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Abstract

The two-stage retrieval paradigm has gained
popularity, where a neural model serves as a
re-ranker atop a non-neural first-stage retriever.
We argue that this approach, involving two dis-
parate models without interaction, represents a
suboptimal choice. To address this, we propose
a unified encoder-decoder architecture with a
novel training regimen which enables the en-
coder representation to be used for retrieval
and the decoder for re-ranking within a sin-
gle unified model, facilitating end-to-end re-
trieval. We incorporate XTR-style retrieval on
top of the trained Mono-T5 reranker to specifi-
cally concentrate on addressing practical con-
straints to create a lightweight model. Results
on the BIER benchmark demonstrate the effec-
tiveness of our unified architecture, featuring
a highly optimized index and parameters. It
outperforms ColBERT, XTR, and even serves
as a superior re-ranker compared to the Mono-
T5 reranker. The performance gains of our
proposed system in reranking become increas-
ingly evident as model capacity grows, partic-
ularly when compared to rerankers operating
over traditional first-stage retrievers like BM25.
This is encouraging, as it suggests that we can
integrate more advanced retrievers to further
enhance final reranking performance. In con-
trast, BM25’s static nature limits its potential
for such improvements.

1 Introduction

Retrieval refers to the task of retrieving relevant
documents from a larger corpus of documents,
given a search string. Retrieval is one of the most
active research fields in NLP owing to its many ap-
plications such as semantic search (Fazzinga and
Lukasiewicz, 2010), Open-domain Question An-
swering (Voorhees and Tice, 2000), Retrieval Aug-
mented Generation (RAG) (Cai et al., 2019; Lewis
et al., 2020; Guu et al., 2020). While there are
ongoing research around novel research paradigms

such as Splade (Formal et al., 2021), HyDE (Gao
et al., 2023), Differential Search Index (Tay et al.,
2022), in most of the industry settings, retrieval
technologies deployed can broadly be divided into
(1) Sparse Retrievers (Robertson and Zaragoza,
2009) (2) Dense Retrievers (Karpukhin et al., 2020;
Chang et al., 2019; Guu et al., 2020; Xu et al., 2022;
Khattab and Zaharia, 2020; Luan et al., 2021; San-
thanam et al., 2022), each paradigm with its own
advantages and disadvantages. Sparse retrievers
are easy to deploy across domains with fast infer-
ence using inverted index, but they heavily rely on
keyword based lexical overlap for retrieving rele-
vant documents. On the other hand, dense retriev-
ers also known as neural retrievers are capable of
learning embedding vectors which can retrieve text
based on their semantic similarity, beyond keyword
overlap. However, using dense retrievers come at
a higher cost of deployment with dedicated em-
bedding vector stores such as Milvus (Wang et al.,
2021), Chroma (Chroma, 2024) etc., higher latency
pertaining to more rigorous similarity score compu-
tations. Also, dense retrievers often need domain
specific tuning and can not generalize to unseen
domains as easily as sparse retrievers.

Owing to the complimentary advantages and dis-
advantages of sparse and dense methods, most in-
dustry applications employ a two stage pipeline for
practical purposes. Such systems tend to use BM25
like sparse retrievers to do a 1st stage retrieval and
then neural models in the 2nd stage to rerank top-k
retrieved documents. The neural model used in
2nd stage is also called Reranker (Nogueira et al.,
2020; Zhuang et al., 2023a). We posit that having a
two-stage approach with a retriever and reranker is
a sub-optimal choice, mainly dictated by practical
limitations and hardships of developing an end-to-
end neural model. Having a separate retriever and a
reranker requires maintaining two separate models.
Also, because it is a pipeline, none of the compo-
nents learn from each other and therefore, have a
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cascading effect in terms of error propagation. If
the 1st stage retriever is not retrieving relevant doc-
uments in top-k, the reranker can not recover from
there. Given these serious limitations, we offer a
fresh perspective that both retrieval and reranking
should be done by a single unified model.

We propose UR2N an encoder-decoder based
architecture, which is so trained that the encoder
representation can be used for retrieval and the de-
coder from the same model can be used for rerank-
ing, thus unifying the retrieval and reranking into a
single model. While we want UR2N to be robust,
we have been specifically careful about the prac-
tical implications of using UR2N and performed
all our empirical evaluation with 1 GPU only. We
build UR2N on top of mono-T5 reranker (Nogueira
et al., 2020) (one could easily replace with another
text-to-score reranker such as Rank-T5 (Zhuang
et al., 2023a)) and adopt XTR (Lee et al., 2023)
style training for the encoder. The choice of XTR
is important here as XTR is an optimized version of
ColBERT (Khattab and Zaharia, 2020) (discussed
in section 4.1) which is a multi-vector based re-
triever and thus ensures high accuracy for the 1st
stage retrieval in UR2N. We list our contributions
categorically as follows:

Our contributions:

• We propose UR2N, an encoder-decoder ar-
chitecture that unifies first-stage retrieval and
second-stage reranking into a single end-to-
end trainable model.

• We build on top of the Mono-T5 reranker
(Nogueira et al., 2020) to adopt XTR (Lee
et al., 2023) style retrieval to ensure UR2N is
lightweight and easily deployable.

• Empirical results on popular IR benchmark
BIER shows that UR2N performs competi-
tively and even provide gains as a reranker,
with the distinct advantage of having a unified
single model when compared to the state-of-
the-art results by Mono-T5 which is a two-
stage process using two different models.

• Empirical results on BIER also shows that the
unified modeling in UR2N also improves the
end-to-end retrieval accuracy than the state-
of-the-art results by ColBERT and XTR.

We believe that UR2N opens up a novel
paradigm for retrievers where retriever and reranker

can be unified into a single model, with its deploy-
ment and application easier than current day sys-
tems. We will be releasing the source code and
model checkpoints subsequently.

2 Related Work

We will review the important building blocks which
are relevant for our work here. They are (1) Sparse
Retrievers, (2) Dense Retrievers and (3) Rerankers.

Among Sparse retrievers BM25 is the most pop-
ular and robust sparse retriever which use term
frequence (TF) and Inverse Document Frequency
(IDF) (Wikipedia, 2024) scores to estimate doc-
ument relevance given a query. Although it re-
lies on exact keyword matches, due to its simplic-
ity and strong performance across domains and
tasks (Thakur et al., 2021), BM25 continues to be
a strong baseline for retrievers.

Dense retrievers (a.k.a neural retrievers) use to-
ken embeddings obtained from neural language
models like BERT (Devlin et al., 2019) etc. and
further finetune them for the retrieval task by con-
strastive finetuning (Izacard et al., 2022). Neural re-
trievers too can broadly be classified into two types:
a) single vector and b) multi-vector approaches.
Single vector approaches such as DPR (Karpukhin
et al., 2020) obtain a single vector representation
for the query and the documents using the [CLS] to-
ken representation or mean pooling, which are then
used to obtain cosine similarity scores for retrieval.
In contrast, multi-vector approaches (Khattab and
Zaharia, 2020; Santhanam et al., 2022; Lee et al.,
2023) consider each token embedding separately
and use a late interaction strategy between query
tokens and document tokens for scoring. They ap-
ply mathematical heuristics to aggregate over the
token level cosine similarity scores to have a final
estimate of the query-document similarity. While
multi-vector approaches such ColBERT (Khattab
and Zaharia, 2020) understandably provide better
performance than DPR (Karpukhin et al., 2020),
they are much more expensive in terms of storage,
compute resource and latency because of token
level operations. While ColBERT-v2 (Santhanam
et al., 2022) proposed algorithms to reduce the
index size, methods like XTR (Lee et al., 2023)
proposed novel training and inference methods to
greatly reduce the inference latency by considering
operations over a bounded subset.

Neural rerankers attempt to overcome the limi-
tation of sparse models of needing exact keyword
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matches, by using embedding-based neural models
to rerank a large number documents retrieved by
sparse models. Popular neural rerankers (Nogueira
et al., 2020; Zhuang et al., 2023b) are sequence-to-
sequence models built over T5 (Raffel et al., 2020)
specifically tuned to generate the labels true or false
given a query and document pair. The probability
of generating true is used as the relevance score to
rerank the documents.

3 Motivation for Industry Usage

To motivate the industry need for our work, we
take the perspective of a practising R&D engineer
John who has access to only a limited amount of
resources to train, finetune and deploy a robust re-
triever model. Even though it is already known that
with enough training, neural models can do much
better than BM25 like sparse models with strict key-
word overlap needs, John has to restrict towards a
sub-optimal two stage multi model solution where
BM25 acts as the core retriever with much cheaper
deployment and maintenance cost. A different neu-
ral model is used only as a reranker to improve over
BM25 search results. This two stage multi-model
pipeline not only introduces additional deployment
stages but also limits the achievable skyline to the
accuracy of the 1st stage retrieval quality.

By designing UR2N we provide John with a
lightweight easy to deploy model which is unified
to do both retrieval and reranking using its encoder
and decoder. We make design choices that makes
UR2N lightweight for finetuning, with optimized
index management. To empirically prove our point
adhering to practical resource constraints, we per-
form all our experiments with only 1 GPU only.

4 UR2N: System Overview

Our model is based on the XTR model and built
on top of Mono-T5. So, before we delve into our
architecture, we’ll first provide a detailed overview
of XTR and Mono-T5 models specifically, the train-
ing and inference as an important background. We
use the notations and expressions from the original
papers while presenting an overview of these.

4.1 UR2N Background: XTR

XTR is a state-of-the-art multi-vector model which
is built over ColBERT, providing huge inference
speed up and also improving retrieval performance.
For a query Q = qni=1 and a document D = dmj=1,
where qi and dj represent d-dimensional vectors

for query tokens and document tokens, XTR uses
an alignment matrix between query and document
tokens as Âij = 1[j ∈ topkj′(Pij′)], where Pij =

qTi dj and the top-k operator is applied over tokens
from mini-batch documents. XTR estimates the
similarity score between query and document based
on the retrieved top-k set only as follows:

f(Q,D) =
1

Z

n∑
i

max
j∈|D|

Âijq
T
i dj (1)

Here, the normalizer Z denotes the count of
query tokens that retrieve at least one document
token from D. During training, the cross-entropy
loss over in-batch negatives is used, expressed as:

LCE = − log
exp f(Q,D+))∑B
b=1 exp f(Q,Db))

(2)

Such a training enables XTR to retrieve docu-
ments based on top-k matching document tokens
per query token, giving 400x speed up (Lee et al.,
2023) against ColBERT which, instead, uses all
document tokens for scoring.

4.2 UR2N Background: Mono-T5

UR2N in built on Mono-T5 which is T5 model
fine-tuned for reranking. Mono-T5 first encodes
each query-document pair, and the decoder then
generates the relevance label for ranking as follows:

Query : Q Document : D Relevant : (3)

where Q and D are the query and document
texts, respectively. Mono-T5 is fine-tuned to gener-
ate the words “true” or “false”, where the probabil-
ity of generation can be used as a relevance score
to rerank documents

4.3 UR2N Architecture

Figure 1 depicts the architecture of UR2N, being
built over Mono-T5 as reranker and extending it
further for retrieval. To design UR2N, we clone
the last layer of Mono-T5 encoder to introduce
a parallel last layer exclusively for XTR retrieval
task. Instead of the whole encoder, we only do
targeted finetuning of this last parallel layer using
XTR similarity function from equation 1, keeping
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Figure 1: UR2N Overview of UR2N. Mono-T5 as Re-ranker has two stages: a first-stage retriever is used to get
top-k documents for re-ranking. In UR2N we add a parallel layer (XTR Layer) to the last layer of the encoder,
initialized with the parameters of the last layer. During retrieval, we start with a pre-computed index (0). The
given query (1) passes through the encoder layers (including XTR layer) to produce a query representation (2),
which is used to retrieve top-k documents (3) for ranking. The query and the documents (4) are passed through the
Mono-T5’s encoder and decoder to obtain rankings for the documents (5).

rest of the encoder layers frozen. Specifically the
XTR layer can be expressed as:

YXTR = LayerNorm(Xl +MultiHead(Yl))
(4)

where Xl is the input to the last layer,
MultiHead performs the attention mechanism,
and LayerNorm adds layer normalization. This
design choice allows us tune the encoder for XTR
style retrieval with only a small set of parameters,
while retaining most of encoder params unchanged,
enabling UR2N to reap the benefits of encoder-
decoder coupling learnt during Mono-T5 rerank-
ing. To reduce space footprint, we follow Colbert
and add a linear layer to compress the encoder
embeddings from XTR layer to lower dimensions
(dim = 128)1. The transformation is expressed as:

E = Linear(YXTR) = YXTR ·W T (5)

The embeddings E are computed at token level
for a document and query to be used in inner prod-
ucts, and subsequently the loss as per the equations
1 and 2.

1We show the index optimization impact in Appendix B

4.4 Retrieve and rerank in UR2N

For a query Q, the token level embeddings E pro-
duced from T5 encoder with the XTR layer are
used to search for nearest top-k document token
embeddings. Benefiting from XTR style retriever
tuning, during inference we consider only those
documents as retrieved documents where at least
one token from the document appeared in top-k
retrieved tokens, given any query token.

For reranking, we use the pretrained Mono-T5
encoder-decoder as it is without the XTR layer for
reranking the documents retrieved in the 1st stage.

5 Experiments

5.1 Setup and baselines

We evaluate UR2N as a unified model for retrieval
and reranking. We purposefully limit our experi-
ments with UR2N to base and large variation of
the models trained with 1 GPU only to stress on its
practical applicability with resource constraints.2

We evaluate UR2N on two research questions:
RQ1: Can UR2N as a unified single model for re-
triever+reranker match the accuracy of traditional
two stage multi-model retriever+reranker?

2We provide more implementation details and the exact set
of hyper parameters in Appendix A



599

RQ2: Can UR2N as a unified single model
for retriever+reranker be better in retrieval than
standalone retrievers?

To have a comprehensive comparison we use 4
baselines as (1) Mono-T5 as Reranker (2) BM25
as Retriever (3) ColBERT-v2 as Retriever (4) XTR
as Retriever.

5.2 Benchmark and Evaluation Metric

We use the subset of 13 datasets from
BIER (Thakur et al., 2021) benchmark which
was used to benchmark XTR (Lee et al., 2023)
as our evaluation benchmark. Similar to XTR,
we train UR2N on MS-Marco and do zero shot
evaluations on the mentioned subset of BIER.
Following BIER benchmark standard, we use
Normalised Discounted Cumulative Gain (NDCG)
(Wang et al., 2013) as our evaluation metric. For
both retriever and reranker use cases, we compute
NDCG@10.

5.3 Results

In this section, we review the experimental results
in detail for both use-cases. We begin with the
reranker use-case.

5.3.1 Use-case I: UR2N as Reranker
In table 1 we compare UR2N as a reranker which
reranks the documents retrieved by its own en-
coder tuned in XTR style, with Mono-t5 which
reranks documents retrieved by BM25. For both
systems, we have reranked top 100 documents. We
can see both Mono-T5 and UR2N does better at
NDCG@10 as compared to BM25, establishing
the utility of a reranker. More specifically, we see
UR2N gains almost 7.5% on average across 13
datasets from BIER as compared to BM25 and
almost matches the performance of a state-of-the-
art reranker Mono-T5. This is significant as it an-
swers our first research question RQ1 in affirmative:
We can indeed unify retrieval and reranking into
a single model and still retain the state-of-the-art
reranker accuracy.

Table 2 shows same comparisons but with the
large variant of the models. With large models
UR2N in fact does better than Mono-T5 by almost
1.5% on average over 13 datasets. This is because
with large models, the encoder representations in
UR2N has more scope of learning robust repre-
sentations to retrieve a better set of documents to
rerank. This improvement also validates another
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Figure 2: Plot of NDCG@10 against varying number of
retrieved documents (k).

important point that unified modeling with neural
retrievers can offer significant improvements with
larger sized models than using BM25 like static
retrievers in retrieve and rerank pipeline.

To investigate the role of number of retrieved
documents, Figure 2 shows the graph of how the
NDCG@10 numbers evolve after reranking, as we
vary k across both systems including their base and
large variations. We also show the retriever number
from BM25, ColBERT-v2, XTR (base) to help the
viewer understand the accuracy map of rerankers
compared to retrievers.

As we see in Figure 2 reranker performance im-
proves for both Mono-T5 and UR2N as we increase
k. In fact, with only k=10 retrieved documents to
rerank, both systems catch up with XTR (base)
in terms of retriever performance. The reranker
numbers improve more as we increase k to 100.

Comparing their performance across base and
large variant of models again shows that UR2N
gains much more with large variants than Mono-
T5. Mono-T5 (large) numbers are almost identical
with Mono-T5 (base) across different values of
k, implying Mono-T5 is not able to leverage any
benefit from a higher model capacity with BM25
as a static 1st stage retriever. This further confirms
our hypothesis that having a neural model as first
stage retriever helps in scaling up performance with
model capacity as seen in UR2N.

Figure 3 further zooms into the performance dif-
ference between base and large model variations ex-
clusively for UR2N. As we see here, UR2N gains
a lot by increasing the model capacity from base to
large and that is seen even for first stage retrieval
(marked as without reranker in the figure) num-
bers. Because UR2N has better first stage retrieval
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Datasets AR TO FE CF SF CV NF NQ HQ FQ SD DB QU Avg.
BM25 39.7 44.0 65.1 0.17 67.9 59.5 32.2 0.31 0.63 23.6 14.9 31.8 78.9 43.7

Mono-T5(base) 35.9 30.6 81.2 24.7 73.7 78.5 35.7 52.4 71.2 39.3 16.7 42.9 84.1 51.3
UR2N(base) 38.3 26.6 82.1 24.1 73.7 80.5 35.2 55.0 69.5 40.8 17.1 39.4 83.3 51.2

Table 1: Comparing Reranker performance for UR2N:base models

Datasets AR TO FE CF SF CV NF NQ HQ FQ SD DB QU Avg.
BM25 39.7 44.0 65.1 0.17 67.9 59.5 32.2 0.31 0.63 23.6 14.9 31.8 78.9 43.7

Mono-T5(large) 44.5 30.2 82.7 25.3 74.5 81.5 36.4 55.6 72.7 42.6 18.5 42.6 85.0 53.2
UR2N(large) 46.1 29.8 83.7 25.5 75.2 81.2 37.4 58.8 71.5 46.0 19.0 41.9 84.2 53.8

Table 2: Comparing Reranker performance for UR2N:large models

Datasets AR TO FE CF SF CV NF NQ HQ FQ SD DB QU Avg.
BM25 39.7 44.0 65.1 0.17 67.9 59.5 32.2 0.31 0.63 23.6 14.9 31.8 78.9 43.7

ColBERT v2 46.3 26.3 78.5 17.6 69.3 73.8 33.8 56.2 66.7 35.6 15.4 44.6 85.2 49.9
XTR (base) 40.7 31.3 73.7 20.7 71.0 73.6 34.0 53.0 64.7 34.7 14.5 40.9 86.1 49.1

UR2N(base) 38.3 26.6 82.1 24.1 73.7 80.5 35.2 55.0 69.5 40.8 17.1 39.4 83.3 51.2

Table 3: UR2N as Retriever
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Figure 3: Comparing retriever and reranker with base
and large variants

with large models, it easily opens up the space
for reranker improvements too, which finally helps
UR2N with reranker beat XTR numbers.

5.3.2 Use-case II: UR2N as Retriever
The unified modeling of UR2N enables an end user
to treat it as a black-box which receives a query and
internally performs retrieval and reranking using
the same model and finally provides top-k docu-
ments from the corpus similar to how a retriever I/O
works. Therefore, in this section we treat the result
of UR2N as an end-to-end retriever and compare it
with relevant baselines as shown in Table 3.

Table 3 shows dense models ColBERT-v2 and
XTR as expected does better than BM25 as a re-
triever. However, the most important result from

Table 3 is UR2N as an end-to-end retriever per-
forms the best among all. This is significant consid-
ering the fact that both ColBERT-v2 and XTR are
very strong baselines owing to their multi-vector
embedding-based approach. To design UR2N, we
adopted XTR style training with compressed repre-
sentations to make UR2N lightweight. Thus UR2N
performing better than ColBERT-v2 and XTR not
only validates our design choices but also answers
RQ2 (from sec 5) in affirmative. The unified train-
ing regime in UR2N indeed enables it to be used
as an end-to-end retriever performing better than
standalone strong retrievers.

6 Conclusion and Future Work

We have proposed a unified encoder-decoder based
architecture UR2N that can use its own encoder
representations for first-stage retrieval, and the
same encoder-decoder network for reranking the re-
trieved documents. We have taken the perspective
of a practising R&D engineer with practical re-
source constraints to design UR2N as a lightweight
architecture on top of Mono-T5 with XTR style
finetuning. We have empirically shown that UR2N
trained with all the practical constraints, provides
competitive/better performance than state-of-the-
art systems both as reranker and as an end-to-end
retriever. We also show that the unified modelling
of retrieval and reranking can scale much better
with model capacity and increased resource alloca-
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tions. We believe this can open up a lot of research
avenues in pursuing unified modelling as a serious
research direction too.
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A Implementation Details

We align our implementation in sync with the per-
spective we described in section 3.

We finetune the XTR-layer of both model sizes
on MSMarco training set with a learning rate of 1-
e3. XTR uses ktrain parameter which we set to 52.
Both models are trained on a single A100 80GB
GPU, with a batch size of 24 for the base model
and 52 for the large model. Moreover, we trained
the models with hard negatives, one per positive

query/document pair in a batch. The models were
trained for 50K steps, and the best models based on
the development set were used for the evaluation.

During XTR style retrieval, k=number of doc-
ument tokens to retrieve, is varied depending on
the size of the index. For smaller indexes, we set
k to 500, while for larger ones, we increased it to
100,000. Note this k is at token retrieval an internal
parameter of XTR, different from the “k” in top-k
document retrieval for reranking.

B Optimized XTR index with
ColBERT-v2 optimizations

Datasets Faiss HNSW Flat
Index(in GB)

ColBERT index(in
GB)

NQ 860 25
NFCorpus 2.4 0.091

TREC COVID 67 3
Touché 2020 481 7

Table 4: Comparing the sizes of Faiss HNSW Flat in-
dices and ColBERT indices

In Table 4, we give some empirical numbers to
establish how the ColBERT-v2 optimizations we
discussed in Section 4.4 helps in reducing the index
size. Considering the first dataset NQ as an exam-
ple, we can see it offers almost upto 97% shrinkage
over the original index. On an average, we see
the index size reduced by 98% across 4 datasets,
which validates the need for our optimizations in
designing UR2N making the index management
and deployment much cheaper and easier.
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