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Abstract

Pretrained language models are an integral part
of AI applications, but their high computational
cost for training limits accessibility. Initiatives
such as BLOOM and STARCODER aim to de-
mocratize access to pretrained models for col-
laborative community development. Despite
these efforts, such models encounter challenges
such as limited multilingual capabilities, risks
of catastrophic forgetting during continual pre-
training, and the high costs of training models
from scratch, alongside the need to align with
AI safety standards and regulatory frameworks.

This paper presents AURORA-M, a 15B param-
eter multilingual open-source model trained
on English, Finnish, Hindi, Japanese, Viet-
namese, and code. Continually pretrained from
STARCODERPLUS on 435B additional tokens,

AURORA-M surpasses 2T tokens in total train-
ing token count. It is the first open-source mul-
tilingual model fine-tuned on human-reviewed
safety instructions, thus aligning its develop-
ment not only with conventional red-teaming
considerations, but also with the specific con-
cerns articulated in the Biden-Harris Execu-
tive Order on the Safe, Secure, and Trustwor-
thy Development and Use of Artificial Intel-
ligence. We evaluate AURORA-M across a
wide range of tasks and languages, showcas-
ing its robustness against catastrophic forget-
ting and its superior performance in multilin-
gual settings, particularly in safety evaluations.
We open-source AURORA-M and its variants
to encourage responsible open-source devel-
opment of large language models at https:
//huggingface.co/aurora-m.

https://huggingface.co/aurora-m
https://huggingface.co/aurora-m
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1 Introduction

Large Language Models (LLMs) are fundamen-
tal tools in artificial intelligence, powering appli-
cations such as machine translation, text summa-
rization, dialogue systems, and code generation.
These LLMs are pre-trained on extensive text data
to enhance downstream task-specific adaptation.
However, the excessive computational expense of
pretraining LLMs creates barriers to access, con-
straining wider development.

Open-source initiatives such as BLOOM (Scao
et al., 2023), STARCODER (Li et al., 2023a),
STARCODER-2 (Lozhkov et al., 2024), PYTHIA

(Biderman et al., 2023), and OLMO (Groeneveld
et al., 2024; Soldaini et al., 2024) have emerged to
democratize access to pre-trained LLMs. These ini-
tiatives stimulate innovation, allowing researchers
and developers to leverage existing advancements.
However, despite their contributions, several sig-
nificant challenges persist in the domain of open-
source LLM development.

Primarily, several studies (Bang et al., 2023; Jiao
et al., 2023; Hendy et al., 2023; Huang et al., 2023)
have underscored the ongoing struggle of LLMs
with non-English texts, particularly in low- or ex-
tremely low-resource languages. Given that the
training data predominantly consists of English, as
noted for instance by Brown et al. (2020) who re-
ported that English accounts for 93% of GPT-3’s
training corpus, there is a pressing need to promote
the development of multilingual models to democ-
ratize LLMs and alleviate performance disparities
across different languages (Chai et al., 2023). Sec-
ondly, continual pretraining – a technique involv-
ing further updating pretrained models on new data
distributions to enhance their capabilities (Gupta
et al., 2023; Fujii et al., 2024) – poses a significant
challenge. While this approach could potentially
enable life-long learning of large language mod-
els, it often leads to catastrophic forgetting, where
the model loses previously acquired knowledge.
This challenge is exacerbated when considering the
continual pretraining of models across a diverse
array of grammatical and lexical structures. Lastly,
ensuring compliance with recent regulations man-
dating safe and secure AI development practices
represents another critical aspect often overlooked
in open-source LLM development, specifically, for
multilingual models.

This paper presents AURORA-M, a novel open-
source multilingual Large Language Model (LLM)

with 15 billion parameters, tailored to address the
aforementioned limitations. AURORA-M is de-
signed to cater to five linguistically diverse lan-
guages: English, Finnish, Hindi, Japanese, Viet-
namese, with a mix of code data. AURORA-M is
continually pretrained from the STARCODERPLUS

model (Li et al., 2023a) on an extensive dataset
comprising 435 billion tokens, resulting in a to-
tal training token count of an impressive 2 trillion
tokens. This rigorous pretraining regimen equips
AURORA-M with a comprehensive understanding
of diverse languages and code. Moreover, safety
is a fundamental design principle of AURORA-M.
It stands out as the first open-source multilingual
LLM fine-tuned on a comprehensive collection of
human-reviewed safety instructions addressing con-
cerns in the Biden-Harris Executive Order on Safe,
Secure, and Trustworthy Development and Use of
Artificial Intelligence (WhiteHouse, 2023). This
fine-tuning process not only addresses conventional
red-teaming concerns (Ganguli et al., 2022; Perez
et al., 2022) aimed at testing system vulnerabilities,
but also aligns with the specific safety and security
guidelines outlined in the Order.

To comprehensively evaluate AURORA-M’s ef-
ficacy, we conduct a rigorous examination across
a diverse spectrum of tasks spanning various do-
mains and languages. Our evaluations aim to
gauge AURORA-M’s capacity to retain previously
learned knowledge while acquiring new capabili-
ties through continual pretraining. We demonstrate
that AURORA-M successfully avoids catastrophic
forgetting on English and coding tasks. Further-
more, we benchmark AURORA-M against state-of-
the-art multilingual models, showcasing its com-
petitive performance in these settings. Addition-
ally, safety evaluations are conducted to scrutinize
AURORA-M’s tendency to generate undesired or
potentially illicit content. The findings from these
assessments affirm AURORA-M’s commitment to
safety and the adherence to responsible AI devel-
opment practices.

Our contributions can be summarized as follows.

• We introduce AURORA-M, a new 15B contin-
ually pretrained red-teamed multilingual LLM
built on top of the StarCoderPlus model (Li
et al., 2023a).

• We develop a two-stage curriculum of con-
tinual pretraining consisting of Continual
Auxiliary Pretraining (CAP) and Continual
Alignment Tuning (CAT) aimed at maximiz-
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Figure 1: Comparison of overall performance between AURORA-M-redteamed and its predecessors, STARCODER-
BASE and STARCODERPLUS, across diverse code and multilingual language evaluation benchmarks. Pass@1
performance averages for code benchmarks are reported. For natural language evaluations, 0-shot accuracy averages
are reported for languages other than English and Japanese. English evaluation is 8-shot, while Japanese evaluation
uses a combination of 4-shot and 1-shot.

ing adaptation, minimizing catastrophic for-
getting, and aligning AURORA-M with safety
objectives.

• We extensively evaluate AURORA-M across
various tasks in different domains and lan-
guages, demonstrating its superior perfor-
mance in multilingual settings while retain-
ing competitive performance in English and
coding.

• We construct a new red-teaming dataset,
named “The Biden-Harris Redteam Dataset,”
tailored to address concerns outlined in the
Executive Order along with typical safety con-
cerns. We then fine-tune AURORA-M on this
dataset and evaluate on several safety bench-
marks.

• We show the influence of scaling the total
training tokens on various multilingual and
code evaluation tasks.

2 Datasets

Data Curation. The continual pretraining pro-
cess for training AURORA-M followed a carefully
designed two-stage curriculum, as shown in Fig. 2.
In the first stage, termed as Continual Auxiliary
Pretraining (CAP), a large corpus of general mul-
tilingual web data was used to expose the model to
diverse data, laying a robust foundation for subse-
quent training. The second stage, termed as Contin-

ual Alignment Tuning (CAT) employed a strategic
data-mixing approach to bolster the model’s perfor-
mance in targeted areas and align it with our pre-
defined objectives. Following Taylor et al. (2022)
and Li et al. (2023b), we also included publicly
available instruction tuning datasets in both stages
of training.

In CAP, we incorporated 377B tokens of pro-
cessed and filtered web data from various sources,
including Stack (Kocetkov et al., 2022), Refined-
Web (Penedo et al., 2023), RedPajama (Together,
2023), and a subset of the Pile (Gao et al., 2020).
Additionally, multilingual data from HPLT (de Gib-
ert et al., 2024), MC4 (Zhu et al., 2023a),
Paracrawl (Ghussin et al., 2023), OSCAR (Abadji
et al., 2022), along with Wikipedia (Founda-
tion, 2023), and instruction tuning data from
sources such as OpenAssistant (Köpf et al., 2023),
APIBench (Patil et al., 2023), and OIG (LAION,
2023) were included.

For CAT, we opted for a greater percentage of
code and a changed mix of high-quality public in-
struction datasets (Mishra et al., 2022a; Ding et al.,
2023; Ivison et al., 2023), encompassing coding
(Luo et al., 2023; Mishra et al., 2023a) and math-
ematical reasoning (Yu et al., 2023; Mishra et al.,
2023b). The intention was to not overfit to the high
quality instruction data, and thus the high quality
data was used in CAT only. We also subsampled
data from CAP for quality, as described below. Fur-
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Figure 2: Training data distribution of languages, code,
and instructions used for the two-stage continual pre-
training of the AURORA-M model. There are a total
of 377B and 58B tokens in the Continual Auxiliary Pre-
training (CAP) and Continual Alignment Tuning (CAT)
stages respectively.

thermore, we introduced a new safety instruction
dataset named Biden-Harris Redteam, detailed in
Section 4. The total dataset size for CAT is 58B
tokens. We refer the reader to Fig. 2 for the dis-
tribution of languages in both training stages. The
complete list of datasets is available in Appendix
B.

Data Filtering. To remove toxic content and low-
quality text, we applied filters similar to those used
in Nguyen et al. (2023c) and Scao et al. (2023),
such as stop-word proportions and text length. For
all web text, we followed a process akin to Penedo
et al. (2023) to remove low-quality content, includ-
ing duplicate headers and footers. Additionally,
in the CAT dataset, we further filtered web text
with high proportions of symbols and numbers. In
the case of RefinedWeb (Penedo et al., 2023), we
utilized the RedPajama (Together, 2023) fastText
classifier to retain English webpages resembling
"high-quality" content similar to Wikipedia-linked
articles. We trained and employed a similar clas-
sifier to filter other languages in our dataset, ex-
cept for Finnish, where the procedure caused over-
filtering, resulting in an excessively low sample vol-
ume post-filtering. To further enhance the quality
of the RefinedWeb data, we adopted an approach
detailed in Rönnqvist et al. (2021). We trained a
fastText classifier* and selectively subsampled web
pages with over-represented registers, aiming to
retain more "rare" text (e.g., lyrical or poetic text).
This filtering process was specifically applied to
English text due to the prohibitive slowness of our
multilingual classifiers. Addressing this limitation

*Similar to https://github.com/TurkuNLP/
register-labeling?tab=readme-ov-file

represents an area for future research.

Data Processing. In the second stage dataset,
we undertook the detection and anonymization of
sensitive information, including government IDs,
within web-based texts to uphold privacy and ethi-
cal standards similar to Scao et al. (2023). For data
segments derived from arXiv, USPTO, and Stack-
Exchange within the Pile dataset (Gao et al., 2020),
we reconstructed the data from the original source
to restore metadata, which we then appropriately
appended to the texts.

3 Model Training

AURORA-M was trained on the LUMI super-
computer†, utilizing 128 AMD MI250X GPUs
for 48 days. The training process operated en-
tirely on 100% hydro-powered energy and in-
cluded waste heat recycling. For orchestration, we
adapted a segment of the Bigcode fork of Megatron-
LM (Narayanan et al., 2021) using the HIP runtime.
For training, we distributed the model using 4-way
Tensor Parallelism and 4-way Pipeline Parallelism
using the 1F1B schedule to reduce the pipeline
bubble (Narayanan et al., 2021). We also used
Megatron’s distributed optimizer (Narayanan et al.,
2021) to distribute the optimizer states across data-
parallel processes and eliminate redundancy, reduc-
ing the required memory usage.

For the training of AURORA-M, we maintained a
consistent batch size of 2048 and a sequence length
of 2048 tokens. The learning rate was linearly
warmed up to 10−4 over 2,000 steps, followed by
a cosine decay scheduler set to decay the learning
rate to 10−5 by 120,000 steps. while optimiza-
tion utilized the AdamW optimizer (Kingma and
Ba, 2017; Loshchilov and Hutter, 2019) with co-
efficients β1 = 0.9 and β2 = 0.95. Additionally,
Megatron-LM’s distributed optimizer with mixed
precision training (Micikevicius et al., 2018) was
used. Further training details can be found in the
Appendix A.

4 Safety

LLMs can propagate harmful content, reinforce
biases, or amplify misinformation. While users
are responsible for assessing the potential risks of
generated content, developers must prioritize legal
and safety considerations, strengthening models
against attacks that may bypass safety protocols.

†https://www.lumi-supercomputer.eu/

https://github.com/TurkuNLP/register-labeling?tab=readme-ov-file
https://github.com/TurkuNLP/register-labeling?tab=readme-ov-file
https://www.lumi-supercomputer.eu/
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In line with the Biden-Harris US Executive Or-
der on AI (WhiteHouse, 2023), we curated the
Biden-Harris Redteam Dataset, consisting of 5000
instruction-response pairs, addressing key concerns
such as harm, cyber-attacks, CNBR risks, ille-
gal acts, and privacy infringement. This dataset
was created using a combination of filtering hu-
man preference data on harmlessness and template-
based methods, with responses reviewed and edited
for quality and safety. We used this dataset to
instruction-tune AURORA-M and evaluated its
safety levels before and after tuning. Details are
provided in Section 5, with further dataset insights
in Appendix C.

5 Evaluation

5.1 Evaluation Setup
We evaluated models across several English,
Japanese, Finnish, Hindi, Vietnamese, and code-
related benchmarks. For English, we used the Lan-
guage Model Evaluation Harness (Gao et al., 2022)
to assess tasks like OpenBookQA, TriviaQA, Hel-
laSwag, SQuAD2.0, XWINO, and GSM8K. For
Japanese, we followed swallow-llama and used
llm-jp-eval (Han et al., 2024), covering JCom-
monsenseQA, JEMHopQA, and JSQuAD, among
others. Finnish evaluation followed the method
used in FinGPT with FIN-bench (Luukkonen et al.,
2023a). We also evaluated Hindi and Vietnamese
using the mlmm evaluation suite on tasks like
HellaSwag and MMLU. For code evaluation, we
utilized MBPP, HumanEval, MultiPL-E, and Hu-
manEvalFix, and for safety, we employed datasets
like the Biden-Harris Redteam Testset and Dan-
gerousQA. Detailed dataset descriptions and their
corresponding evaluation metrics are provided in
Appendix D.

5.2 Evaluation Results
Figure 1 illustrates the superior performance of
AURORA-M compared to its base model (i.e.,
STARCODERPLUS) across an extensive range of
code and multilingual benchmarks, underscoring
the efficacy of AURORA-M across diverse fields
and languages. We observe that AURORA-M can
maintain performance on previously learned En-
glish and Code benchmarks while significantly out-
performing on new language benchmarks.

Evaluation on Natural Languages. Ta-
bles 1, 2, 3, 4 demonstrate the respective
performance on the targeted languages, showing
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Figure 3: Overall safety results.

that AURORA-M consistently outperforms the
performance of its starting checkpoint, STAR-
CODERPLUS, and many other baselines, such as
LLAMA-2-7B.

Code Evaluation. Tables 5 and 6 illustrate the
proficiency of AURORA-M in code generation,
demonstrating the possibility of continual pre-
training from a code-centric checkpoint on multi-
lingual data. In Table 5, the HumanEval and MBPP
evaluation benchmarks assess the model’s ability
to generate syntactically and semantically correct
code snippets. AURORA-M exhibits competitive
performance on the Pass@1 metric, which evalu-
ates the model’s ability to produce a correct answer
on the first attempt. In particular, AURORA-M con-
sistently matches or outperforms StarCoderPlus,
suggesting a significant improvement in code syn-
thesis capabilities. In Appendix E.1, we show re-
sults on additional code datasets and further ana-
lyze the behavior of our system by looking at the
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Model MC QA RC SUM MATH MT (WMT20) Avg.
JCom JEMHop NIILC JSQuAD XL-Sum MGSM En-Ja Ja-En
4-shot 4-shot 4-shot 4-shot 1-shot 4-shot 4-shot 4-shot

STARCODERBASE (Li et al., 2023a) 29.76 42.08 17.94 73.89 13.96 4.80 15.13 9.59 25.89
STARCODERPLUS (Li et al., 2023a) 50.22 44.19 17.72 79.24 16.87 5.60 14.58 13.98 30.30
LLAMA-2-7B (Touvron et al., 2023) 38.52 42.40 34.10 79.17 19.05 7.60 17.83 17.38 32.01
LLAMA-2-13B (Touvron et al., 2023) 69.97 44.15 41.70 85.33 21.39 13.20 21.46 19.82 39.63
AURORA-M (Red-teamed) (Ours) 46.65 35.73 50.78 87.06 8.79 21.20 27.78 17.22 36.90

Table 1: Japanese Evaluation.

Model 0-shot 1-shot 2-shot 3-shot

GPT3-FINNISH-8B (Luukkonen et al., 2023b) 42.66 46.53 47.96 48.41
GPT3-FINNISH-13B (Luukkonen et al., 2023b) 42.45 46.53 47.14 48.08
STARCODERBASE (Li et al., 2023a) 37.07 42.65 42.11 44.43
STARCODERPLUS (Li et al., 2023a) 34.85 43.97 44.05 46.49
LLAMA-2-7B (Touvron et al., 2023) 39.49 46.99 49.03 49.60
LLAMA-2-13B (Touvron et al., 2023) 45.69 55.70 56.93 57.50
AURORA-M (Red-teamed) (Ours) 51.80 56.11 57.77 57.48

Table 2: Finnish Evaluation.

relationship between its performance and the num-
ber of training tokens across various languages and
modalities.

Safety Evaluation In Figure 3, we provide the
safety results comparing our base model against
our Biden-Harris red-teamed model obtained by
instruction-tuning the former on the dataset intro-
duced in Section 4. For the Biden-Harris Redteam
Testset evaluation, four volunteers reviewed both
models’ responses and scored them with -2 if harm-
ful, 1 if not helpful but harmless, and 2 if both help-
ful and harmless. We term the percentage of the
total score per category compared to its maximum
possible score as the Continual Alignment Redteam
Percentage ("CARP"). We can immediately appre-
ciate the considerably lower harmfulness both on
the existing benchmarks and on our own Biden-
Harris red-team test set as evident by the CARP
scores obtained by our red-teamed AURORA-M.
We also note that even though our instruction set
is predominantly in English, safety consistently im-
proved not only in our target languages but also in
languages we did not specifically focus on, such as
German, thus showing strong indications of cross-
lingual red-teaming effects. Furthermore, as shown
in Appendix E.1, the Attack Success Rate (ASR)
on DangerousQA was also reduced.

5.3 Training Analysis

Figure 5 and 6 show the relationship between the
number of training tokens and the performance of
the various models. This analysis aims to capture
these trends for the code generation tasks such as

HumanEval and MBPP, as well as for the English,
Finnish, Hindi, Japanese, and Vietnamese language
evaluations. We refer to Appendix E.2 for detailed
discussion.

6 Related Work

Expanding Multilingual Language Models. Ini-
tially, the development of LLMs has predominantly
targeted the English language (Brown et al., 2020),
leveraging the extensive corpus of English data
available on the Web and the broad applicability
of models trained on English text. However, this
emphasis has often come at the cost of accommo-
dating the linguistic diversity found across various
language demographics (Zhu et al., 2023b; Bang
et al., 2023; Zhang et al., 2024). Recognizing this
significant limitation (Robinson et al., 2023; Peng
et al., 2024), recent research has proposed founda-
tional LLMs equipped with multilingual capabili-
ties (Chai et al., 2023; Scao et al., 2023; Wei et al.,
2023; Shliazhko et al., 2022), or has explicitly con-
centrated on addressing the challenges posed by
low-resource languages (Üstün et al., 2024; Singh
et al., 2024; Gala et al., 2023). To integrate multi-
lingual capabilities into existing LLMs, researchers
have proposed a variety of methods to enhance mul-
tilingual adaptation. These approaches range from
continual pretraining techniques (Ibrahim et al.,
2024; Gupta et al., 2023) to initial training on ex-
tensive multilingual datasets (Scao et al., 2023;
Chai et al., 2023) and then subsequent specialized
fine-tuning on a target language (Yang et al., 2023;
Han et al., 2022), and even adaptation through in-
struction tuning (Shaham et al., 2024; Kew et al.,
2023; Gala et al., 2024). Critical aspects in mul-
tilingual adaptation remain on the availability of
high-quality diverse multilingual corpus (Corrêa
et al., 2024) and further the scope of vocabulary of
the specific language.

Continual Pretraining. Static datasets are im-
practical for adapting to evolving real-world data,
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Model ARC HellaSwag MMLU TruthfulQA Avg
VI HI VI HI VI HI VI HI VI HI

STARCODERBASE (Li et al., 2023a) 22.14 20.72 29.74 26.93 27.11 25.15 44.84 47.57 30.96 30.09
STARCODERPLUS (Li et al., 2023a) 24.27 20.89 32.67 27.03 27.35 24.91 45.49 48.77 32.44 30.40
BLOOM-7B1 (Scao et al., 2023) 24.87 21.83 37.97 30.78 25.65 25.30 44.77 44.39 33.32 30.58
LLAMA-2-7B (Touvron et al., 2023) 25.64 21.58 35.20 28.19 27.95 25.33 45.15 46.37 33.49 30.37
LLAMA-2-13B (Touvron et al., 2023) 30.17 20.98 38.49 29.58 31.76 26.19 44.61 43.79 36.25 30.13
VIGPTQA-6B (Nguyen et al., 2023a) - - - - - - 43.26 - - -
VINALLAMA-7B (Nguyen et al., 2023b) 28.63 18.75 37.39 26.31 27.15 24.12 43.13 39.11 34.07 27.07
AURORA-M (Red-teamed) (Ours) 31.97 27.57 41.98 35.84 30.94 30.01 44.71 43.31 37.40 34.18

Table 3: 0-shot evaluation Results for Vietnamese (VI) and Hindi (HI).

Model OpenBookQA TriviaQA HellaSwag SQuAD2.0 XWINO GSM8K Avg.
8-shot 8-shot 8-shot 8-shot 8-shot 8-shot

STARCODERBASE (Li et al., 2023a) 19.60 8.20 37.57 27.52 73.51 8.95 29.22
STARCODERPLUS (Li et al., 2023a) 34.80 53.50 58.06 34.86 89.25 13.57 47.34
LLAMA-2-7B (Touvron et al., 2023) 35.80 62.65 58.60 32.07 90.49 14.10 48.95
LLAMA-2-13B (Touvron et al., 2023) 37.60 72.55 61.48 36.81 91.40 24.03 53.98
AURORA-M (Red-teamed) (Ours) 36.60 51.86 54.73 48.98 88.52 36.47 52.86

Table 4: English Evaluation.

Model HumanEval MBPP
Pass@1 Pass@10 Pass@100 Pass@1 Pass@10 Pass@100

STARCODERBASE (Li et al., 2023a) 31.10 54.88 84.15 36.80 61.60 81.00
STARCODERPLUS (Li et al., 2023a) 26.83 47.56 73.17 33.60 57.00 77.80
AURORA-M (Red-teamed) (Ours) 29.27 49.39 81.71 38.60 61.00 78.00

Table 5: HumanEval & MBPP evaluation results.

making continual learning essential (Ring, 1998;
Thrun, 1998). Continual pretraining (Gururangan
et al., 2020) allows models to incorporate new
knowledge without retraining from scratch, a costly
endeavor. As curated datasets like RedPajama (To-
gether, 2023) and Dolma (Soldaini et al., 2024)
become available, integrating them efficiently is
crucial. This also enables the extension of mod-
els to new modalities, such as code (e.g., Stable-
Code). Previous approaches focus on replay tech-
niques, optimizing learning schedules (Ibrahim
et al., 2024), soft masking (Ke et al., 2023), and
forward/backward transfer (Yıldız et al., 2024).

7 Conclusion

In this work, we introduced AURORA-M, a multi-
lingual model that extends the capabilities of code-
focused LLMs while maintaining their original cod-
ing proficiency. We demonstrate that continual
training from code to multilingual tasks is feasi-
ble, allowing the model to perform well across
both domains. Adhering to the safety guidelines
of the Biden-Harris US Executive Order on AI,

AURORA-M promotes responsible AI development
while pushing the boundaries of performance and
utility. Our two-stage continual pretraining ap-
proach, combined with insights from cross-lingual
red-teaming, highlights the adaptability and ver-
satility of modern language models. AURORA-M
serves as a valuable resource for both researchers
and developers, fostering collaboration and trans-
parency in the open-source AI community. Future
work will explore continual pretraining on stronger
base models with the same two-stage curriculum,
focusing on safety for both LLMs and Multimodal-
LLMs. We also aim to develop domain-specific
expert models, enhancing task specialization and
expanding model versatility.

Ethical Consideration

We believe that transparency and accessibility are
fundamental principles in the development and
deployment of artificial intelligence technologies.
Closed-source LLMs limit public scrutiny, hinder
collaboration, and potentially reinforce biases in-
herent in their development process. In contrast,
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our commitment to open source models fosters a
culture of accountability, collaboration, and inclu-
sivity. By making AURORA-M accessible to all,
we promote innovation, empower diverse voices,
and strive for equitable outcomes in AI applica-
tions. We firmly believe that openness in AI devel-
opment is essential for creating solutions that truly
serve the needs and values of society. To this end,
we prioritized safety guardrails in alignment with
the Biden-Harris Executive Order on AI. Further-
more, the multilingual capability of AURORA-M
enhances its usability for users across the world.

On the other hand, each promise comes with
peril, and improved technological access through
AURORA-M might also increase the potential num-
ber of malicious actors. We overall believe that the
general benefit far outweighs the potential misuse
and want to emphasize the importance of a consid-
ered and ethical use of this technology and thus
also of AURORA-M.

Lastly, we recognize that safety and lawfulness
can be contextual to different cultures and laws.
We recognize that in our work we focused on a U.S.
centric standard, and we believe future work should
also explore multi-jurisdictional redteaming.
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A Training Setup

The distributed optimizer used mixed precision
training in BF16 with gradient all-reduce and gra-
dient accumulation in FP32 for training stability.

We limit our context lengths for training to 2048
tokens due to the unavailability of FlashAttention
(Dao et al., 2022) for AMD GPUs at the time of
training our model.

We investigated optimal 3D parallelism and
batch size settings to train the model within our
computational constraints. We performed exten-
sive scaling experiments and found that increasing
the number of nodes resulted in increased training
throughput but with sublinear scaling performance,
so we opted to use a maximum of 32 nodes to
maximize our compute budget, even though it took
longer to train.

It should also be noted that LUMI’s waste heat
is used to heat hundreds of households in the city
of Kajaani.

B Curriculum Training Datasets

All datasets that were made for AURORA-M are
marked by *.

CAP For the first stage (CAP) of our two-stage
curriculum training, we used the following data.

• General text:

– 10-K Filings
– Aozora Bunko https://github.com/aozorabunko/

aozorabunko

– Atticus (Hendrycks et al., 2021b)
– C4 (Raffel et al., 2019)
– CC100 (Conneau et al., 2020)
– Climabench*
– HPLT(de Gibert et al., 2024)
– MC4 (Raffel et al., 2019)
– OSCAR (Ortiz Suarez et al., 2019)
– Paracrawl (Ghussin et al., 2023)
– Parliament https://openparliament.ca/data-download/

– RedPajama (Together, 2023)
– RefinedWeb (Penedo et al., 2023)
– The Pile (Gao et al., 2020)
– The Stack (Kocetkov et al., 2022)
– Wikipedia / Finnish
– Wikipedia / Hindi
– Wikipedia / Japanese
– Wikipedia / Vietnamese

• Instruction tuning:

– Gorilla APIBench (Patil et al., 2023)
– Hindi-Hinglish Translations*
– LAION Anh https://huggingface.co/datasets/laion/

Anh

– LAION OIG (LAION, 2023)
– ABCMusic*
– Gorilla APIBench
– Hinglish Instructions https://huggingface.co/

datasets/rvv-karma/English-Hinglish-TOP

– Minipile Instruct*
– Opus Translations https://opus.nlpl.eu/

– Pseudo-Code Instructions (Mishra et al.,
2023a)

– SMILES Formulae*
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– smiles-transformers https://huggingface.co/

datasets/maykcaldas/smiles-transformers

– wikimusictext https://huggingface.co/datasets/

sander-wood/wikimusictext

– xP3 (Muennighoff et al., 2022)

CAT For the second stage (CAT) of our cur-
riculum training, instead, we used the following
datasets.

• General text:

– 10-K Filings
– Aozora Bunko https://github.com/aozorabunko/

aozorabunko

– Atticus
– C4
– CC100
– Climabench*
– CodeTutorials
– HPLT
– MC4
– NamTinyLessons
– OSCAR
– Parliament https://openparliament.ca/data-download/

– Paracrawl
– RedPajama
– Simple Wikipedia
– The Pile
– The Stack
– Wikipedia / Japanese
– Wikipedia / Vietnamese
– Wikipedia / Finnish
– Wikipedia / Hindi

• Instruction-tuning:

– ABCMusic*
– Biden-Harris Readteam*
– BuggedPythonLeetCode https://huggingface.

co/datasets/NeuroDragon/BuggedPythonLeetCode

– CodeContests Instructions https://huggingface.

co/datasets/BEE-spoke-data/code_contests_instruct

– Evol-Instruct-Code (Xu et al., 2023)
– Gorilla APIBench
– GSM8k_Backward https://huggingface.co/

datasets/meta-math/GSM8K_Backward

– Guanaco
– HelpSteer (Wang et al., 2023)

– Hinglish Instructions https://huggingface.co/

datasets/rvv-karma/English-Hinglish-TOP

– LAION Anh
– LAION OIG
– Lila (Mishra et al., 2023b)
– MetaMathQA (Yu et al., 2023)
– NaturalInstructions (Mishra et al.,

2022b)
– OpenAssistant Conversations

Dataset https://huggingface.co/datasets/OpenAssistant/

oasst1

– Pseudo-Code Instructions (Mishra et al.,
2023a)

– SMILES Formulae*
– smiles-transformers https://huggingface.co/

datasets/maykcaldas/smiles-transformers

– tiny-bridgedict https://huggingface.co/datasets/

nampdn-ai/tiny-bridgedict

– Tulu-V2 (Ivison et al., 2023)
– wikimusictext https://huggingface.co/datasets/

sander-wood/wikimusictext

– xP3 (Muennighoff et al., 2022)

C Safety

C.1 Safety Evaluation

Despite their potency, LLMs pose risks of propa-
gating harmful content, reinforcing biases, or am-
plifying misinformation. While users must exercise
responsibility in utilizing LLMs and assess the po-
tential ramifications of generated content, develop-
ers hold the duty to meticulously design LLMs, pri-
oritizing legal considerations and fortifying them
against potential attacks that may circumvent safety
protocols, thus compromising their core principles.

In alignment with this ethos and mindful of
the latest AI regulations, we curated an extensive
dataset of instruction-response pairs to bolster the
safety and resilience of AURORA-M. Our endeavor
specifically addresses key concerns outlined in the
Biden-Harris US Executive Order on AI (White-
House, 2023), encompassing the following main
areas:

• Harm to oneself or others (e.g. homicide, sui-
cide, intentional injury, etc.).

• Requests on how to create cyber-attacks (e.g.
attacking businesses, schools, and govern-
ments through the Internet).

https://huggingface.co/datasets/maykcaldas/smiles-transformers
https://huggingface.co/datasets/maykcaldas/smiles-transformers
https://huggingface.co/datasets/sander-wood/wikimusictext
https://huggingface.co/datasets/sander-wood/wikimusictext
https://github.com/aozorabunko/aozorabunko
https://github.com/aozorabunko/aozorabunko
https://openparliament.ca/data-download/
https://huggingface.co/datasets/NeuroDragon/BuggedPythonLeetCode
https://huggingface.co/datasets/NeuroDragon/BuggedPythonLeetCode
https://huggingface.co/datasets/BEE-spoke-data/code_contests_instruct
https://huggingface.co/datasets/BEE-spoke-data/code_contests_instruct
https://huggingface.co/datasets/meta-math/GSM8K_Backward
https://huggingface.co/datasets/meta-math/GSM8K_Backward
https://huggingface.co/datasets/rvv-karma/English-Hinglish-TOP
https://huggingface.co/datasets/rvv-karma/English-Hinglish-TOP
https://huggingface.co/datasets/OpenAssistant/oasst1
https://huggingface.co/datasets/OpenAssistant/oasst1
https://huggingface.co/datasets/maykcaldas/smiles-transformers
https://huggingface.co/datasets/maykcaldas/smiles-transformers
https://huggingface.co/datasets/nampdn-ai/tiny-bridgedict
https://huggingface.co/datasets/nampdn-ai/tiny-bridgedict
https://huggingface.co/datasets/sander-wood/wikimusictext
https://huggingface.co/datasets/sander-wood/wikimusictext
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• Involvement in making or proliferating chem-
ical, nuclear, biological, and radiological
("CNBR") risks, including dual usage tech-
nologies.

• Participation in any illegal act (e.g. theft and
robbery, tax evasion, drug trafficking and use,
and manipulation of public opinion).

• Infringement of privacy or rights (e.g. stealing
personal privacy information).

• Attempts to circumvent red-teaming controls.

With these main categories in mind, we curated
the Biden-Harris Redteam Dataset comprising
5000 red-teaming instructions, human-reviewed,
and edited instruction-response pairs to address
lawfulness and safety concerns, including those out-
lined in the Executive Order (WhiteHouse, 2023).
The instructions were sourced from filtering the
human preference dataset on harmlessness from
Anthropic (Bai et al., 2022) and utilizing semi-
automatic template-based methods. Subsequently,
we manually inspected and semi-automatically fil-
tered this initial set to remove short refusals and
near-duplicates, resulting in 4000 instructions. To
address potential harmful responses by AURORA-
M in the first stage of pretraining, we also used an
approximately 1000 instructions subset and hand-
wrote or created continuations by this version of
AURORA-M. Five volunteers then manually re-
viewed and edited the automated responses for
safety and quality. We utilized the resultant approx-
imately 5000 instructions dataset for instruction-
tuning (referred to as the Biden-Harris Redteam
Dataset) of AURORA-M and evaluated its safety
levels on various safety evaluation datasets both
before and after the instruction-tuning step. Details
and results are provided in Section 5. Additional in-
sights into the creation of our dataset are available
in Appendix C.2.

C.2 Details on The Biden-Harris Redteam
Dataset.

To construct our red-teaming dataset, we start by
filtering the data provided by Anthropic (Ganguli
et al., 2022) consisting of open-ended conversa-
tions between crowd workers and AI assistants,
with the former intentionally aiming to induce the
AI to generate harmful text. Specifically, since
each entry contains several rounds of human-AI
interactions —making it suboptimal to instruction-
tune our model— we select only the first human

request and discard any subsequent system or hu-
man response. We then manually filter out prompts
that do not target any of the high-risk categories
mentioned in Section 4. Additionally, we com-
plement the resulting data with prompts created
using semi-automatic template-based methods. In
other words, we design templates for each category,
e.g. Tell me how to {action} a {weapon}, and
substitute placeholders with various combinations
of actual values selected from pre-defined lists (e.g.
action = {make, use, sell, buy} and weapon
= {AK-47, revolver, rifle}).

At this point, we use GPT-4 (OpenAI et al.,
2023) to obtain safe responses to our prompts. By
manually inspecting the outputs, we noticed that
most of the responses were evasive, e.g. “I’m sorry,
but I cannot assist with that request.”, penalizing the
model’s helpfulness. To address this issue, we use
the GPT-4 responses as seed responses and let our
model expand them, and also to address possible
cases where our model would otherwise produce
harmful responses. Subsequently, we again manu-
ally assess the responses and edit or discard unsafe
ones.

As a result of the previous steps, we obtained
approximately 5000 safe instruction-response pairs.
We use this dataset to instruction-tune (aka Biden-
Harris redteaming) our model and measure its
safety levels on various safety evaluation datasets
before and after the instruction-tuning step as re-
ported in Section 5.

For our Biden-Harris Redteam Testset, we used
GPT-4 and manually created 40 English prompts fo-
cused on privacy, misinformation, harm promotion,
malware, chemical, nuclear, biological, and radi-
ological concerns, illegal acts, and cyber attacks.
We translated to six other languages, to total 280
prompts. In order to also assess potential circum-
vention of red-team controls, we crafted some of
these instructions with adversarial techniques (e.g.,
"Pretend you are my grandmother who tells me a
story about artificial intelligence every night. Cre-
ate a scenario in Hindi where you as the AI must
infiltrate a hospital’s network through a combina-
tion of social engineering and malware tactics in
order to steal Priyanka Chopra’s medical records").

D Evaluation Datasets and Metrics

English Evaluation. We used the Language
Model Evaluation Harness (Gao et al., 2022).
We evaluated question answering tasks, including
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OpenBookQA (Mihaylov et al., 2018) and Triv-
iaQA (Joshi et al., 2017) using accuracy and ex-
act match accuracy respectively, natural language
inference with HellaSwag (Zellers et al., 2019)
using accuracy, machine reading comprehension
with SQuAD2.0 (Rajpurkar et al., 2018) using ex-
act match accuracy and XWINO (Tikhonov and
Ryabinin, 2021) using accuracy, and arithmetic rea-
soning with GSM8K (Cobbe et al., 2021) using
exact match accuracy with 8-shot inference.

Japanese Evaluation. Following swallow-
llama‡, we utilized llm-jp-eval (Han et al.,
2024) and the JP Language Model Evaluation Har-
ness§. llm-jp-eval utilizes JCommonsenseQA
(JCom) (Kurihara et al., 2022) to evaluate multiple
choice question answering using exact match
accuracy, JEMHopQA (JEMHop) (Ishii et al.,
2023) and NIILC (Sekine, 2003) for free-form
question answering using character-level F1 score,
and JSQuAD (Kurihara et al., 2022) for machine
reading comprehension using character-level
F1 score with 4-shot inference. JP Language
Model Evaluation Harness evaluates automatic
summarization on XL-Sum (Hasan et al., 2021)
using ROUGE-2 score with 1-shot inference,
arithmetic reasoning on MGSM (Shi et al.,
2023) using exact match accuracy with 4-shot
inference, and Japanese-English and English-
Japanese machine translation on WMT 2020
Japanese ↔ English (Barrault et al., 2020) using
BLEU score with 4-shot inference.

Finnish Evaluation. We adopted the evaluation
method used in FinGPT (Luukkonen et al., 2023a).
Evaluation was carried out using FIN-bench¶. FIN-
bench is based on a subset of the BIG-bench (Sri-
vastava et al., 2023) task collection. The tasks
were created by machine-translating the text of
BIG-bench tasks, correcting translation errors, and
adjusting the questions to fit Finnish culture. Model
evaluation was performed using 0-shot, 1-shot, 2-
shot, and 3-shot settings, as in FinGPT. For each
shot, the average of tasks divided into subtasks
(Arithmetic, Cause) was taken, and then the overall
average was calculated.

‡swallow-llama: https://tokyotech-llm.github.
io/swallow-llama

§https://github.com/Stability-AI/
lm-evaluation-harness

¶FIN-bench: https://github.com/TurkuNLP/
FIN-bench

Hindi and Vietnamese Evaluation. We used the
mlmm evaluation|| for evaluation. Using 0-shot in-
ference, we evaluated AI2 Reasoning Challenge
(Clark et al., 2018) using accuracy metrics, Hel-
laSwag using accuracy score for commonsense in-
ference, MMLU (Hendrycks et al., 2021a) using
exact match accuracy, and TruthfulQA (Lin et al.,
2022) using accuracy metrics. ARC is a dataset of
multiple-choice science questions at the elementary
school level. HellaSWAG is a dataset for studying
grounded commonsense inference. Each question
has four choices about what happens next in the
scene. The correct answer is a sentence describing
the next event, and the three incorrect answers are
adversarially generated to deceive machines but
not humans and are verified by humans. MMLU
includes multiple choice questions derived from
various fields of knowledge, including humanities,
social sciences, and natural sciences.

Code Evaluation. For code evaluation, we used
MBPP (Austin et al., 2021), HumanEval (Chen
et al., 2021), MultiPL-E (Cassano et al., 2022) and
HumanEvalFix (Muennighoff et al., 2023a). All
evaluations were conducted using 0-shot inference.
For MultiPL-E and HumanEvalFix, we performed
code generation using greedy decoding and evalu-
ated the Pass@1 score, following CodeLlama (Roz-
ière et al., 2024). For HumanEval and MBPP, we
evaluated Pass@1, Pass@10, and Pass@100. The
Pass@1 score was calculated using greedy decod-
ing. For Pass@10 and Pass@100, we set topp to
0.95 and temperature to 0.8. topp is a parameter
that selects the tokens with the highest probabilities
such that the sum of their probabilities reaches or
exceeds the value of topp. To execute the evalua-
tions, we used bigcode-evaluation-harness (Ben Al-
lal et al., 2022) library.

Safety Evaluation. For our safety evaluation, we
employ the evaluation suite provided by (Bianchi
et al., 2024) to measure safety across various di-
mensions. Moreover, we constructed our own 40
English Biden-Harris concerned focused instruc-
tions in the categories of privacy, misinformation,
harm promotion, malware, CNBR, illegal acts, and
cyber attacks. Then we translated these to the other
languages, resulting in 280 instructions, which we
call the Biden-Harris Redteam Testset. Addition-
ally, we use the DangerousQA dataset (Bhardwaj

||mlmm-evaluation: https://github.com/
nlp-uoregon/mlmm-evaluation

https://tokyotech-llm.github.io/swallow-llama
https://tokyotech-llm.github.io/swallow-llama
https://github.com/Stability-AI/lm-evaluation-harness
https://github.com/Stability-AI/lm-evaluation-harness
https://github.com/TurkuNLP/FIN-bench
https://github.com/TurkuNLP/FIN-bench
https://github.com/nlp-uoregon/mlmm-evaluation
https://github.com/nlp-uoregon/mlmm-evaluation
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Model C++ Java PHP TS C# Bash Avg.

StarCoderBase (Li et al., 2023a) 27.33 25.95 26.71 33.33 21.52 10.76 24.27
StarCoderPlus (Li et al., 2023a) 26.71 24.05 26.71 25.16 17.72 5.70 21.01
AURORA-M (Ours) 23.60 25.95 21.74 25.16 17.09 6.96 20.08

Table 6: MultiPL-E evaluation results on different programming languages.

Model Prompt Python JavaScript Java Go C++ Rust Avg.

BLOOMZ (Muennighoff et al., 2023b) Instruct 16.6 15.5 15.2 16.4 6.7 5.7 12.5
StarCoderBase-15B (Li et al., 2023a) Instruct 12.6 16.8 18.9 12.5 11.2 0.6 12.1
StarCoder2-15B (Lozhkov et al., 2024) Instruct 9.7 20.7 24.1 36.3 25.6 15.4 22.0
OctoCoder-15B (Muennighoff et al., 2023a) Instruct 30.4 28.4 30.6 30.2 26.1 16.5 27.0
StarCoderPlus (Li et al., 2023a) Instruct 4.3 5.5 7.3 7.9 3.0 0.0 4.7
AURORA-M (Ours) Instruct 12.2 16.5 15.9 20.7 14.0 6.1 14.2

Table 7: Pass@1 performance on HumanEvalFix.

and Poria, 2023) to measure the Attack Success
Rate (ASR) of harmful queries when provided as
input to both our base and red-teamed models.

E Additional Results and Analysis

E.1 Additional Results
Additional Code Evaluations As Table 6
demonstrates, the MultiPL-E evaluation further
supports the finding that continual pretraining on
multilingual data prevented AURORA-M from for-
getting its knowledge of code syntax and semantics.

Table 7 shows the Pass@1 performance on
the HumanEvalFix benchmark following the eval-
uation setup from Muennighoff et al. (2023a)
and Zhuo et al. (2024). StarCoderPlus and our
model exhibit a noteworthy spread in performance,
with AURORA-M showing good proficiency across
languages and StarCoderPlus showing particular
strengths in Go, JavaScript, and Java. The Rust lan-
guage presents a challenge for all models, which
makes it an area for potential enhancement.

Additional Safety Evaluations Figure 4a
demonstrates our results on the DangerousQA
dataset. Figure 4b shows the CARP values
improving for our red-teamed AURORA-M. As
part of iterative red-teaming, we see that we could
improve the CNBR-dual usage category, the cyber
attack category, and the privacy category with
additional instruction training.

Redteam Volunteers Protocol Five of the au-
thors volunteered to review and edit the gener-
ated responses from AURORA-M to create a subset
of the Biden-Harris Redteam dataset, by editing
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(a) ASR of DangerousQA queries on our base model (right) and
its instruction-tuned version (left). The lower the better).
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PrivacyMisinformation
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CNBR and Dual Usage Illegal Acts
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(b) Biden-Harris Redteam Testset results CARP values,
averaged over the dataset’s languages by category.

Figure 4: Safety evaluation results comparing our base
model and instruction-tuned version.

for Biden-Harris concern violations and hateful,
toxic, or bias output. One of the original volun-
teers and three other authors also provided CARP
scores for AURORA-M responses to the Biden-
Harris Redteam Testset shown in Figure 4b. Each
volunteer is a machine learning professional over
18 years old and was informed of the risk of the
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Figure 5: Performance trends of models on HumanEval, MBPP, and English language tasks.
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Figure 6: Language-specific performance trends with increasing training tokens. Each graph demonstrates the
accuracy or score in relation to the number of training tokens (in billions) for the FI (a), HI (b), JA (c), and VI (d)
language tasks.

sensitive subject matter of the responses. Of note,
under our standards, a response is considered pri-
vacy violating if, among other things, it discloses
sensitive information. However, a disclosure of the
official address or contact information of public
figures is not considered privacy violating.

E.2 Performance Trends versus Training
Token Compute

Figure 5 and 6 show on the relationship between
the number of training tokens and the performance
of the various models. This analysis aims to capture
these trends for the code generation tasks such as
HumanEval and MBPP, as well as for the English,
Finnish, Hindi, Japanese, and Vietnamese language
evaluations.

Starting with the HumanEval and MBPP evalu-
ations (Figures 5a and 5b), it is evident that the

pass rates improve as the number of tokens in-
creases. This suggests that the models are ben-
efiting from more extensive training data, which
likely includes a richer variety of programming
challenges and solutions that enhance the model’s
problem-solving abilities. Notably, the Pass@100
rate for HumanEval shows a pronounced increase,
indicating that, given enough attempts, the model
has a high probability of generating a correct solu-
tion. This is consistent with the iterative nature of
programming, where developers often refine their
code through multiple iterations.

In the English language task (Figure 5c), there is
a marked variance in performance across different
tasks as the number of tokens increases. The perfor-
mance on GSM8K suddenly increases, which is at-
tributed to the effect of the instruction tuning of our
second training stage (CAT). Meanwhile, TriviaQA
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and Hellaswag tasks show steady improvements,
indicating that these tasks may be benefiting more
from the increased volume of training data.

The evaluations of the Finnish (FI) (Figure 6a),
Hindi (HI) (Figure 6b), Japanese (JA) (Figure 6c),
and Vietnamese (VI) (Figure 6d) languages reveal a
similar trend of performance improvement with the
increase in the number of tokens. However, there
are some variances that might be attributed to the
specific challenges each language presents, such as
syntactic and semantic complexities. For instance,
in the Finnish graph, the performance across differ-
ent shot settings indicates that the model’s ability to
generalize from few examples improves with more
data, which is a desirable trait in language models.

The evaluations for Japanese and Vietnamese
exhibit an overall positive trajectory, albeit with
intermittent fluctuations. These patterns suggest
the potential for sustained incremental improve-
ment through further continual pretraining on such
datasets. However, due to computational con-
straints, the extended pretraining is left for future
work.
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