X (Phang et al., 2022), GPT-3.5, and Phi-3
(Abdin et al., 2024)) and human-annotated for er-
rors. Four annotators update the human annotation
scores (Likert scale, 0 to 5) and reasoning traces
to align with our modified definitions, following
the annotation process detailed in Appendix D.2.
We achieve a high inter-annotator agreement of
0.793 (Krippendorff’s alpha (Krippendorff, 1970),
complete agreement stated in Appendix D.3), indi-
cating strong reliability. Statistics on the QMSum
Mistake dataset are listed in Appendix D.1.

2.2 Challenge I: error type confusion

Error-type definitions are nuanced (Appendix C),
requiring careful consideration during detection.
Prompting models to consider multiple error types
simultaneously (multi-aspect) risks definition con-
fusion (Kamoi et al., 2024). Literature suggests
restricting detection to one error type at a time
(single aspect), using multiple model instances for
comprehensive coverage (Kirstein et al., 2024a).

Single-aspect error-type assessment leads to a
more reliable and comprehensive evaluation.
Multi-aspect approaches often assign uniform
scores across error types, provide superficial rea-
soning (e.g., "it misses details about decision mak-
ing"), and occasionally confuse error definitions,
leading to false detections. In contrast, single-
aspect approaches demonstrate a more thorough
understanding of individual error types, identifying
a broader range of errors. However, the single-
aspect approach may become oversensitive, assign-
ing overly bad scores to minor errors, aligning with
recent findings (Kirstein et al., 2024a).

2.3 Chalenge II: error instance oversight
A direct assessment of error types may miss crit-
ical instances, affecting scoring accuracy (Kamoi
et al., 2024). We propose a three-step evaluation
pipeline to address the risk of oversight and have
a more thorough assessment process consisting of
identifying potential error instances, rating the er-
ror severity for each instance, and assigning a score
based on the observations for the currently assessed
error type (see Figure 1). Each step is carried out
by an LLM instance informed by the result of the
previous step.

Three-step assessment offers more thorough er-
ror instance identification and sensitive scoring.
Comparing single-step and three-step evaluation
approaches reveals notable improvements in error
detection and scoring with the three-step method.
Using the single-aspect setup as the backbone, we
observe that the three-step approach more effec-
tively detects non-obvious error instances, such as
paraphrased repetitions. Balanced accuracy scores
(Table 1, definition in Appendix E) show an im-
provement in detecting all error types with an aver-
age improvement of ∼3.5% on average.

However, this increased sensitivity and larger
number of detections can lead to overly strict as-
sessments, particularly for subjective error types
(e.g., irrelevance). We conclude that the three-step
approach offers a more comprehensive evaluation
but requires adjustment, e.g., through in-context
samples, to better align with human judgment.
While offering more comprehensive evaluations,
the three-step approach requires fine-tuning, poten-
tially through in-context samples, to better align
with human judgment.

Step OM REP INC COR HAL LAN STR IRR

single 93.0 93.7 88.5 85.3 71.0 85.9 87.0 81.0
three 95.3 94.1 90.1 89.0 77.6 90.4 89.2 87.4

Table 1: Balanced accuracy of the error type identifi-
cation compared against human judgments using the
single-step (single) and three-step (three) approach on
the modified QMSum Mistake dataset. Error type ab-
breviations follow the definition in Appendix C.

2.4 Challenge III: inconsistent scoring
To address score fluctuations in LLM-based as-
sessments (Wei et al., 2024a), we explore a multi-
agent debate protocol (MADP) (Liang et al., 2023).
In MADP, different models (agents) collaborate
through a natural language exchange to solve a
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Figure 2: Multi-agent discussion protocol used, con-
sisting of an initial draft generator, three synchronously
acting challengers, and a moderator summarizing the
individual statements into a final task solution.

task. We use MADP to challenge and refine an
initial draft (e.g., collection of potential error in-
stances). First, a moderator model provides a draft
solution, followed by multiple model instances in-
dependently challenging the draft from different
perspectives and refining the solution. Finally, a
moderator synthesizes the refinements into a final
output. Through this approach, we embed an addi-
tional layer to identify and mitigate false positive
or false negative detection, contributing to a more
robust and consistent evaluation.

MADP enhances evaluation depth and nu-
ance, improving the overall assessment quality.
We compare three setups: single-model without
MADP (Single), MADP with multiple GPT4 in-
stances (MADP-S), and MADP with diverse mod-
els, including GPT4, Phi-3-medium-128k (Abdin
et al., 2024), Llama 3.2 11b (AI, 2024), and Gem-
ini 1.5 Flash (Team et al., 2024) (MADP-M). All
setups use a single-aspect three-step architecture
as base. Both MADP approaches demonstrate
improved error impact sensitivity with more fine-
grained explanations and ratings. The MADP-M of-
fers slightly more diverse perspectives but broadly
aligns with MADP-S results. Table 2 shows that
score variance can be notably reduced with MADP,
with slightly less variance when using only GPT4
instances.

2.5 Resulting MESA architecture

The derived MESAarchitecture combines single-
aspect, three-step evaluation using single-model
MADP for thorough assessment. Individual error-
type Likert scores are combined using a weighted
sum, following the idea of (Liu et al., 2023a):

impact =

∑
n sn · (cn · in)∑

n(cn · in)
(1)

Setup OM REP INC COR HAL LAN STR IRR

single
4.08 3.74 4.03 3.39 3.81 3.76 3.83 3.38
(0.01) (0.07) (0.07) (0.26) (0.29) (0.06) (0.11) (0.08)

MADP-S
4.30 3.93 4.05 3.96 3.94 3.80 4.03 3.74
(0.03) (0.00) (0.04) (0.11) (0.23) (0.07) (0.01) (0.04)

MADP-M
4.31 3.95 3.98 3.91 3.98 3.78 4.05 3.76
(0.04) (0.05) (0.05) (0.14) (0.22) (0.03) (0.09) (0.07)

Table 2: Mean Likert scores and standard deviation in
parentheses below across three iterations. Error type
abbreviations follow definition in Appendix C. Single
refers to single LLM setup, MADP-S is MADP with
only GPT4 instances, MADP-M is MADP with multi-
model instances.

where sn is the Likert score, cn the scaled con-
fidence score (0-1) reported by the LLM, and in
an importance parameter (default: 1.0; OM, HAL,
IRR: 1.1; REP, INC, LAN: 0.9). Errors such as OM,
HAL, and IRR are prioritized as they significantly
affect summary accuracy and introduce biases, un-
dermining the summary’s trustworthiness. REP,
INC, and LAN primarily influence readability and
occur less frequently in LLM-generated summaries
(Kirstein et al., 2024c), warranting a slightly lower
weight. The impact score, describing how large
the impact of all errors is on the summary quality
(none: 0 to highly impacted: 5), is converted to a
quality score (1 to 10) using:

quality = 1 +

(
5− impact

5
· 9
)

(2)

An optional self-training mechanism inspired
by self-teaching (Wang et al., 2024) and feedback
techniques (Kirstein et al., 2024a) is introduced to
address overly harsh scoring. This mechanism uses
GPT4 as a judge (Zheng et al., 2024) to evaluate
the quality of the reasoning traces on completeness,
overlap with human reasoning, and logic. For the
score differences, we report labels ranging from
"no difference" to "major difference" for score dis-
crepancies, with "critical disagreement" for con-
flicting error observations. A second GPT4 judge
is tasked to detect patterns in the per-sample feed-
back and provides a consolidated report for each
error type on what should be considered or treated
differently during evaluation. This report is then
used in the following three-step assessment, being
appended to the original task describing prompt to
steer the detection and evaluation behavior.
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Step OM REP INC COR HAL LAN STR IRR

ROUGE-1 0.01 0.13 -0.02 0.06 0.13 0.02 0.09 -0.23*
ROUGE-2 -0.00 0.20* 0.08 0.15 0.15 0.12 0.17 -0.11
ROUGE-LS 0.07 0.26** 0.08 0.19* 0.19* 0.05 0.23* -0.20*
BERTScore -0.10 -0.04 -0.15 0.08 0.01 -0.24* 0.08 -0.32**

G-Eval-4 -0.13 -0.49** -0.24 -0.21* -0.26* -0.21* -0.21 -0.16

Single-0 -0.25* -0.48** -0.39** -0.22* -0.14 -0.23* -0.35** -0.12
Single-1 -0.26* -0.53** -0.42** -0.25 -0.27* -0.28* -0.41** -0.13
Multi-0 -0.30** -0.45** -0.38** -0.30** -0.18 -0.46** -0.35** -0.16
Multi-1 -0.27** -0.69** -0.63** -0.35 -0.33** -0.52** -0.43** -0.21*

Table 3: Point-Biserial correlation between metric scores and human annotation. Significant values: * (p ≤ 0.05)
and ** (p ≤ 0.01). Negative correlation means error presence leads to metric score decrease. Bold means best value.

3 Experiments

3.1 Setup
We compare MESA with established metrics using
the modified QMSum Mistake dataset and the eight
error types: omission (OM), repetition (REP), inco-
herence (INC), coreference (COR), hallucination
(HAL), language (LAN), structure (STR), and irrel-
evance (IRR). We use the MESA setup described
in Section 2.5 with and without MADP (Multi-n,
Single-n), with n iterations of self-training (0, 1).

Baseline metrics include:

• ROUGE (Lin, 2004), the most common,
count-based metric, assessing n-gram overlap
between generated and reference summaries.
We report unigrams, bigrams, and the longest
common sequence.

• BERTScore (Zhang et al., 2020), a model-
based metric measuring the contextual sim-
ilarity between generated and reference texts,
reflecting semantic and syntactic similarity.
We report the rescaled F score5.

• A modified version of the LLM-based G-Eval-
4 (Liu et al., 2023a) prompted with our eight
evaluation criteria and access to the transcript.

3.2 Analysis and discussion
Our analysis focuses on three aspects of evalua-
tion: error masking, sensitivity to error impact, and
closeness to human ratings. We conclude that the
three-stage detection in MESA demonstrates signif-
icant improvements over the best current approach,
G-Eval-4, showing the highest correlation with hu-
man judgment on both pure error detection (avg.
gap: 0.1) and error sensitivity (avg. gap: 0.15). The
self-teaching loop further enhances MESA’s perfor-
mance, increasing correlation (avg. gap increase:

5https://github.com/Tiiiger/bert score/blob/master/jour-
nal/rescale baseline.md

0.1) and notably closing the gap to human judg-
ment (up to 1.4 points reduction). Multi-1 exhibits
the best assessment performance, while Single-1
offers a faster, less computationally expensive al-
ternative with a slight performance decrease.

MESA demonstrates a high correlation on er-
ror existence, indicating a low error masking
tendency. Table 3 shows the Point-Biserial cor-
relation (Tate, 1954) analysis between considered
automatic metrics and human annotation. Tradi-
tional count- and model-based metrics (ROUGE,
BERTScore) perform poorly across most dimen-
sions as expected (Kirstein et al., 2024c). LLM-
based methods show higher, desired negative cor-
relations with human judgment, suggesting them
as a preferred choice. G-Eval-4 exhibits mostly
weak correlations, with stronger reactions for REP,
INC, and STR. We hypothesize that not all error
instances are detected by G-Eval-4, leading to erro-
neous evaluation behavior.

MESA’s Multi-n and Single-n setups surpass
previous state-of-the-art evaluators in correlation
across all error types (avg. -0.13 compared to G-
Eval-4), indicating the benefit of splitting assess-
ment into dedicated detection and scoring. INC,
LANG, and IRR benefit most, while OM and HAL
remain challenging, aligning with recent findings
on LLMs’ struggle with contextualization (Kirstein
et al., 2024a). As qualitative analysis reveals, self-
training further provides a slight boost by asking
the model to prioritize identified error instances
explicitly. MADP-based variants achieve greater
correlation, indicating that the refinement process
helps eliminate falsely detected instances and con-
sider overlooked ones.

MESA’s rating of individual error instances
helps capture error type severity in scores. Ta-
ble 4 shows Kendall (Kendall, 1938) and Spear-
man (Spearman, 1904) correlations between au-
tomatic metrics and human annotations on error

https://github.com/Tiiiger/bert_score/blob/master/journal/rescale_baseline.md
https://github.com/Tiiiger/bert_score/blob/master/journal/rescale_baseline.md
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OM REP INC COR HAL LAN STR IRR

Step ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ ρ τ

ROUGE-1 -0.03 -0.03 0.11 0.08 0.00 0.00 0.08 0.06 0.22* 0.15* 0.01 0.01 0.08 0.07 -0.24** -0.18**
ROUGE-2 -0.03 -0.02 0.16 0.12 0.03 0.03 0.12 0.10 0.18* 0.13 0.06 0.05 0.12 0.10 -0.15 -0.11
ROUGE-LS -0.06 -0.04 0.10 0.07 0.03 0.02 0.07 0.06 0.18 0.13 -0.01 -0.01 0.06 0.05 -0.21* -0.16*
BERTScore 0.07 -0.01 0.22* 0.17* -0.20* -0.15* 0.03 0.02 -0.05 0.04 0.05 0.02 0.02 0.02 -0.44** -0.34**

G-Eval-4 -0.24* -0.18* -0.44** -0.34** -0.36** -0.28** -0.15 -0.12 -0.18* -0.14* -0.22* -0.18* -0.15 -0.13 -0.17 -0.13

Single-0 -0.27* -0.20* -0.47** -0.36** -0.42** -0.32** -0.24* -0.19* -0.22* -0.16* -0.25* -0.19* -0.37** -0.29** -0.22* -0.16*
Single-1 -0.42** -0.32** -0.53** -0.41** -0.46** -0.35** -0.27** -0.22** -0.26* -0.19* -0.30* -0.23** -0.40** -0.31** -0.21* -0.16*
Multi-0 -0.31 -0.22 -0.52** -0.41** -0.34 -0.24 -0.35* -0.29* -0.19 -0.13 -0.49** -0.37** -0.34** -0.27** -0.25 -0.20
Multi-1 -0.58** -0.46** -0.57** -0.46** -0.58** -0.45** -0.33** -0.27** -0.22* -0.16* -0.49** -0.40** -0.37** -0.29** -0.34** -0.26**

Table 4: Kendall (τ ) and Spearman (ρ) correlation between metric scores and human annotation. Significant values:
* (p ≤ 0.05) and ** (p ≤ 0.01). Negative correlation: high impact leads to metric score decrease. Bold: best value.

Step OM REP INC COR HAL LAN STR IRR

G-Eval-4 0.56 1.97 2.30 2.60 1.10 2.07 2.53 1.68

Single-0 0.73 2.36 2.92 2.77 1.50 2.73 2.79 1.91
Single-1 0.31 1.87 2.15 2.70 1.17 2.02 2.34 1.70

Multi-0 0.92 2.60 2.96 3.24 2.03 2.87 3.06 2.39
Multi-1 0.22 1.71 1.53 2.46 1.06 2.13 2.33 1.83

Table 5: Gap of the mean LLM-assigned Likert scores
to the mean human-assigned Likert scores for the indi-
vidual error types.

type impact. ROUGE and BERTScore correlate
well for IRR errors but struggle elsewhere, with
BERTScore rewarding severe REP instances and
ROUGE tending to reward HAL. LLM-based met-
rics demonstrate weak to mid-negative correlations,
indicating a capability to understand and reflect
varying impact severities in score.

MESA’s multi-step approach outperforms cur-
rent methods, suggesting that previous limitations
may stem from overlooking score-influencing error
instances, leading to a weaker reflection of error
impacts in scores.

The improvement through MADP indicates that
reflective discussion enhances the categorization
of error instance impacts and promotes a more
thorough score reassessment. Self-training further
boosts performance (average improvement of -0.1),
demonstrating that feedback on reasoning traces
and scoring behavior aids in error categorization.

Self-teaching addresses the initial overestima-
tion of error impact. Table 5 shows that the gap
between MESA-assigned and human-annotated
Likert scores is initially greater than for LLM-
based metrics relying on a single-step assessment.
This greater gap may be due to the more thor-
ough error detection with the three-step assess-
ment pipeline, leading the framework to assign
higher scores than humans. However, self-teaching
feedback drastically narrows this gap by up to 1.4
points, lowering it below baseline gaps.

4 Related Work

Meeting summarization evaluation faces sig-
nificant challenges with traditional metrics like
ROUGE (Lin, 2004) and BERTScore (Zhang et al.,
2020). These metrics correlate relatively poorly
with human judgment, potentially masking or
rewarding certain error types (e.g., QuestEval
(Scialom et al., 2021) favors missing information).
LLM-generated summaries expose these limita-
tions further, leading to minimal metric score dif-
ferences despite substantial qualitative variations
(Kirstein et al., 2024a). Our work formalizes the
error-type focused evaluation concepts by Kirstein
et al. (2024a) into a thorough detection framework.
LLMs as summary evaluators have shown
promising results, with approaches like GPTScore
(Fu et al., 2024), G-EVAL (Liu et al., 2023a), and
self-taught evaluators (Wang et al., 2024) demon-
strating positive correlation with human judgments.
For meeting summarization specifically, single-
evaluator metrics such as AUTOCALIBRATE (Liu
et al., 2023b) and FACTSCORE (Min et al., 2023)
are recently explored but still lag in reliability and
alignment with human judgment (Kirstein et al.,
2024a). Persistent challenges include difficulty de-
tecting specific error types (e.g., omission) and han-
dling subjective assessments (Kirstein et al., 2024a).
Our work continues research of LLM-based met-
rics by further developing existing objective error
definitions (Kirstein et al., 2024a), implementing
an LLM-based single-aspect evaluator, and incor-
porating a refinement process inspired by the self-
teaching technique (Wang et al., 2024).

5 Final Considerations

In this paper, we introduced MESA, an LLM-
based single-aspect evaluation framework for meet-
ing summarization using a three-step evaluation
pipeline and multi-agent discussion paradigm. We
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conducted extensive experiments on the influence
of the individual components and assessment per-
formance of the framework using a modified ver-
sion of the QMSum Mistake dataset annotated by
humans on eight error types. Experiments revealed
that MESA identifies error instances more thor-
oughly and better captures impact than established
metrics, achieving a higher correlation with human
judgment. The self-training approach enhances
alignment with human assessments and reduces
oversensitive detections. The framework’s flexi-
bility in allowing for custom error guidelines and
adapting to human scoring behavior with minimal
samples makes it applicable beyond meeting sum-
marization for tasks with similar limitations. We
will release the codebase and updated dataset to
encourage research on LLM-based evaluation.
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Limitations

We have used large LLMs in this work (GPT4) and
have not explicitly studied whether the approach
works on smaller models. As we used smaller mod-
els while exploring multi-agent discussions, we
could observe a similar level of detail generated by
the smaller models. This observation indicates that
the approach can also be successful with models
from the 10B to 30B parameter category.

Another possible weakness of our work could
be that we carry our experiments on a dataset that
might seem small (i.e., 170 samples). However,
its size is comparable to that of the original, es-
tablished QMSum dataset (232 samples) and the
original QMSum Mistake dataset (200 samples).
We contribute to refining the original datasets by
carefully annotating human errors, curating reason-
ing traces, and defining new error types. As there
are no large, high-quality datasets available with
diverse meeting types due to data security and intel-
lectual property constraints, a method to generate
synthetic meetings on a human-like level would be
required to mitigate this data scarcity.

Further, we only investigate and report metric
performance measured as accuracy or correlation,
leaving out computational requirement concerns.
We do so as the LLM-based approaches will be

more costly than the established count-based and
model-based metrics. We include in our exper-
iments a more lightweight version of MESA to
demonstrate that a weaker, less expensive variant
yields similar results as our best-performing option.

Ethics Statement

Licenses: We adhered to licensing requirements
for all tools used (OpenAI, Microsoft, Google,
Meta, Huggingface).

Privacy: User privacy was protected by screen-
ing the dataset for personally identifiable informa-
tion during quality assessment.

Intended Use: Our pipelines are intended for or-
ganizations to quickly and efficiently assess the
quality of summaries and extend their summariza-
tion systems with a feedback-generating mid-layer.
While poor summary quality assessment may affect
user experience and the performance of depending
systems, it should not raise ethical concerns as the
evaluation is based solely on given transcripts and
summaries. Production LLMs will only perform
inference, not re-training on live transcripts. As-
sessments will be accessible only to meeting partic-
ipants, ensuring information from other meetings
remains confidential.
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Step 1: Error Instance Identification Prompt Template

Step 1 is to collect possible error instances.
Read the following criteria carefully: *** criteria: self.criteria[criteria] ***.
Next, read the summary: ** data[’summary’] **.
Also, consider the original meeting transcript: * data[’transcript’] *.

Now, read the summary again and write down a list of instances where this error type could
occur. This can contain instances that already show the error or instances that could potentially show
the error. For every instance, write down a short reasoning thinking step-by-step why this instance
could be an error. Also, for every instance, provide a score from 0 (totally unsure) to 100 (totally sure)
to show how certain you are that this instance could be an error. Ensure that each instance is provided
in strict JSON format, using double quotes for keys and values, and no additional text outside the
JSON structure. Return your answer only in the following format:

[ {’instance’: ’<text passage or sentence or words from summary>’, ’reasoning’ : ’<chain-of-
thought reasoning>’, ’certainty’: ’<score from 0 meaning totally unsure to 100 meaning totally sure>’},
{<same for instance 2>}, ... {<same for instance n>}]

Ensure that the format strictly follows valid JSON, with no extra preambles or additional
information.

Figure 3: The prompt template used to task an LLM instance to identify potential error instances.

Preparation: We prepared a comprehensive
handbook for our annotators, detailing the project
context and defining challenges and error types
(a short version as presented in Section 3 and a
long version with more details). Each definition
included two examples: one with minimal impact
(e.g., slight information redundancy) and one with
high impact (e.g., repeated information through-
out). The handbook explained the binary yes/no
rating for the existence of an error. Annotators
were further tasked to provide reasoning for each
decision. The handbook did not specify an order
for processing errors. We provided the handbook
in English and in the annotators’ native languages,
using professional translations.

We further elaborated a three-week timeline for
the annotation process, preceded by a one-week
onboarding period. The first week featured twice-
weekly check-ins with annotators, which were re-
duced to weekly meetings for the following two
weeks. Separate quality checks without the annota-
tors were scheduled weekly. (Note: week refers to
a regular working week)

Onboarding: The onboarding week was dedi-
cated to getting to know the project and familiariza-
tion with the definitions and data. We began with

a kick-off meeting to introduce the project and ex-
plain the handbook, particularly focusing on each
definition. We noted initial questions to potentially
revise the handbook. Annotators were provided
with 35 samples generated by SLED+BART (Ivgi
et al., 2022), chosen for their balance of identifiable
errors and good-quality summaries while capable
of processing the whole meeting. After the first 15
samples, we held individual meetings to clarify any
confusion and updated the guidelines accordingly,
mainly focusing on our new omission definition.
The remaining 20 samples were then annotated
using these updated guidelines. A second group
meeting this week addressed any new issues with
definitions. We then met individually with annota-
tors after the group meeting to review their work,
ensuring quality and understanding of the task and
samples. All four annotators demonstrated reliable
performance and good comprehension of the task
and definitions judging from the reasoning they
provided for each decision and annotation. We
computed an inter-annotator agreement score using
Krippendorff’s alpha, achieving 0.793, indicating
sufficiently high overlap.

Annotation Process: Each week, we distribute
all samples generated by one model/source (on av-
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Step 2: Error Instance Rating Prompt Template

Step 2 is to rate the severity of the potential error instances.
Read the following criteria carefully: *** criteria: self.criteria[criteria] ***.
Next, read the already collected potential error instances: *** list_of_instances ***.
Also, consider the original meeting transcript: * {data[’transcript’]} * and the summary: *
data[’summary’] *.

Now, for each instance, decide if it is an actual error instance or not according to the criteria.
For each instance, write down a short reasoning explaining why you decided so. Provide a score on the
severity of the error, ranging from 0 (no error) to 10 (severe error). Also, provide a score for your
certainty, ranging from 1 (totally unsure) to 10 (totally sure). For each instance, indicate whether the
error exists by setting the ’error_exists’ field to true or false. Return the output strictly in JSON format,
using double quotes around all keys and values, and return nothing else. Here is the required format for
your response:

[ {’instance’: ’<the instance>’, ’reasoning’ : ’<chain-of-thought reasoning if there is an error
according to the criteria or not>’, ’certainty’: ’<score from 0 meaning totally unsure to 100 meaning
totally sure>’, ’error_exists’ : <true or false depending on your decision>}, {<same for instance 2>}, ...
{<same for instance n>}]

Make sure the output is strictly valid JSON, with no preamble, extra explanations, or text
outside the JSON structure.

Figure 4: The prompt template used to task an LLM instance to rate detected error instance.

erage 33 samples) to one of the annotators. Conse-
quently, one annotator worked through all samples
of one model/source in one week. On average, one
annotator processes summaries from three model-
s/sources (depending on other commitments, some
annotators could only annotate two datasets, and
others four or more). Each sample is annotated
by three annotators. Annotators were unaware of
the summary-generating model and were given a
week to complete their set at their own pace and
break times. Quiet working rooms were provided
if needed for concentration. To mitigate position
bias, the sample order was randomized for each
annotator. Annotators could choose their annota-
tion order for each sample and were allowed to
revisit previous samples. To simplify the process,
we framed each error type as a question, such as
"Does the summary contain repetition?".

Regular meetings were held to address any
emerging issues or questions on definitions. Dur-
ing the quality checks performed by the authors,
we looked for incomplete annotations, missing ex-
planations, and signs of misunderstanding judging
from the provided reasoning. In case we would
have found such a quality lack, the respective an-

notator would have been notified to re-do the anno-
tation. After the three-week period, we computed
inter-annotator agreement scores on the error types
(shown in Table 11). In case we had observed a
significant difference across annotators, we had
planned a dedicated meeting to discuss such cases
with all annotators and a senior annotator. On aver-
age, annotators spent 37 minutes per sample, com-
pleting about 7 samples daily.

Handling of unexpected cases: Given that our
annotators had other commitments, we anticipated
potential scheduling conflicts. We allowed flexibil-
ity for annotators to complete their samples beyond
the week limit if needed, reserving a fourth week
as a buffer. Despite these provisions, all annota-
tors successfully completed their assigned samples
within the original weekly timeframes. We fur-
ther allowed faster annotators to continue with an
additional sample set. This additional work was
voluntary.

D.3 Inter annotator agreement
Table 11 shows the inter-annotator agreement
scores (Krippendorff’s alpha) for our modified ver-
sion of QMSum Mistake.
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Step 3: Scoring Prompt Template

Step 3 is to rate the summary considering the actual error instances and their severity.
Read the following criteria carefully: *** criteria: self.criteria[criteria] ***.
Consider the observed error instances and their severity scores (0 for no error to 10 meaning severe
error): *** list_of_instances ***.
You do not have to agree with these severity scores, so please critically evaluate them when rating the
summary. Next, read the summary: ** data[’summary’] **.
Consider the original meeting transcript: * data[’transcript’] *.

Now, rate the summary with a single score from 0 to 5, where 0 means no impact at all (a
really good summary) and 5 means a very high impact (a poor summary) regarding this error type.
Also, provide a short reasoning explaining why you rated the summary as you did. Additionally,
provide a certainty score indicating how confident you are in your rating, from 0 (not confident at
all) to 10 (very confident). Return your answer strictly in **valid JSON format**, using **double
quotes** around all keys and string values.
The structure of your response should be exactly like this:
’{ "reasoning": "<your reasoning>", "confidence": <your certainty score>, "rating": <score from 0 to
5> }
Make sure to return only the JSON response, without any preambles, explanations, or extra text outside
the JSON format.

Figure 5: The prompt template used to task an LLM instance to perform the scoring.

E Balanced Accuracy Definition

Accuracy (ACC) is a natural choice to measure the
proportion of correctly predicted labels out of the
total number of labels:

ACC =
(TP + TN)

(TP + FN + FP + TN)
(3)

with

• TP - true positive

• TN - true negative

• FP - false positive

• FN - false negative

In our scenario for assessing the error identifi-
cation capabilities, accuracy itself is not suitable,
as some error types have a notable data imbalance,
e.g., omission errors. Therefore, we report the bal-
anced accuracy (B-ACC), i.e., the arithmetic mean
of sensitivity (SEN) and specificity (SPE):

SEN =
TP

(TP + FN
(4)

SPE =
TN

(TN + FP )
(5)

B-ACC =
1

2
(SEN + SPE) (6)
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Setup Evaluator Output

multi-aspect The summary captures the main points of the discussion, such as the challenges in creating a
database format, the pros and cons of different formats, and the need for flexibility and ease of
use. However, it omits specific details about the decisions made, the exact formats discussed (like
ATLAS and P-files), and the nuances of the arguments presented. This leads to an incomplete
understanding of the meeting’s outcomes.

single-aspect The summary captures the main points of the discussion, including the challenges of creating a
database format for linking transcriptions, the pros and cons of different formats, and the need
for compactness, ease of use, and flexibility. However, it omits some specific details such as the
mention of specific tools like ATLAS, and the discussion about the potential use of relational
databases. These omissions slightly reduce the comprehensiveness of the summary.

Table 6: Outputted reasoning of the multi- and single-aspect setups shown in Section 2.2. Single-aspect is taken
from the omission error type while multi-aspect considerat all error types.

Setup Evaluator Output

single-step The summary captures the main points of the discussion, including the challenges of creating a
database format for linking transcriptions, the pros and cons of different formats, and the need
for compactness, ease of use, and flexibility. However, it omits some specific details such as the
mention of specific tools like ATLAS, and the discussion about the potential use of relational
databases. These omissions slightly reduce the comprehensiveness of the summary.

three-step The summary omits critical details about the specific pros and cons of different formats discussed,
the detailed arguments about how each format meets the needs of compactness, ease of use,
and handling multiple speakers, the compatibility and features of NIST’s format, the long-term
implications and flexibility concerns, and the specific challenges and considerations in creating a
database format. These omissions significantly impact the understanding of the decision-making
process and the depth of the group’s concerns.

Table 7: Outputted reasoning of the single-step and three-step setups shown in Section 2.3 on the omission error
type.

Setup Evaluator Output

no MADP The summary omits critical details about the specific pros and cons of different formats discussed,
the detailed arguments about how each format meets the needs of compactness, ease of use,
and handling multiple speakers, the compatibility and features of NIST’s format, the long-term
implications and flexibility concerns, and the specific challenges and considerations in creating a
database format. These omissions significantly impact the understanding of the decision-making
process and the depth of the group’s concerns.

MADP + single The summary omits several critical details discussed in the meeting, such as the specific pros
and cons of different formats (XML, P-files, Transcriber), the detailed comparison with NIST’s
format, and the specific challenges and considerations for long-term implications and flexibility.
These omissions lead to an incomplete understanding of the meeting’s discussions and decisions,
which could result in misinformed actions based on the summary. For instance, the lack of detail
on the compactness of P-files versus XML, or the handling of multiple speakers, could lead
to choosing an inefficient format. Similarly, not mentioning the potential need for translation
between formats or the scalability issues could result in future technical debt. The severity of
these omissions is high because they directly affect the core objectives of the meeting, which is
to decide on a suitable database format.

MADP + multi The summary omits several critical aspects of the discussions, such as the detailed pros and cons
of different formats (XML, P-files, Transcriber format), specific technical details and arguments
for and against each format, the detailed comparison between NIST’s ATLAS format and other
formats, and specific challenges like issues with frame-level data, the need for binary encoding
for large datasets, and potential problems with merging different annotations. These omissions
lead to an incomplete representation of the meeting, which could result in misinformed decisions
or actions based on the summary.

Table 8: Outputted reasoning of the additional usage of MADP with onle a single backbone model (MADP + single)
or models from different model families (MADP + multi), as described in Section 2.4.
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Error Type Definition

Redundancy
RED

The summary contains repeated or redundant information, which does not help the understanding or
contextualization.

Incoherence
INC

The model generates summaries containing characteristics that disrupt the logical flow, relevance, or
clarity of content either within a sentence (intra-sentence) or across sentences (inter-sentence).

Language
LAN

The model uses inappropriate, incorrect (ungrammatical), or ambiguous language or fails to capture
unique linguistic styles.

Omission
(partial, total)
P-OM, T-OM

Missing information from the meeting, such as significant decisions or actions. Total omission: Relevant
topics and key points are not stated. Partial omission: Salient topics are mentioned but not captured in
detail.

Coreference
COR

The model fails to resolve a reference to a participant or entity, misattributes statements, or omits
necessary mentions.

Hallucination
HAL

The model produces inconsistencies not aligned with the meeting content. Intrinsic: Misrepresents
information from the transcript. Extrinsic: Introduces content not present in the transcript.

Structure
STR

The model misrepresents the order or logic of the meeting’s discourse, misplacing topics or events.

Irrelevance
IRR

The summary includes information that is unrelated or not central to the main topics or objectives of the
meeting.

Table 9: Definition of the eight error types annotated in QMSum Mistake based on existing error types (Kirstein
et al., 2024a; Chang et al., 2024)

Dataset # Meetings # Turns # Speakers # Len. of Meet. # Len. of Gold Sum. # Len. of Aut. Sum.

QMSum Mistake 200 (169) 556.8 9.2 9069.8 109.1 116.9

Table 10: Statistics for the QMSum Mistake dataset. Values are averages of the respective categories. Lengths
(Len.) are in number of words. In # Meetings, values in parentheses are the number of erroneous samples.

Assessed Characteristic Krippendorff’s α

Omission 0.832
Repetition 0.811
Incoherence 0.824
Coreference 0.793
Hallucination 0.820
Language 0.725
Structure 0.745
Irrelevance 0.793

Table 11: Inter-rater reliability for the human annotations, measured by Krippendorff’s alpha. Scores ≥ 0.667 mean
moderate agreement and scores ≥ 0.8 mean strong agreement.
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