
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track, pages 603–611
January 19–24, 2025. ©2025 Association for Computational Linguistics

603

An Automatic Method to Estimate Correctness of RAG
Chi Zhang †1, Vivek Datla†‡2, Aditya Shrivastava2, Alfy Samuel2,

Zhiqi Huang2, Anoop Kumar2, Daben Liu2

1Carnegie Mellon University
2Capital One

chiz5†@andrew.cmu.edu

{vivek.datla†‡, aditya.shrivastava2, alfy.samuel, zhiqi.huang, anoop.kumar, daben.liu}@capitalone.com
†Equal Contribution, ‡Corresponding Author

Abstract

In sectors in where data quality is critical, like
finance and healthcare, it is crucial to have con-
fidence in not only the outputs generated by
retrieval-augmented generation (RAG) models
but also the process followed by the model
while arriving at the output. Existing meth-
ods, such as hallucination detection and input-
output entailment measurements, fail to capture
the model’s internal state during answer genera-
tion. This paper introduces a novel approach to
predict the correctness of the generated answer
by modeling the model’s uncertainty on quan-
tified perturbations of input. Extensive exper-
iments across multiple large language models
(LLMs) demonstrate that our approach quan-
tifies RAG robustness by aligning predictions
with ground truth with a Avg.Mean Square Er-
ror (MSE) ≤ 0.002 while offering flexibility
for diverse qualitative metrics.

1 Introduction

The advent of LLMs has improved many natu-
ral language processing (NLP) tasks, with one of
the most significant applications being Retrieval-
Augmented Generation (RAG). By combining in-
formation retrieval with powerful generative ca-
pabilities, RAG enables models to generate more
accurate, contextually relevant responses to com-
plex queries(Lewis et al., 2020).

The use of RAG systems in domains such as fi-
nance, healthcare, and legal applications presents
significant risks. In these high-stake domains, pro-
viding a wrong or inappropriate answer can lead
to severe consequences, particularly when the re-
sponse has legal or ethical implications (Benjamin
and Schweber, 2023). A key challenge in deploy-
ing RAG systems in such contexts is the potential
for the underlying LLM to generate answers from
its pre-trained knowledge rather than relying on the
specific context provided. This behavior is espe-
cially dangerous as the current guardrails fail, i.e.,

current evaluation methodologies primarily assess
the correctness of the answer without scrutinizing
the internal state of LLM when generating the an-
swer (Cao et al., 2022).

This problem becomes particularly pronounced
with popular large scale LLMs trained with huge
amount of training data, such as Llama and Mis-
tral/Mixtral families. The sheer volume of train-
ing data enables these models to recall informa-
tion from memory, creating the illusion of correct-
ness without context alignment. As these models
are increasingly used in real-world applications,
where the inputs are often unseen or unfamiliar, the
risk of incorrect or contextually irrelevant answers
grows. This highlights the critical need to distin-
guish between genuine context-driven responses
and those generated from the model’s pre-existing
knowledge.

An illustrative example of this issue is the third
variable problem, such as the statistical correlation
between ice-cream sales and drowning accidents.
While the correlation may be true on a population
level, the underlying cause is not ice-cream con-
sumption but rather the fact that people are more
likely to swim during the summer months when ice-
cream consumption is also higher. Similarly, LLMs
trained on extensive corpora like RedPajama (Com-
puter, 2023) often perform well on test sets derived
from these corpora (Xu et al., 2024). However,
in real-world applications with novel inputs, the
models are more likely to generate answers from
memory rather than context, increasing the risk of
unreliable outputs (Xu et al., 2023).

1.1 Looking deeper into RAG
At its core, RAG involves two key processes: re-
trieving pertinent information in response to a
query and generating answers based on that re-
trieved content. The retrieval component ensures
that the model has access to documents or passages
most relevant to the input query, while the genera-



604

Symbol Meaning

BM Base Model
PM Perturbation Model
MSE Mean Square Error
PTB Perturbation
SS Single Shot
IT Iterative

RDP Random perturbation
ENP Entropy based perturbation

LL Log-likelihood
Bc Baseline Condition
Nc Normal Condition
Pc Perturbed Condition
t Threshold
i Instruction
c Context
ptc Perturbed Context
q Question
p Prompt (i+ c+ q)
ptp Perturbed Prompt (i+ ptc + q)

Table 1: Notations and Abbrevations

tion component synthesizes this information into
coherent, informative responses.

With the RAG framework, it is usually unclear
whether the output is generated based on the given
context or from the LLM’s preexisting memory.
Specifically, we are interested in understanding the
impact on the generated output when the model
becomes confused. We are interested in answering
the following research questions:

Can we predict :
• When LLMs generate wrong answers?
• When LLMs exhibit pre-learned behavior, ig-

nore the input and instead generate a response
from memory?

• When LLMs generate sub-par output?

Understanding confusion within an LLM during
text generation provides a valuable insight into the
LLM’s internal state when predicting the next to-
ken. It is important to note that multiple models
within the same family, such as Llama3-70B and
Llama3-8b, often use the same tokenizer but dif-
fer in terms of size, with variations in the number
of parameters. Interestingly, the generation of the
next token may pose different levels of difficulty,
or "confusion", across models of the same family.

This paper presents a method for predicting the
correctness of output generated by LLM by ana-
lyzing the model’s confusion in response to quanti-
fied perturbations. We capture the LLM’s patterns
of confusion when generating responses with the
original context, a perturbed context, and with no

Figure 1: Various conditions considered while studying
the impact on BM ’s confusion

context. These patterns are then used to train a
regression model that predicts how closely the out-
put aligns with the ground truth answer. We con-
ducted several experiments with LLMs of varying
sizes within the same family and different model
families to assess how each LLM handles these
perturbations. Figure 1 shows various conditions
considered while studying the impact of LLM’s
confusion while generating an output. More details
of these selections are in Section 3.

2 Related Work

Perturbation of text input to an LLM refers to the
intentional alteration or modification of the input
data provided to an LLM in order to evaluate its
robustness, sensitivity, and generalization capabili-
ties. These perturbations can be small but signifi-
cant changes, such as:

• Word substitutions: Replacing specific words
with synonyms, misspellings, or out-of-
vocabulary terms (Wang et al., 2023).

• Sentence restructuring: Changing the order
of words or sentences while maintaining the
overall meaning (Hu et al., 2024).

• Noise injection: Introducing random errors,
typos, or irrelevant data into the input (Le
et al., 2022).

• Contextual modifications: Removing or alter-
ing certain contextual clues to see how the
model reacts to incomplete or ambiguous in-
formation (Li et al., 2020).

Perturbations have been extensively used to
study the robustness of models by creating syn-
thetic adversarial examples. Contextualized adver-
sarial generation model (CLARE) (Li et al., 2020)
generates perturbations on the input text using var-
ious combinations of replacement, insertion, and
deletion of the text. In their modeling, the goal was



605

to test the minimum or efficient edits to achieve a
successful adversarial behavior of the LLMs.

In similar lines of work, the TextFooler (Jin et al.,
2020) method demonstrates that by exploiting en-
tailment features, even when assuming the target
model is a black box, it is possible to make clas-
sifiers change their predictions. Specifically, the
method identifies keywords in the target model and
prioritizes replacing them with semantically simi-
lar and grammatically correct alternatives, causing
models trained on BERT embeddings to alter their
responses. The inspiration from this work is the
evidence that pretrained LLMs are sensitive to un-
derlying memory representations, and assumptions
of consistency/robustness of models built on them
might be risky.

Our perturbation algorithm follows in the same
lines as CLARE (Li et al., 2020), their contextual
perturbations using an LLM showed promising re-
sults for creating confusing contexts to the models.
We improve on this idea by identifying "where" to
perturb based on the model’s inherent confusion.
When using an LLM to generate text, we observe
inflection points where the model exhibits low con-
fidence and masks those tokens.

Inspired by DetectGPT’s (Mitchell et al., 2023)
approach to using perturbed texts to quantify
changes in NLL (as a predictor of a model’s be-
havior when deviating from its memory represen-
tation), we combine both techniques. Specifically,
we observe NLL changes as the model generates
text, then perturb the text strategically by determin-
ing "when," "where," and "how" to modify it. This
allows us to evaluate the model’s behavior during
output generation.

The SAPLMA (Azaria and Mitchell, 2023)
model helps in identifying the truthfulness of the
generated answers by finding patterns in the hidden
layers when the model is generating the answer.
The authors propose that modeling variations of ac-
tivation across hidden-layers as a solution to handle
hallucinations.

3 Method

To estimate the correctness of output generated by
LLM in a RAG setting, we track changes in the
model’s log-likelihood (LL) at critical inflection
points. This method allows us to assess the model’s
confidence in generating responses under varying
conditions. Specifically, we capture the negative
log-likelihood (NLL) loss across three experimen-

tal settings. Fig. 2 shows these three settings:
• Baseline Condition (Bc): Model is given a

prompt (p) which has {i, q}, without any con-
text (c). This setup serves to evaluate the
model’s performance by relying solely on its
pre-trained knowledge. The goal is to quan-
tify how the model’s uncertainty or confusion
manifests when it generates answers without
the guidance of relevant context.

• Normal Condition (Nc) : Model is given p
which has {i, c, q}. This configuration reflects
a standard RAG setting, where the model is
expected to leverage both the provided con-
text and the question to produce an accurate
response. The aim is to measure how the
model’s confusion varies in a typical RAG
scenario where context plays a crucial role.

• Perturbed Condition (Pc): In this setting, the
model receives perturbed prompt(ptp) consist-
ing of {i, ptc, q} (details of the PTB process
are outlined in the next section). The i and q
remain consistent across all conditions, ensur-
ing that any observed variations in the model’s
performance can be attributed to ptc. This set-
ting enables us to measure how the model’s
confusion fluctuates with a perturbed context
(ptc).

In each of these conditions, we control ptp, main-
taining uniformity in both the i and q. By com-
paring the NLL across these scenarios, we seek
to identify key variations in the model’s behavior
(its internal confusion) and its ability to generate
accurate responses under different contextual influ-
ences.

3.1 Perturbations(PTBs)
As illustrated in Fig. 3, the input to the LLM within
the RAG framework is structured as a prompt
(p) comprising three components: instruction (i),
context(c), and, question (q). In this study, we
focus exclusively on perturbing the context, ap-
plying controlled modifications to examine their
impact. Specifically, we manipulate the context
along three dimensions: what is perturbed, where
the perturbation occurs, and how the perturbation
is applied. The strategies employed for systematic
perturbation are outlined in Fig. 1, detailing the
methods used to ensure consistent and measurable
alterations to the input context.



606

Figure 2: Identifying confusion across various settings of input to RAG to predict the output correctness.

Figure 3: The various places where we capture the
NLL across the input and generated output of the RAG
system.

3.2 Where to perturb?
To determine the locations for PTBs, we experi-
mented with two distinct approaches:

• Entropy-based perturbation(ENP ): Perturb-
ing the context based on the most confusing
token as identified by a perturbation model,
which is another LLM.

• Random perturbation(RDP ): Perturbing the
context at random.

The PM used in either case may belong to the
same or a different model family as BM and can
vary in size, either smaller or larger than the base
model. PTBs can be applied iteratively (IT), de-
grading the context one token at a time or in a
single-shot (SS) approach, where multiple PTBs
are introduced simultaneously. This allows for a
controlled examination of how different PTB strate-
gies impact model behavior.

3.3 Entropy Based Perturbation (ENP ):
This process ensures a controlled modification of
the input context based on the most confusing to-
kens if the text were to be generated by the per-
turbation model (PM ). The PM is another LLM
having a variety of possible combinations such as
type, size, and others shown in Fig. 1. Below are
the steps for ENP .

1. For a given input text consisting of N tokens
and based on a predefined hyper-parameter
K (the number of perturbations), we first cal-

culate the negative log-likelihood (NLL) of
generating each token using a PM .

2. The token with the lowest log-likelihood is
identified as the most confusing token.

3. This confusing token is replaced with a
masked token specific to the PM , and PM is
used to predict and fill in the replaced token.

4. In the iterative perturbation (IT-ENP ) setting,
the process is repeated in K steps, with each
step identifying and replacing the next most
confusing token.

5. In the single-shot perturbation (SS-RNP ) set-
ting, all K confusing tokens are identified,
masked, and filled by PM in one step.

Fig. 4 shows an example of how we perform
IT-ENP and use it as context inside the RAG.

3.4 Predict Model Correctness
After having systematically perturbed input and
generating the output for the three cases, Nc (no
perturbation of context), Bc (no context provided),
and Pc (with perturbed context), we collect the
model’s internal confusion on the input and output.

3.4.1 Collecting Internal Model Confusion
The following are the places for collecting LL from
BM under all three conditions:

• Nc: prompt, instruction, context, question,
and output

• Bc: prompt, instruction, question, and output
• Pc: prompt, instruction, perturbed context,

question, and output

3.4.2 Estimating Correctness of Output
All the LL numbers calculated above are provided
to a regression model as the input. We train a
random forest regression model (Pedregosa et al.,
2011) with 2100 estimators to predict the similarity



607

Figure 4: An example of IT-ENP

score between the ground truth and the generated
output.

During training time, we used a correctness met-
ric (such as, cosine similarity) of the ground truth
and generated an answer under the original condi-
tion as a signal for correctness and as the expected
output of the regression model. In this way, the re-
gression model learns to estimate the Correctness
according to the log-likelihood results on model
inputs and outputs generated in different cases.

This number is usually a continuous number be-
tween 0 and 1, representing the similarity between
the model output and the ground truth result. Dur-
ing evaluation, we chose a threshold (t) for that
correctness to decide whether the output is good or
bad. The t is a hyper-parameter that needs to be
adjusted based on BM .

4 Experiments

4.1 Dataset and Model
We evaluated our method to predict the correctness
of the output generation of RAG on the SQuAD
dataset (Rajpurkar et al., 2016). We randomly
sampled 3000 data points total from the SQuAD
dataset, among which 2100 were from the training
dataset to train the regression model, and 900 were
from the evaluation dataset to evaluate the result.
Here we assumed that the retrieval portion of RAG
is already performed and we have the right context
to generate the answer.

We experiment with our method on a variety
of large language models, including T5-3b (Raf-
fel et al., 2019), Llama3-8b (Touvron et al.,
2023), Mistral-7b (Jiang et al., 2023), and Llama3-
70b (Touvron et al., 2023).

4.2 Metrics
During the evaluation, we first selected a Differ-
ence Metric to compute the similarity between the
model output and the ground truth answer. This
gives us a Correctness score, which we aim to esti-
mate with our method.

The Correctness score ranges from [0,1] for Co-
sine Similarity and ROUGE (Lin, 2004). To eval-
uate estimation accuracy, we first report the Mean
Square Error (MSE) between the estimated Cor-
rectness score and the predicted score. We then
set a threshold(t) for the ground truth to produce
a binary result: if the model’s Correctness score
exceeds t, we classify the output as correct (posi-
tive), and if it falls below, we classify it as incorrect
(negative). By comparing our estimated Correct-
ness score to the binary result, we calculate the
AUROC.

Finally, we apply the same t to our estimated
Correctness score to classify the model output as
correct (positive) or incorrect (negative). We then
compare this classification with the binary result
from the ground truth to evaluate the Accuracy and
F1 score of our method.

5 Results

As mentioned above we experimented with sev-
eral BMs and PMs under various settings. To
ascertain the effect of PTBs on predicting the cor-
rectness score, we used Llama3-8b as our BM and
PM . Table 2 shows that at 15 PTBs, we are able
to predict the correctness score with the highest
Accuracy, F1, and AUROC.

For the experiments below on Llama3-8b we
use 15 PTBs as our standard. Table 3 shows the
effect when perturbating iteratively (PTB-IT) vs



608

#PTBs Acc F1 AUROC

5 0.710 0.791 0.735
10 0.697 0.737 0.773
15 0.712 0.753 0.773
20 0.709 0.748 0.765
25 0.679 0.769 0.698

Table 2: Effect of #PTBs on Llama 3-8b as BM and
PM .(t = 0.95 and 0.002 ≤ MSE ≤ 0.004)

single-shot (SS) using the ENP method. This is
a very conservative approach where the BM and
PM are the same. Results show that we have a
qualitatively better chance of predicting the close-
ness to the correctness score when using SS-PTBs
in the ENP setting. Table 4 shows that iterative
ENP setting (see Table 3) has more predictability
on the correctness of the output compared to RDP

setting.

Pert. type Acc F1 AUROC

Single-shot 0.740 0.782 0.797
Iterative 0.718 0.754 0.785

Table 3: SS VS IT PTB using ENP on Llama3-8b
model as BM and PM .(t=0.95 and MSE ≤ 0.004)

Pert. type Acc. F1 AUROC

Single-shot 0.731 0.779 0.789
Iterative 0.729 0.762 0.806

Table 4: SS VS IT PTB using RDP on Llama3-8b
model as BM and PM .(t=0.95 and MSE ≤ 0.003)

When using different PMs (see Figure 1), we
experimented with inter and intra model-family
PTBs. We used a smaller model google-t5-3b, a
similar sized model mistral-7B and a large model
llama3-70B as PMs. When experimenting with
the IT-ENP setting, we observe that (see Table 5)
PTBs with a smaller model of a different model
family help to infer the correctness of the output
better than using the same model or a similar model
from a different family.

Similar experiment when performed under the
IT-RDP setting using the same PMs on Llama3-
8b showed a lesser predictability of the correct-
ness score compared to the IT-ENP setting (see
Table 6). The result shows that ENP using differ-
ent PMs still affects BM significantly compared
to RDP , where the perturbed token might not be
confusing to BM . Studying the predictability of
the model correctness under SS-ENP setting (see
Table 7) shows that IT-ENP is more effective than
SS-ENP as systematic perturbation captures the

PM Acc F1 AUROC

T5-3b 0.726 0.801 0.736
Mistral-7b 0.704 0.783 0.729

Llama3-70b 0.752 0.785 0.824

Table 5: Effect of PMs on Llama3-8b under IT-ENP .
(t=0.92 and MSE≤ 0.004)

changes in input and always the most confusing
token at that step of iteration is considered. Where
as SS-PTBs replace all tokens at the same time.
The simplest setting for PTBs is SS-RDP where
what tokens are replaced are chosen at random and
they are perturbed in a single-shot. Table 8 shows
that even in this simplistic setting, we can quantify
the effectiveness of our approach.

PM Acc F1 AUROC

T5-3b 0.737 0.773 0.807
Mistral-7b 0.749 0.775 0.831

Llama3-70b 0.754 0.800 0.832

Table 6: Effect of PMs on Llama3-8b under IT-RDP .
(t=0.95 and MSE≤ 0.002)

PM Acc F1 AUROC

T5-3b 0.715 0.751 0.779
Mistral-7b 0.678 0.725 0.748

Llama3-70b 0.754 0.785 0.809

Table 7: Effect of PMs on Llama3-8b under SS-ENP .
(t=0.95, MSE≤ 0.004)

This approach of quantifying the model correct-
ness based on the internal confusion of BM in the
process of generating the output can be extended
to multiple correctness scores. The final step of
fitting the regression function to predict the correct-
ness score needs to be performed. Table 9 shows
the flexibility in our modeling technique to predict
various correctness scores. The result shows that
it is easier to predict cosine-similarity with bert-
embeddings of output and ground-truth compared
to ROUGE-like metrics, which are sensitive to the
length of output.

We conducted several experiments using a va-
riety of BMs and PMs. Table 10 shows exper-
iments with T5-3b, Mistral-7b and Llama3-70b
as BM, and T5-3b, Llama3-8b, Mistral-7b, and
Llama3-70b as PM. The results show how the se-
lection of PM plays an important role in predicting
the correctness of the answer generated by BM.
For T5-3B the better PM is itself. For Mistral-7B
surprisingly, T5-3B is a better PM for predicting
its correctness. Further investigation is needed to



609

PM Acc F1 AUROC

T5-3b 0.724 0.759 0.800
Mistral-7b 0.678 0.725 0.748

Llama3-70b 0.731 0.744 0.823

Table 8: Effect of PMs on Llama3-8b under SS-RDP .
(t=0.95, MSE≤ 0.003)

Metric MSE Acc. F1 AUROC

Cos Sim. 0.004 0.710 0.791 0.735
ROUGE-f1 0.016 0.778 0.715 0.719
ROUGE-p 0.008 0.621 0.574 0.640

Table 9: Predictability of different correctness scores
using Llama3-8b as both PM and BM .

understand the impact of PM with different tok-
enizer family compared to BM. For Llama3-70B,
Llama3-8B as PM shows better predictability of its
correctness.

BM PM Acc. F1 AUROC

T5-3b

T5-3b 0.787 0.728 0.859
Llama3-8b 0.770 0.702 0.851
Mistral-7b 0.767 0.7 0.856

Llama3-70b 0.769 0.707 0.846

Mistral-7b

T5-3b 0.658 0.737 0.656
Llama3-8b 0.631 0.717 0.634
Mistral-7b 0.588 0.689 0.573

Llama3-70b 0.592 0.691 0.584

Llama3-70b

T5-3b 0.700 0.783 0.715
Llama3-8b 0.756 0.823 0.784
Mistral-7b 0.590 0.469 0.706

Table 10: Effect of PMs on T5-3b (t=0.7, MSE≤
0.07), Mistral-7b (t=0.90, MSE≤ 0.003) and Llama3-
70b (t=0.95, MSE≤ 0.004)

6 Discussion

Understanding the LLM’s internal processes is es-
sential to assess whether LLM relies on pre-training
knowledge or follows the input prompt, which in-
cludes an instruction, context, and question. Even
when the model adheres to the prompt, the varia-
tion in its internal confusion, especially in response
to changes in the context, plays a significant role
in the quality of the answer.

Another key finding from our experiments is that
as models increase in parameter size, variation in
context has less of an impact on model confusion.
In many cases, larger models generate correct an-
swers even when no context is provided despite in-
structions to use it. This suggests that large LLMs
sometimes rely on pre-training knowledge rather
than the given context, likely due to encountering
similar data during training (such as Wikipedia),

though not necessarily the specific dataset. So, hav-
ing PTBs on the input context showed lesser im-
pact on the internal confusion of the model. Even
though counter intuitive, having a healthy amount
of confusion while generating the output on vari-
ations of input (PTBs) is a positive signal that the
model is using the context while generating the
output.

For smaller models, our approach reliably pre-
dicts when the model produces sub-optimal re-
sponses. When perturbing the input using the same
model, we observe consistent improvements in pre-
diction accuracy, particularly as the number of per-
turbations increases from 5 to 25. This supports
our hypothesis that quantifying LLM’s internal con-
fusion while handling extensive perturbations is a
valuable signal to predict when the LLM is likely
to generate a sub-optimal result.

7 Future Work

In this work, we investigated how the variation
in a model’s internal confusion, triggered by con-
trolled input perturbations, can serve as a signal for
assessing the accuracy of LLM-generated output.
As suggested by SAPLMA (Azaria and Mitchell,
2023), leveraging hidden layer activations offers
additional benefits in identifying inflection points
where a model’s output shifts. Future work will
focus on studying the effect of different tokenizers
and hidden layer activations on the model’s confu-
sion. We aim to further explore how perturbation
techniques affect specific configurations and fami-
lies of LLMs, deepening our understanding of their
behavior and robustness.

References
Amos Azaria and Tom Mitchell. 2023. The internal

state of an LLM knows when it’s lying. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2023, pages 967–976, Singapore. Associa-
tion for Computational Linguistics.

Weiser Benjamin and Nate Schweber. 2023. The chat-
gpt lawyer explains himself. The New York Times.

Meng Cao, Yue Dong, and Jackie Cheung. 2022. Hal-
lucinated but factual! inspecting the factuality of
hallucinations in abstractive summarization. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 3340–3354, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Together Computer. 2023. Redpajama: an open dataset
for training large language models.

https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://www.nytimes.com/2023/06/08/nyregion/lawyer-chatgpt-sanctions.html
https://www.nytimes.com/2023/06/08/nyregion/lawyer-chatgpt-sanctions.html
https://doi.org/10.18653/v1/2022.acl-long.236
https://doi.org/10.18653/v1/2022.acl-long.236
https://doi.org/10.18653/v1/2022.acl-long.236
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data


610

Xinyu Hu, Mingqi Gao, Sen Hu, Yang Zhang, Yicheng
Chen, Teng Xu, and Xiaojun Wan. 2024. Are
llm-based evaluators confusing nlg quality criteria?
arXiv preprint arXiv:2402.12055.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? a strong base-
line for natural language attack on text classification
and entailment. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages
8018–8025.

Thai Le, Jooyoung Lee, Kevin Yen, Yifan Hu, and Dong-
won Lee. 2022. Perturbations in the wild: Leveraging
human-written text perturbations for realistic adver-
sarial attack and defense. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2022,
pages 2953–2965, Dublin, Ireland. Association for
Computational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris
Brockett, Ming-Ting Sun, and Bill Dolan. 2020. Con-
textualized perturbation for textual adversarial attack.
arXiv preprint arXiv:2009.07502.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D Manning, and Chelsea Finn. 2023. De-
tectgpt: Zero-shot machine-generated text detection
using probability curvature. In International Con-
ference on Machine Learning, pages 24950–24962.
PMLR.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine
learning in python. the Journal of machine Learning
research, 12:2825–2830.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. Squad: 100, 000+ ques-
tions for machine comprehension of text. CoRR,
abs/1606.05250.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Haoyu Wang, Guozheng Ma, Cong Yu, Ning Gui, Linrui
Zhang, Zhiqi Huang, Suwei Ma, Yongzhe Chang, Sen
Zhang, Li Shen, et al. 2023. Are large language mod-
els really robust to word-level perturbations? arXiv
preprint arXiv:2309.11166.

Ruijie Xu, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu.
2024. Benchmarking benchmark leakage in large
language models. arXiv preprint arXiv:2404.18824.

Xilie Xu, Keyi Kong, Ning Liu, Lizhen Cui, Di Wang,
Jingfeng Zhang, and Mohan Kankanhalli. 2023. An
llm can fool itself: A prompt-based adversarial attack.
arXiv preprint arXiv:2310.13345.

https://doi.org/10.18653/v1/2022.findings-acl.232
https://doi.org/10.18653/v1/2022.findings-acl.232
https://doi.org/10.18653/v1/2022.findings-acl.232
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250


611

Appendix

A More results for different LLMs

A.1 Models accuracy

Pert. Model Acc F1 w/Buf F1 no/Buf

T5-3b 0.759 0.834 0.812
Llama3-8b 0.756 0.831 0.798
Mistral-7b 0.755 0.831 0.771

Table 11: PTB of Llama3-8b and having a buffer where
we do not predict the accuracy of the generated output.
(t = 0.92)

A.2 More Correctness Estimation results

t Acc F1 AUROC

0.86 0.919 0.958 0.697
0.89 0.853 0.920 0.743
0.92 0.791 0.874 0.764
0.95 0.712 0.753 0.773
0.98 0.611 0.143 0.781

Table 12: Effect of t on Llama3-8b as both BM and PM
under IT-ENP setting. (MSE≤ 0.003)

Table 12 shows the effect of various t on the
regression model predicting the correctness of the
generated output. We selected the t that gave the
F1 and AUROC scores.


	Introduction
	Looking deeper into RAG

	Related Work
	Method
	Perturbations(PTBs)
	Where to perturb?
	Entropy Based Perturbation (ENP):
	Predict Model Correctness
	Collecting Internal Model Confusion
	Estimating Correctness of Output


	Experiments
	Dataset and Model
	Metrics

	Results
	Discussion
	Future Work
	More results for different LLMs
	Models accuracy
	More Correctness Estimation results


