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Abstract

Large language models (LLMs) have enhanced
our ability to rapidly analyze and classify un-
structured natural language data. However, con-
cerns regarding cost, network limitations, and
security constraints have posed challenges for
their integration into industry processes. In this
study, we adopt a systems design approach to
employing LLMs as imperfect data annotators
for downstream supervised learning tasks, in-
troducing system intervention measures aimed
at improving classification performance. Our
methodology outperforms LLM-generated la-
bels in six of eight tests and base classifiers
in all tests, demonstrating an effective strategy
for incorporating LLMs into the design and de-
ployment of specialized, supervised learning
models present in many industry use cases.

1 Introduction

Large Language Models (LLMs) have significantly
improved the ability to rapidly evaluate large
amounts of unstructured natural language data. De-
spite their promise, many organizations face in-
ternal obstacles integrating LLMs into production
environments. Developing LLMs internally is re-
source, expertise, and time intensive. Likewise, re-
lying on APIs to access external LLMs introduces
other issues. For instance, many organizations of-
ten have cost constraints, data privacy concerns,
air-gapped networks, or decision cycle times that
make integrating commercially available APIs in-
feasible.

Prior work shows that LLMs can perform well
across a variety of NLP tasks for computational so-
cial science (CSS) via zero-shot prompting (Ziems
et al., 2024). Traditionally, these tasks, like emo-
tion, stance, persuasion, and misinformation clas-
sification, are solved with classification via super-
vised learning techniques. Although using super-
vised models solves many issues associated with
deploying LLMs in production environments, they

Figure 1: RED-CT design which allows LLM-like capa-
bilities for NLP tasks deployed in edge environments.

are known to perform poorly on out-of-domain data
and require a significant upfront investment in data
labeling.

To balance the flexibility associated with LLMs
and advantages of supervised models, we propose
Rapid Edge Deployment for CSS Tasks (RED-CT).
RED-CT is a system that integrates traditional tech-
niques from active learning such as confidence mea-
surements and soft labels to pair LLM generated
data labels with minimal selected human-annotated
labels to deploy classifiers to edge environments
fast. We define the edge environment as time- and
/ or resource-limited situations where users need
to interface with NLP solutions. Additionally, the
edge environment may be disconnected from the
internet for security or privacy purposes or in crisis
response settings where connection to the internet
is either impracticable or unreliable.

In this paper, we introduce RED-CT and pro-
pose a confidence-informed sampling method to
select LLM-labeled data for human annotation. In
addition, we present a simple method to generate
soft labels from LLM predictions to use during
edge classifier training. We evaluate RED-CT with
confidence-informed sampling and learning on soft
labels across four CSS tasks: stance detection, mis-
information identification, humor detection, and
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ideology detection. We further evaluate the pro-
posed approach with two different common data-
labeling prompting schemes and across three differ-
ent sizes of distilled models. Our results show that
it is possible to approximate or outperform LLMs
on CSS tasks with minimal human data labeling
( 10% of dataset) in the distillation of edge models.

2 Related Works

One of the chief issues in creating ML solutions for
CSS tasks is generalizing to out-of-domain data.
CSS tasks, such as stance detection or sarcasm
classification, often have very nuanced, context-
dependent language (Ng and Carley, 2022; Ziems
et al., 2024; Cruickshank and Ng, 2024). Due
to high contextually-dependency, supervised ap-
proaches produce models that struggle to general-
ize between datasets. For example, previous re-
search indicates that while model generalizabil-
ity can be improved through the aggregation of
datasets, cross-dataset stance detection models still
generalize poorly (Ng and Carley, 2022).

Recent work has demonstrated that LLMs can
perform well across various classification tasks
within CSS (Cruickshank and Ng, 2024; Zhu et al.,
2023). Ziems et al. (2024) provides best prac-
tices for prompting and benchmarks performance
for a variety of CSS tasks across several LLMs.
LLM-based classification methods work better with
out-of-domain data due to the LLMs strong zero-
shot classification capacity. However, these meth-
ods also require substantial resources and can-
not scale, in terms of cost or compute time, to
large CSS datasets. For example, just labeling the
SemEval2016 dataset (Mohammad et al., 2016)
(2,814 data points) with GPT-4 could cost over $30
USD. Additionally, ongoing research has found
that LLMs still usually perform worse than in-
domain supervised models at CSS tasks (Cruick-
shank and Ng, 2024; Ziems et al., 2024). (Tan et al.,
2024) provide a survey paper of research using
large language models for data annotation, includ-
ing model distillation as a task. Some related works
included show using synthetic generated data from
larger LLMs to train smaller LLMs(Wang et al.,
2023) and (Huang et al., 2022) which demon-
strate LLMs can improve performance through
self-annotation and subsequent fine-tuning based
on self-annotated data. Further related work by
(Wang et al., 2024) deploys an external verifier
model to select samples LLMs are unlikely to clas-

sify correctly and routes them to human labelers for
increased performance. Such previous work differs
in data sampling methods, resource requirements,
and distillation methodology.

In an effort to improve supervised model perfor-
mance in other classification contexts, researchers
have explored learning on soft labels. Soft labels
employ a weighting mechanism to capture anno-
tator uncertainty during labeling. Soft labels have
been shown to enhance model generalization and
better represent the confidence of the annotator (Al-
shahrani et al., 2021; Wu et al., 2023).

Researchers study LLM distillation techniques
(Xu et al., 2024) to reduce model size and cost.
These methods vary considerably in their use of
LLMs. Some studies have focused on generat-
ing artificial data with LLMs useful for distilling
small classification models (Ye et al., 2022b,a; Gao
et al., 2022; Meng et al., 2023). Other works have
explored few-shot prompting and active learning
mechanisms, combined with LLMs for data label-
ing (Wang et al., 2021; Zhang et al., 2023; Hsieh
et al., 2023). Many of these methods often require
human intervention to filter low-quality data or
LLM-generated rationales for labels which can be
unreliable (Huang et al., 2023). Other works fo-
cus on reducing bias (Egami et al., 2023) with-
out focusing on downstream classification perfor-
mance (Wang et al., 2021). Pangakis and Wolken
(2024) assess supervised classifiers performance
on LLM generated labels, but do not offer a sys-
tems approach or intervention measures to improve
downstream classification. None of the prior works
attempt to integrate additional uncertainty infor-
mation from LLMs into human intervention and
model distillation.

3 Methodology

In this section, we outline our proposed methodol-
ogy that contributes to the literature by presenting
a systems approach that incorporates model un-
certainty estimates. These estimates guide human
intervention and improve model training for classi-
fiers using LLM-labeled data.

3.1 RED-CT System Methodology

Rapid Edge Deployment for CSS Tasks (RED-CT)
is designed with three tasks in mind: reducing la-
tency for classification tasks, reducing the amount
of data exposed to external API’s, and decreas-
ing the energy and monetary cost associated with
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LLMs. By reducing LLM dependency, we can
decrease energy expenditure, cost, and network de-
pendency for CSS classification tasks. This also
allows us to obfuscate batched data being sent to
an LLM, opposed to needing to secure all data in a
production environment. RED-CT is a system that
enables users in edge environments to utilize ML
tools for complex societal computing tasks. Figure
1 provides a high-level overview of our system.

RED-CT follows a framework in which classi-
fication and data collection are performed at the
edge, model development is performed at a cen-
tral point, and then model updates are pushed back
to the edge. We refer to this framework of differ-
ent, related contexts and devices as a data resupply
framework. Transport mechanisms for data resup-
ply include internet (when available) or physical
devices transferred by personnel moving in and out
of the edge environment.

Data delivered to the enterprise hub goes through
a pipeline for labeling and model training. Unlike
the edge environment, compute resources and con-
nectivity are not restricted at the enterprise hub.
This allows analysts at the hub to label the data
via zero-shot LLM prediction for maximum expe-
diency. Data label quality can be increased by inte-
grating subject matter experts (SMEs) for prompt
engineering, quality control, or expert labeling of
small sample sizes. Edge classifiers are then trained
or fine-tuned on the newly labeled data and de-
ployed back to the edge environment.

RED-CT’s modular design allows for increased
performance as industry and academia continue
to improve system components, such as LLMs,
prompting techniques, and edge classifiers. Addi-
tionally, our method prevents model drift by en-
abling constant evaluation of data in a dynamic
environment, with human-in-the-loop processes in-
forming users.

3.2 Training Edge Classifiers on LLM-labeled
Data

Due to the potential time-constrained setting in
edge environments, RED-CT relies on fine-tuning
BERT-based models on LLM-labeled data. BERT-
based models require minimal text preprocessing,
and their pretraining allows for fine-tuning on
downstream tasks. BERT models exhibit strong
performance when fine-tuned for a variety of clas-
sification tasks (Devlin et al., 2019).

Given that LLMs are prone to errors in the zero-
shot prediction setting, we assume that our LLM

labels will be imperfect. Naively fine-tuning BERT
on the LLM-labeled data risks over fitting to noisy
or incorrect labels. To improve edge model per-
formance, we integrate several system interven-
tions into the model fine-tuning process: includ-
ing expert-labeled data into the training process,
designing confidence scores to select samples for
experts to label, and learning soft labels based on
label weights.

3.2.1 Incorporating Confidence Informed
Expert Labels

RED-CT helps streamline model deployment by
reducing the number of personnel hours devoted
to labeling data. Instead of using SMEs to label
all available data, we only require them to label
small samples of data. Integrating experts improves
the quality of the LLM-labeled dataset and subse-
quently the edge classifier.

Randomly selecting samples for SME labeling
within a bounded time or up to a certain percentage
can improve edge model performance but may in-
troduce inefficiencies where SME’s analyze sample
data in which the LLM is confident it has labeled
correctly. To optimize sampling for SME analy-
sis, we devise a confidence-based metric to identify
examples where LLM labeling is less reliable.

The confidence score is defined as the absolute
difference between the highest token label log prob-
ability and the second-highest token label log prob-
ability within this constrained set of expected to-
kens. Let T represent the set of given tokens, and
P (t) denote the distribution of probabilities across
each token t ∈ T . The confidence score, denoted
as C, is then computed using the formula

C =

∣∣∣∣max
t∈T

logP (t)− max
t∈T \{t∗}

logP (t)

∣∣∣∣ , (1)

where t∗ is the token corresponding to the highest
probability maxt∈T P (t). To apply the confidence
score, we stratify by each LLM-labeled class and
sample the bottom p percentile.

To validate the proposed confidence estimate, we
analyze the distribution of confidence scores for ex-
amples labeled correctly and incorrectly using the
labels from zero-shot stance classification with gpt-
3.5-turbo. Under the Kolmogorov-Smirnov test,
we reject the null hypothesis that correctly and
incorrectly labeled samples come from the same
distribution of confidence scores (An, 1933). High-
lighted in Figure 2, we are more likely to select



61

Figure 2: The distribution of confidence scores for ex-
amples labeled correctly and incorrectly using gpt-3.5-
turbo zero-shot stance classification. The distributions
are overlaid as opposed to stacked.

correctly labeled examples using random sampling,
but less likely when sampling examples with very
low confidence scores.

3.2.2 Learning on Soft Labels
Fine-tuning edge classifiers on the LLM-labeled
data risks overfitting on incorrect labels. We help
ease this problem by integrating SMEs into the la-
beling process; however, standard supervised train-
ing methods do not account for differences in label
quality. To account for label confidence, we learn
on soft labels.

To retrieve a soft label for model fine-tuning, we
apply the expit function to the log probability of the
token associated with each LLM label, resulting in
a score between zero and one. For expert labeled
examples, we assign a weight of 1 on the selected
class and 0 for the others. Our experimental results
show that learning with soft labels improves edge
classification performance.

4 System Implementation and
Experiment Design

We replicate the available LLM labeling capabil-
ities with two models: OpenAI’s gpt-3.5-turbo,
available closed-source from their API, and Mis-
tral’s Mistral-7B-Instruct-v0.2, available open-
source on Huggingface.1 We experiment with
two different prompting styles for labeling: zero-
shot and zero-shot chain of thought (CoT). We
attempted to use the best prompting practices in

1Model resources and information are contained in the
Ethics and Availability section.

literature for our classification tasks, integrating
prompting techniques from (Ziems et al., 2024),
(Cruickshank and Ng, 2024), and (Zhu et al., 2023).
Examples of each prompt are provided in Appendix
A.

For edge classifiers, we test three flavors of
BERT: ’Distil-BERT’, ’RoBERTa’, and ‘RoBERTa-
Large’ (Devlin et al., 2019; Liu et al., 2019). These
models vary in size, allowing us to assess perfor-
mance across model compute requirements. For
each BERT model, we evaluate the effects of sys-
tem intervention measures. The system settings
we tested included a base classifier trained with no
system interventions directly on the LLM labels,
a classifier trained on soft labels (SL), a classi-
fier trained on 10 percent randomly selected ex-
pert labeled data (RS 10%), a classifier trained
on confidence-informed sampling (CI 10%), and a
classifier trained with all system intervention mea-
sures (CI SL 10%). We train five classifiers on each
LLM-labeled dataset and report the averages across
each. For each edge model, we do full fine-tuning
(i.e., unfreeze all model weights) from pre-trained
models, but note that this process can be done with
any type of fine-tuning or training a model with
initialized weights.

4.1 CSS Tasks and Data Selection

For the purposes of testing our systems methodol-
ogy, we selected four well known CSS tasks: stance
detection, misinformation detection, ideology de-
tection, and humor detection. We then selected a
dataset for each task that had known benchmarks
to compare our system design against.

4.1.1 Stance Detection
We define stance detection as an "automatic clas-
sification of the stance of the producer of a piece
of text, towards a target, into one of these three
classes: Favor, Against, Neither" (Küçük and Can,
2021). We use the SemEval-16 dataset provided by
(Mohammad et al., 2016). The SemEval-16 dataset
consists of approximately 5000 tweets in relation
to one of five targets: Hilary Clinton, Legalization
of Abortion, Feminism, Climate Change, and Athe-
ism. There are three classification classes for each
target: favor, against, and neutral.

4.1.2 Misinformation
We define misinformation as "false or inaccurate
information that is deliberately created and is inten-
tionally or unintentionally propagated" (Wu et al.,
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Task Enterprise LLM Edge Classifier - RoBERTa-L

GPT-3.5 Turbo Random Base RS 10% CI SL 10%

Stance .667 .333 .626 .665 .689
Misinformation .761 .500 .653 .703 .752
Ideology .579 .333 .567 .597 .626
Humor .565 .500 .534 .555 .571

Mistral-7B-Instruct
Stance .529 .333 .439 .448 .486
Misinformation .602 .500 .594 .629 .665
Ideology .406 .333 .413 .441 .451
Humor .492 .500 .384 .427 .508

Table 1: Zero-Shot LLM performance (weighted f1 score) compared to edge model performance. Random are
dummy models predicting on a uniformed distribution, base edge models are trained without system interventions,
RS 10% edge models are trained with 10% randomly sampled expert examples, and CI SW 10% is 10% confidence-
informed sampling and learning with label weights. Results that out-performed the enterprise LLM are bolded.

2019). We evaluate misinformation detection on
the Misinfo Reaction Frames corpus (Gabriel et al.,
2022). The Misinfo Reaction Frames corpus con-
sists of 25k news headlines consisting of topics
such as COVID-19, climate change, or cancer.
Each headline was fact checked and has an asso-
ciated binary misinfo classification of misinforma-
tion or trustworthy.

4.1.3 Ideology

We define ideology as "the shared framework of
mental models that groups of individuals possess
that provide both an interpretation of the environ-
ment and a prescription as to how that environment
should be structured" (North and Denzau, 1994).
We used the Ideology Books Corpus (IBC) dataset
from (Sim et al., 2013) with sub-sentential annota-
tions (Iyyer et al., 2014) to evaluate our system’s
utility in ideology detection. The IBC dataset con-
tains 1,701 conservative sentences, 600 neutral sen-
tences, and 2,025 liberal sentences.

4.1.4 Humor

For humor detection, we used a broad definition
when prompting LLMs with the question, "Would
most people find this funny?" This approach fo-
cused on binary humor classification. We evaluated
our system using a curated collection of posts from
Reddit’s r/Jokes, where researchers labeled jokes
as humorous or not based on the number of upvotes.
The two classes were distinguished through binary
cluster analysis (Weller and Seppi, 2019).

5 Results

Table 1 presents the high-level results across our
four chosen CSS tasks using RoBERTa-L. Figure
3 is a more detailed analysis of the implementation
of our system methodology in the stance detection
task, including varying the type of BERT model in
all combinations of system intervention strategies.
A key takeaway is that through our methodology
and associated system intervention measures, we
were able to outperform LLM-labeled data in 6
of the 8 tested tasks, while approximating it in an
additional task. Additionally, in GPT labeled data,
we had an average improvement of 6.75% over the
base classifier and we out performed the base and
normal sampling techniques in 100 percent of tasks.
In Annex B, we have included additional results
analysis, including varying the percentage of expert
labels in Figure 4 and a full table for each stance
detection result in Table 2.

5.1 Discussion

Our results represent a significant improvement in
system design for using LLMs as imperfect anno-
tators for downstream classification tasks. Our sys-
tem intervention measures were effective in both
GPT 3.5 and Mistral-7B, but more consistent in
GPT 3.5. We theorize that this is because the token
log probabilities returned from GPT 3.5 provided
more value to our confidence score and weighting
interventions due to better associated log probabil-
ity values with correct classification. Furthermore,
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Figure 3: Comparing edge model F1 score as we change model and system interventions types for stance detection.
We note steady improvements of edge model performance as we introduce more complex models and system
intervention measures. The largest edge model with all system interventions out-performs gpt-3.5-turbo CoT.

we noticed some bias in LLM classification where
the LLM was consistently incorrect in predicting
a single class. This was represented in our confi-
dence scores and caused our expert labels to focus
on a single class, resulting in heavily weighted soft
labels applied to a single class extrapolating ex-
isting error. To solve this problem, we stratified
the expert sampling process, selecting the bottom
10 percent of confidence scores for each class in-
stead of the bottom ten percent of the entire dataset.
Doing so slightly decreased the accuracy on tasks
where there was minimal bias, but greatly increased
the accuracy where LLM bias was present such as
ideology and stance classification. This difference
in class performance for a given task has also been
observed in other works. For example, LLMs con-
sistently exhibit a discernible left and libertarian
bias, as assessed by political orientation surveys,
that likely arises due to the training data used for
training LLMs (Motoki et al., 2023; Rozado, 2023;
Rutinowski et al., 2023). This bias could affect per-
formance on frequently politically charged tasks
(which are also frequently important tasks for CSS),
such as stance classification.

Confidence-informed sampling allowed us to
greatly improve our edge classifier and should be
integrated into any knowledge distillation process
where small batch labeling is incorporated. Our
confidence score distributions were the most dis-
cernible when ensembling different prompting tech-

niques or in zero-shot settings. Chain-of-thought
prompting resulted in less clean distributions, but
further testing is required to fully understand the
causation of prompting mechanisms on returned
log probability distributions.

6 Conclusions

In this work, we successfully replicated LLM per-
formance in an edge environment on computational
social science tasks using a systems methodology.
Our approach, which integrates expert-in-the-loop
data labeling for a small portion of the data (10%
or less), enables the deployment of highly perfor-
mant small models in environments where LLM
access is restricted due to cost, security, or latency
concerns.

Our results demonstrate generalizability across
various labeling prompts and distilled models,
providing a flexible and scalable solution. This
methodology offers a practical mechanism to re-
duce labeling costs and dependence on large LLMs
while improving performance and data annotation
throughput, even in resource-constrained settings
with minimal human intervention.
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A Sample Prompts

This appendix contains example prompts using the
same document in the SemEval-2016 dataset. The
newlines in the example prompts correspond to ac-
tual newline characters ("\n") in the prompt string.

A.1 Stance Detection Zero-Shot

THIS IS AN EXAMPLE STATEMENT
Which of the following best describes the
above social media statements’ stance
regarding TOPIC?
A) For
B) Against
C) Neutral
Only respond with ’For’, ’Against’, or
’Neutral’.

A.2 Stance Detection Zero-Shot CoT

Stance classification is the task of deter-
mining the expressed or implied opinion,
or stance, of a statement toward a spe-
cific target. Think step-by-step and ex-
plain the stance (For, Against, or Neutral)
of the following social media statement
towards TOPIC.
target: TOPIC
statement: THIS IS AN EXAMPLE
STATEMENT
explanation:
LLM Replies!
Therefore, based on your explanation,
what is the stance of the following so-
cial media statement toward the target?
target: TOPIC
statement: THIS IS AN EXAMPLE
STATEMENT
A) For
B) Against
C) Neutral
Only respond with ’For’, ’Against’, or
’Neutral’. If the statement is not relevant
to TOPIC, select Neutral.

A.3 Misinformation

"This is an example headline"
Which of the following describes the above news
headline?
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A) Misinformation
B) Trustworthy
Only respond with ’Misinformation’ or ’Trustwor-
thy’

A.4 Ideology
statement: "This is an example ideological state-
ment."
Which of the following leanings would a political
scientist say that the above statement has?
A: Conservative
B: Neutral
C: Liberal
Only respond with ’Conservative’, ’Neutral’, or
’Liberal’

A.5 Humor
Joke: This is an example joke.
Would most people find the above joke humorous?
You must pick between ’True’ or ’False’.
You cannot use any words other than ’True’ or
’False’.

B Stance Classification Additional Results

The appendix contains additional experimental re-
sults for the stance detection task. Figure 3 shows
the effect of different system intervention strategies
across the three main flavors of BERT evaluated.
Figure 4 shows the effect of varying the percentage
of expert labels with various system interventions,
and Table 2 contains a table of F1 scores across all
interventions.
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Figure 4: Varying the number of expert labels included amongst the LLM labels in the training process for
DistilBERT and RoBERTa-L. RS implies randomly sampled expert labels for the training process and CI SL implies
confidence informed sampling with label weighted training. Blue corresponds to the Mistral-7B-Instruct-2.0 LLM
labeler and green corresponds to the GPT-3.5 LLM labeler. The horizontal dashed lines represent the zero-shot
accuracy of each LLM.

Prompt Technique Enterprise LLM Edge Classifier - DistilBERT

GTP-3.5 Base SL RS 10% CI 10% CI SL 10%

Zero-Shot .629 .549 .562 .559 .570 .582
Zero-Shot CoT .677 .582 .598 .601 .611 .616

Mistral-7B-Instruct
Zero-Shot .599 .485 .536 .534 .536 .552
Zero-Shot CoT .589 .493 .452 .519 .496 .505

Prompt Technique Enterprise LLM Edge Classifier - RoBERTa

GTP-3.5 Base SL RS 10% CI 10% CI SL 10%

Zero-Shot .629 .575 .587 .580 .594 .615
Zero-Shot CoT .677 .616 .624 .613 .628 .643

Mistral-7B-Instruct
Zero-Shot .599 .549 .539 .589 .588 .565
Zero-Shot CoT .589 .530 .476 .561 .554 .532

Prompt Technique Enterprise LLM Edge Classifier - RoBERTa-L

GTP-3.5 Base SL RS 10% CI 10% CI SL 10%

Zero-Shot .629 .603 .612 .617 .618 .637
Zero-Shot CoT .677 .626 .659 .665 .688 .689

Mistral-7B-Instruct
Zero-Shot .599 .578 .596 .608 .613 .610
Zero-Shot CoT .589 .597 .560 .603 .559 .597

Table 2: F1 scores on SemEval2016. Edge classifier variants: ’Base’ trained on LLM labels directly, SL trained with
label weighting, RS 10% trained with 10% randomly sampled expert labels, CI 10% trained with 10% confidence
informed expert labels, and CI SL 10% trained with 10% confidence informed expert labels and labeling weighting.
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