
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track, pages 689–696
January 19–24, 2025. ©2025 Association for Computational Linguistics

689

Lightweight Safety Guardrails Using Fine-tuned BERT Embeddings

Aaron Zheng
Uniphore & UC Berkeley

aaron.zheng@uniphore.com
aaronz@berkeley.edu

Mansi Rana
Uniphore

mansi.rana
@uniphore.com

Andreas Stolcke
Uniphore

andreas.stolcke
@uniphore.com

Abstract

With the recent proliferation of large language
models (LLMs), enterprises have been able to
rapidly develop proof-of-concepts and proto-
types. As a result, there is a growing need
to implement robust guardrails that monitor,
quantize and control an LLM’s behavior, en-
suring that the use is reliable, safe, accurate
and also aligned with the users’ expectations.
Previous approaches for filtering out inappro-
priate user prompts or system outputs, such as
LlamaGuard and OpenAI’s MOD API, have
achieved significant success by fine-tuning ex-
isting LLMs. However, using fine-tuned LLMs
as guardrails introduces increased latency and
higher maintenance costs, which may not be
practical or scalable for cost-efficient deploy-
ments. We take a different approach, fo-
cusing on fine-tuning a lightweight architec-
ture: Sentence-BERT. This method reduces the
model size from LlamaGuard’s 7 billion pa-
rameters to approximately 67 million, while
maintaining comparable performance on the
AEGIS safety benchmark.

1 Introduction

The challenge of creating reliable, safe, accurate,
and user-aligned automated knowledge retrieval
systems has been a longstanding one, extensively
studied since the advent of the internet. Much of the
prior research has focused on search engines and
enterprise search software (Salton, 1989; Cutting
et al., 1993; Brin and Page, 1998; Broder, 2002).
Significant efforts have been made toward develop-
ing effective content moderation and filtering meth-
ods, leading to products, such as Google’s Safe-
Search, Bing SafeSearch, YouTube’s Restricted
Mode, Facebook’s Community Standards filters,
and Twitter’s Trust & Safety tools. These solutions
aim to provide users with safer and more curated
content, while balancing accuracy and user expec-
tations.

Recently, there has been a surge of LLM-based
guardrails, such as LlamaGuard, which aim to im-
prove the safety, reliability, and control of LLMs
in various applications. These guardrails work by
utilizing fine-tuned LLMs either directly or as a
classifier to filter out unsafe prompts, providing
developers with more granular control over how
LLMs interact with users in real-world applica-
tions. These advancements represent a growing
effort across the AI industry to build responsible
AI systems that are safer and more trustworthy.

However, using LLM-based guardrail models
introduces high latency and significant inference
costs, often requiring expensive GPU resources and
substantial processing time. As compute costs re-
main high, the heavy-duty nature of current LLM
guardrails can limit their use in cost-limited use
cases. Such LLM application scenarios could in-
clude classrooms, private settings, or task automa-
tion in small businesses. The lack of effective and
lightweight guardrail solutions for such uses rep-
resents a significant vulnerability, impacting both
users and society as a whole.

We propose a lightweight guardrail solution
by fine-tuning models based on BERT (bidirec-
tional encoder representations from transformers)
(Kenton and Toutanova, 2019) for effective unsafe
prompt filtering.1 The goal of our model is to clas-
sify whether a user’s prompt or a conversation snip-
pet is safe or unsafe. To achieve this, we fine-tune
a BERT-based model on labeled safe and unsafe in-
puts, aiming to cluster safe and unsafe embedding
vectors separately. We then train a classifier on
these embedding vectors to discriminate between
safe and unsafe content. Despite the simplicity of
this approach, we demonstrate performance compa-
rable or superior to that of more resource-intensive
LLM-powered guardrail checkers.

1The same method could be used to filter LLM outputs,
but in this paper we focus on guarding against dangerous LLM
inputs.



690

Our approach frames the safety task purely as a
text (e.g., topic) classification problem. For unsafe
prompt filtering, we utilize the learned embedding
model to convert each prompt into a vector rep-
resentation within a high-dimensional space. In
the paper, we discuss related work, describe our
training procedure, present our results, and analyze
areas of improvement and future steps.

Our contribution is twofold. First, develop an
innovative, low-cost approach for building simple
guardrails for LLMs, able to filter unsafe prompts
effectively, thereby laying the groundwork for
widespread use of safety models, and enabling de-
velopers to add those guardrails to their products.

Our second contribution is to show that our light-
weight method has results comparable to state-of-
the-art benchmarks in this space, such as Llama-
Guard and OpenAI MOD API, on the AEGISSafe-
tyDataset for safe versus unsafe prompt classifica-
tion.

2 Related Work

2.1 LlamaGuard

LlamaGuard is a guardrails model published by
Meta, and is an LLM-based solution for human-AI
conversation use cases (Inan et al., 2023). Llama-
Guard is created by instruction-tuning Llama2-7b
on an in-house safety dataset with 14k training
examples of possible human and AI assistant con-
versations. Data is labeled either as safe, or one of 6
risk categories: Criminal Planning, Suicide & Self
Harm, Regulated or Controlled Substances, Guns
& Illegal Weapons, Sexual Content, and Violence
and Hate. LlamaGuard has 7 billion parameters,
and achieves comparable performance to OpenAI
API and Perspective API guardrails for the Toxic
Chat and OpenAI Mod Datasets. According to
the authors, LlamaGuard achieves superior perfor-
mance on in-house safety datasets (but which they
have not released publicly).

2.2 NeMo

NeMo 43B (Rebedea et al., 2023) is a model
published by Nvidia, with 43 billion parameters,
trained on 1.1 trillion tokens, spanning a diverse
corpus of web-crawl, news articles, books, and sci-
entific publications. This model is not developed
primarily used for guardrails, but for language un-
derstanding tasks. However, Nvidia has produced
NeMo43B-DEFENSIVE, a model fine-tuned on
their open-sourced safety dataset, AEGIS (Ghosh

et al., 2024) (see Section 2.6 below).

2.3 OpenAI MOD API

OpenAI MOD API (OpenAI, 2024) is a closed-
source API created by OpenAI for moderating the
prompt and responses returned by LLMs. It can be
used to classify both text and image-based inputs,
and contains a diverse taxonomy of unsafe cate-
gories. The API itself can be used by developers
by giving text as input, and the API will output a
dictionary containing the probabilities of the input
being in each unsafe category.

2.4 Perspective API

Perspective API (Lees et al., 2022) is an API de-
veloped by Jigsaw (part of Google) that detects
toxic content in conversations. Like OpenAI, it
is a closed-source model that can provide proba-
bility scores for unsafe categories, but it offers a
public API that developers can use to analyze their
conversations and highlight toxic content.

2.5 WildGuard

WildGuard (Han et al., 2024) is a lightweight LLM-
based safety model created through instruction tun-
ing on the “Mistral-7b-v0.3” model. Its goal is
to identify malicious intent in user prompts, as-
sess safety risks of model responses, and determine
model refusal rates. Like LlamaGuard, this model
has 7 billion parameters. It required around 5 hours
to train on four A100 80GB GPUs; it is one of the
most recent safety models.

2.6 AEGIS fine-tuned models

AEGIS (Ghosh et al., 2024) is an AI content
safety moderation solution developed by Nvidia,
offering three distinct guardrail approaches along
with an annotated, quality-assured safety dataset
featuring a custom taxonomy. This taxonomy
includes a special ambiguous category, "Needs
Caution," which can be classified as either safe
or unsafe. The three guardrail models are: (1)
LlamaGuard-Permissive, which is instruction-
tuned on their safety dataset, treating the ambigu-
ous category as safe; (2) LlamaGuard-Defensive,
similar to LlamaGuard-Permissive but treating the
ambiguous category as unsafe; and (3) NeMo-43B-
Defensive, derived by instruction-tuning on NeMo-
43B and also treating the ambiguous category as un-
safe. For evaluation purposes, the ambiguous sam-
ples are always treated as unsafe (Parisien, 2024).



691

Figure 1: Sentence transformer architecture. Left: training. Right: inference.

3 Methodology

3.1 Problem Statement

Given an input text T , which may contain individ-
ual user prompts or a conversation between a user
and an agent, we want to be able to classify the
input text as either safe or unsafe.

3.2 Data

To train our embedding model, we need a dataset
containing text-based information labeled as safe
or unsafe. Ideally, the genre of text should match
the conversations between users and LLM. Unfor-
tunately, that there is a severe shortage of such
well-labeled safety datasets.

The AEGISSafetyDataset is one such properly
labeled dataset, an English-language corpus re-
leased by Nvidia containing “approximately 26,000
human LLM interaction instances complete with
human annotations” (Ghosh et al., 2024). The an-
notations use a taxonomy containing one broad
safety category, and 13 critical risk areas. The risk
areas are: Criminal Planning/Confessions, Iden-
tity Hate, Sexual, Violence, Suicide and Self-harm,
Threat, Sexual (Minor), Guns/Illegal Weapons,
Controlled/Regulated Substances, Privacy, Harass-
ment, Needs Caution, and Other. We chose this
dataset since we believe it to be the currently
most comprehensively annotated publicly available
safety dataset.

3.3 Embedding Model

Sentence-BERT (Reimers and Gurevych, 2019) is
a well-documented approach for generating embed-
ding vectors for sentences, building upon the stan-
dard BERT model (Kenton and Toutanova, 2019).
It significantly enhances the efficiency in represent-
ing similarity and differences between texts using

BERT-based models. The original BERT architec-
ture lacks a mechanism to compute independent
vector embeddings for sentence comparisons, re-
sulting in substantial latency for sentence similarity
tasks, as both sentences must be fed as a sequence
into the BERT encoder to evaluate their similarity.

To solve this problem, Sentence-BERT uses a
Siamese architecture. First, two texts are fed into
two copies of the same BERT model. Then, vector
embeddings from both BERT models are separately
pooled into one embedding per sentence, resulting
in two embeddings. Finally, the resulting embed-
dings are subjected to a loss function based on
softmax (in training), or cosine similarity (for infer-
ence), as in Figure 1. The loss is propagated equally
through both Siamese BERT encoders, and the gra-
dients are aggregated. With Sentence-BERT, the
task of comparing sentence similarity is reduced to
computing the cosine similarity of two embedding
vectors, resulting in a substantial reduction of the
computational overhead.

To obtain sentence-level embedding, three dif-
ferent methods are considered to obtain a single
vector from BERT token embeddings. The sim-
plest approach is to use the CLS token embedding,
the embedding vector of the BERT special token
that is used for next-sentence prediction. The two
other methods consist of taking the maximum and
the average, respectively, over all BERT token em-
beddings in the sentence.

While fine-tuning, the Sentence-BERT frame-
work uses one of two loss functions: contrastive
loss and triplet loss. Contrastive loss takes in pairs
of sentences as input, labeled as either 1 (simi-
lar) or 0 (dissimilar), and the loss is computed
as the difference between the softmax result and
the labeled value. Triplet loss, on the other hand,



692

Category Training data instance count
Controlled/Regulated Substances 417
Criminal Planning/Confessions 1824
Fraud/Deception 1
Guns and Illegal Weapons 179
Harassment 711
Hate/Identity Hate 848
PII/Privacy 510
Profanity 241
Safe 3217
Sexual 340
Sexual (minor) 27
Suicide and Self Harm 51
Threat 22
Violence 249
Total 8637

Table 1: Training data instance counts by category

Category Testing data instance count
Controlled/Regulated Substances 58
Criminal Planning/Confessions 232
Fraud/Deception 0
Guns and Illegal Weapons 22
Harassment 83
Hate/Identity Hate 95
PII/Privacy 47
Profanity 26
Safe 401
Sexual 34
Sexual (minor) 2
Suicide and Self Harm 7
Threat 4
Violence 26
Total 1037

Table 2: Test data instance counts by category

takes in individual sentences labeled with inte-
gers (0, 1, 2, . . . , n) representing the n different
categories. These individual sentences are sepa-
rated into batches, used to form all possible sample
triplets of (anchor, positive, negative), and each pos-
sible pair’s embedding distance is either maximized
(for positive, or same-label pairs) or minimized (for
negative, or different-label pairs). Within triplet
loss, there exists three variations that we explored:
1. BatchAll minimizes the combined sum of triplet
losses per batch; 2. BatchHardMargin minimizes
loss for the triplet with maximum loss per batch;
and 3. BatchHardSoftMargin sums triplet losses
for triplets, with each triplet’s loss calculated as
max(0, d(A,P )− d(A,N) +margin), where d
is the distance, and A,P,N the anchor, positive
and negative embedding vectors, respectively. The
default margin used in this framework is 1.0.

3.4 Overall Architecture

We formulate the task of creating LLM guardrails
as a two-stage architecture. Given a user input
prompt text T , the first stage processes T through
an embedding model, fine-tuned on training data

with corresponding labels (safe vs unsafe). The
goal of this embedding model is to effectively learn
to differentiate between safe inputs and unsafe in-
puts. In the second stage, a classifier takes the
embedding vector output from the first stage and
classifies it as either safe or unsafe. If the user
prompt is safe, then we pass the user prompt as
input to the LLM. If not, we output a generic re-
sponse, telling the user that their input is unsafe, or
otherwise refuse to engage with the prompt.

We utilize the "distilbert-base-uncased" model
implementation from the Huggingface Transform-
ers library as our BERT model. This model is
smaller and faster than the original BERT, featuring
6 layers, each with a 768-dimensional hidden layer
and 12 attention heads. Our choice of "distilbert-
base-uncased" is motivated by three factors. First,
it is a BERT-based model, pretrained on tasks such
as next sentence prediction (NSP) and masked to-
ken prediction, giving it a strong grasp of word
and sentence contexts through word and CLS to-
ken embeddings. Second, it is, to our knowledge,
the smallest model that delivers comparable perfor-
mance to other BERT-based models (Huggingface,
2024). Lastly, this model has not been fine-tuned
on natural language inference tasks, which are not
relevant, or could even be counter-productive, for
our use case, in contrast to other models such as
“distilbert-base-uncased-finetuned-mnli” and “all-
MiniLM-L6-v2” (HuggingFace, 2024).2

We then fine-tune a Sentence-BERT model, us-
ing the chosen underlying BERT model, for a pre-
defined number of epochs and batch size to serve as
our embedding model. After fine-tuning, we gener-
ate embeddings for both training and test data. For
classification, we evaluate two model types: sup-
port vector machine (SVM) and a (shallow) neural
network. Both models will be trained using the
training data embeddings. Model accuracy will
be assessed by running the best-performing classi-
fier on the test embeddings and comparing to the
corresponding labels.

4 Data Preprocessing

Each node in the AEGIS corpus is annotated at
least three times by different annotators. Some-
times, different annotators may disagree, either in
whether data is safe or unsafe, or the specific un-

2For example, embeddings that support detection of logical
contradictions are not helpful to our similarity learning since
logically contradictory statements are likely to be in the same
topical category.



693

safe taxonomies that are included. Since the dataset
provides the individual annotator labels, we had to
devise a label reconciliation scheme for classifier
training and evaluation.

To get the final dataset labeled with AEGIS’ cus-
tom taxonomy, we first take the second annotator’s
label without loss of generality. Then, we check for
data labeled “Other”, and see if another annotator
labeled it as something other than “Other”. If so,
we replace the “Other” label. If not, we remove
the data associated with the label. Then, for ev-
ery “Safe” label, we want to be sure that the data
is really safe. So, for “Safe” data, we check the
other annotations to see if other annotators agree
and label the data as “Safe”. If so, we label the final
data “Safe”. If not, we label it as one of the unsafe
categories that the other annotators annotated, ran-
domly. For some data that may have more than one
labels, we choose the first label, unless that label is
“Safe”, in which case we choose an unsafe label at
random. Once all data is labeled with exactly one
label, we remove all data with the “Needs Caution”
label from both train and test, as it is ambiguous
whether or not such data is safe or unsafe. We
also note that there are some duplicate instances
(i.e., two or more data items with the same prompt
string) in the publicly available AEGIS data, which
we process by retaining only the first occurrence of
said item. The “first occurrence” here follows the
original indices in the AEGIS dataset.

It should be noted that most train and test in-
puts are within BERT’s limit of 512 tokens. We
use the default tokenization model of “distilbert-
base-uncased” to tokenize inputs; this defaults to
truncation of samples exceeding the limit.

The category distribution of training and test
data after preprocessing is listed in Tables 1 and 2.
The amount of data we use is somewhat less than
that used by the AEGIS authors to instruction-tune
their models. Our number of fine-tuning samples
is 9,674, comparatively less than about 13,000 in-
stances as used by AEGIS (Ghosh et al., 2024).

4.1 Classifier Setup

To perform the final binary safe/unsafe classifica-
tion, we experimented with four different setups:

• Binary Embedding, Binary Classification
(BEBC): Both the training and test datasets
are divided into two categories, “safe” and
“unsafe”, with the latter consisting of all sam-
ples not labeled “safe”. We fine-tune a single

Approach BEBC MEMC McEMC McEMcC
Accuracy 87.46% 84.67% 88.04% 88.14%
F1 score 86.56% 84.91% 86.99% 87.06%
UAP 86.69% 84.92% 87.16% 87.24%

Table 3: Results comparison with different classifier se-
tups. See Section-4.1 for the meaning of the shorthands
BEBC, BEMC, McEMC, McEMcC. UAP = unweighted
average precision, a macro-averaged accuracy.

Sentence-BERT model and train a single bi-
nary classifier on these embeddings.

• Multiple Embedding, Multiple Classifiers
(MEMC): Treat each unsafe category as dis-
tinct. We then fine-tune seven Sentence-BERT
models: “safe” against each category from a
subset of populated unsafe categories (Crimi-
nal, Privacy, Sexual, Harassment, Guns, Vio-
lence, Control), and train a classifier for each
fine-tuned model. The final label is deemed
safe if all seven classifiers agree, and unsafe
otherwise.

• Multi-class Embedding, Multiple Classi-
fiers (McEMC): Fine-tune a Sentence-BERT
model, treating safe and each category of un-
safe as distinct, and train seven classifiers, us-
ing the subsets from MEMC. Like MEMC,
we aggregate results, making the final label
safe only if all seven classifiers agree.

• Multi-class Embedding, Multi-class Classifi-
cation (McEMcC): This approach is similar
to McEMC, where we fine-tune a Sentence-
BERT model by treating “safe” and each un-
safe category as distinct. However, instead
of training seven separate classifiers, we use
a single multi-class classifier to differentiate
between all categories.

5 Results

To decide which classifier setup was most effective,
we trained every embedding model for 10 epochs
and implemented the four schemes with SVM clas-
sifiers (binary or multi-class, as needed). See Ap-
pendix 8.1 for the full list of hyperparameters. As
shown in Table 3, “Multi-class Embedding, Multi-
class Classification” (McEMcC) outperformed the
other classifier approaches.

Once we had settled on the McEMcC classifier
approach, we tested a variety of hyperparameters,
including the choice between SVM and neural net-
work classifiers, the number of fine-tuning epochs,



694

AEGIS (on-policy)
AUPRC F1

LlamaGuardBase (Meta) 0.930 0.62
NeMo43B(Nvidia) - 0.83
OpenAI Mod API 0.895 0.34
Perspective API 0.860 0.24
LlamaGuardDefensive (AEGIS) 0.941 0.85
LlamaGuardPermissive (AEGIS) 0.941 0.76
NeMo43B-Defensive (AEGIS) - 0.89
WildGuard (most recent) - 0.89
Our Sentence-BERT model 0.946 0.89

Table 4: Comparison of Ghosh et al. (2024) and our
model’s results on the AEGIS test data. AUPRC = area
under the precision-recall curve.

learning rate, output dimensions of the sentence
embeddings, pooling method, the inclusion of a
normalization layer for embeddings, the holdout ra-
tio of the training data, early stopping patience and
threshold, loss function, fine-tuning batch size, and
whether to return the pooled BERT embeddings
directly or add feedforward layers, among others
(see Appendix 8.4 for results).

After exploring these hyperparameters, we ob-
tained an accuracy of 88.83%, which stands as
our best result. This model was trained with
McEMcC classifier, triplet-soft loss, the Sentence-
BERT mean-pooled embeddings, neural network
classifiers, 10 fine-tuning epochs, fine-tuning batch
size of 16, no early-stopping and holdout ratio of
0.0, no normalization layer, and using the 768-
dimensional pooled BERT embeddings directly.

We compared our results with the results re-
ported in the AEGIS paper (Ghosh et al., 2024),
reproduced in Table 4. We see that despite our final
solution only containing 67M parameters in total,
we are able to perform on par with significantly
larger models (in excess of 7 billion parameters).

The metric of area under the precision-recall
curve (AUPRC) is illustrated in Figure 2, which
is a plot of the detection trade-off curve for our
best-performing approach. Note that for purposes
of recall, the positive class is the unsafe category,
which is what we aim to detect in most applications.

We tested our best model against the two mod-
els that were proposed by AEGIS and compared
their latency. We observe that the fine-tuned Llama-
Guard on a single GPU (g5.2xlarge AWS) instance
has an inference latency time of over 140 seconds,
while our best model has an inference latency time
of about 0.05 seconds (see Appendix 8.2)

Figure 2: Precision-recall curve for our best model

6 Limitations and Future Work

While the results are promising, there is is need for
improvement in several directions. For starters, our
investigation was for English only, and we have not
yet explored fine-tuning Sentence-BERT on mul-
tilingual inputs. This restricts the effectiveness of
our guardrail to English-speaking users, limiting
its utility for global use. Second, our embedding
model is constrained to text-based inputs, and does
not accommodate other modalities, such as speech
or video, which are increasingly common in inter-
actions with LLMs. Finally, our current solution
only provides generic unsafe input filtering and
does not support few-shot topic-based filtering. As
a result, application developers cannot define spe-
cific additional topics they wish to filter as unsafe,
which limits the customization and flexibility of
the guardrail. Addressing these limitations would
significantly enhance the applicability and robust-
ness of our system. Future work will explore ways
in which to fine-tune an embedding model capable
of both unsafe prompt filtering and few-shot topic
filtering with minimal data.

Other directions for future investigation are sug-
gested by observations of results already obtained.
We believe that our model’s performance can be
improved significantly, given that we only used a
fraction of the AEGIS data. After our data pre-
processing, we retained 9,674 public annotated
human-LLM interaction instances, compared to
around 26,000 total instances in the corpus (see Ap-
pendix 8.3, Figure 4, for the full AEGIS category
distribution). When doing ablation studies varying
the training dataset size, we found that there ex-
isted a monotonically increasing trend between the



695

F1 score and the amount of training data used for
embedding model (see Appendix 8.4, or Table 6).
We can thus surmise that much better results could
be obtained with substantially more data. This in
turn suggests using techniques for data augmenta-
tion (e.g., paraphrasing) or machine-labeling (e.g.,
ensembling of powerful teacher models).

7 Conclusion

We have explored safety filters as an add-on to
instruction-tuning heavy-duty LLM models, and in-
troduced a new effective, lightweight guardrails
approach. Our goal was to minimize the num-
ber of model parameters and reduce inference la-
tency while retaining performance on the task of
detecting unsafe LLM prompts. We have demon-
strated a solution that involves fine-tuning a BERT-
based model, using Sentence-BERT to learn em-
beddings representing the safe/unsafe distinctions.
The learned embeddings are fed to a simple vector
classifier for binary or multi-class categorization.
We found that retaining distinct unsafe categories
for both embedding training and embedding classi-
fication yielded the best overall results. The final
results are comparable to popular LLM approaches
based on models many orders of magnitude larger
than ours, making this approach suitable for low-
cost integration into varied LLM applications.

References

Sergey Brin and Lawrence Page. 1998. The anatomy of
a large-scale hypertextual web search engine. Com-
puter networks and ISDN systems, 30(1-7):107–117.

Andrei Broder. 2002. A taxonomy of web search. ACM
SIGIR Forum, 36(2):3–10.

Douglass R Cutting, David R Karger, and Jan O Peder-
sen. 1993. Constant interaction-time scatter/gather
browsing of very large document collections. In
Proc. 16th Annual Intl. ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 126–134.

Shaona Ghosh, Prasoon Varshney, Erick Galinkin, and
Christopher Parisien. 2024. AEGIS: Online adaptive
AI content safety moderation with ensemble of LLM
experts. arXiv preprint arXiv:2404.05993.

Seungju Han, Kavel Rao, Allyson Ettinger, Liwei Jiang,
Bill Yuchen Lin, Nathan Lambert, Yejin Choi, and
Nouha Dziri. 2024. WildGuard: Open one-stop mod-
eration tools for safety risks, jailbreaks, and refusals
of LLMs. arXiv preprint arXiv:2406.18495.

Huggingface. 2024. Pretrained models.
https://huggingface.co/transformers/v2.
9.1/pretrained_models.html.

HuggingFace. 2024. Sentence transformers.
https://huggingface.co/sentence-transformers.

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi
Rungta, Krithika Iyer, Yuning Mao, Michael
Tontchev, Qing Hu, Brian Fuller, Davide Testuggine,
et al. 2023. LlamaGuard: LLM-based input-output
safeguard for human-AI conversations.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. BERT: Pre-training of deep bidi-
rectional transformers for language understanding.
In Proceedings of NAACL-HLT, volume 1, page 2.

Alyssa Lees, Vinh Q Tran, Yi Tay, Jeffrey Sorensen, Jai
Gupta, Donald Metzler, and Lucy Vasserman. 2022.
A new generation of Perspective API: Efficient multi-
lingual character-level transformers. In Proceedings
of the 28th ACM SIGKDD conference on knowledge
discovery and data mining, pages 3197–3207.

OpenAI. 2024. OpenAI API. https:
//platform.openai.com/docs/guides/
moderation/overview.

Christopher Parisien. 2024. Personal communication.

Traian Rebedea, Razvan Dinu, Makesh Sreedhar,
Christopher Parisien, and Jonathan Cohen. 2023.
NeMo Guardrails: A toolkit for controllable and safe
LLM applications with programmable rails.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proc. Conf. Empirical Methods in Nat-
ural Language Processing and 9th Intl. Joint Conf.
on Natural Language Processing (EMNLP-IJCNLP),
pages 3982–3992, Hong Kong.

Gerald Salton. 1989. Automatic text processing: The
transformation, analysis, and retrieval of information
by computer. Addison-Wesley.

8 Appendix

8.1 Hyperparameters used for evaluation
Parameter Value
Holdout ratio 0.0
Add normalization True
Classifier SVM
Add feedforward True
Fine-tuning batch size 16
Random seed 21
Fine-tuning epochs 10
Embedding dimension 768
Loss function Triplet-soft
Pooling method Mean

https://huggingface.co/transformers/v2.9.1/pretrained_models.html
https://huggingface.co/transformers/v2.9.1/pretrained_models.html
https://platform.openai.com/docs/guides/moderation/overview
https://platform.openai.com/docs/guides/moderation/overview
https://platform.openai.com/docs/guides/moderation/overview


696

8.2 Inference time comparison with
LlamaGuard

Model Iter Inf time StDev of inf time
(sec) (sec)

BERT-based

1 0.0522 0.1386
2 0.0551 0.1473
3 0.0493 0.1296
4 0.1037 0.2779
5 0.0585 0.1572
6 0.0573 0.1532

LG Permissive
1 163.6732 5.9813
2 162.4430 5.9557

LG Defensive
1 164.3122 5.6623
2 162.3445 5.2810

Table 5: Inference times for our BERT-based and the
LlamaGuard models

8.3 AEGISSafetyDataset category
distribution

8.4 Ablation tests
We first list the default hyperparameter values used
in our ablation tests.

Parameter Value
Approach 1
Holdout ratio 0.0
Add normalization True
Classifier SVM
Add feedforward True
Fine-tuning batch size 16
Fine-tuning epochs 10
Embedding dimension 512
Loss function Triplet-soft
Pooling method Mean

Next, we report ablations for several of the pa-
rameters, as indicated in the table captions below.
Each reported result is an average over runs with
four different seed values, except the ablation study
for fine-tuning ratio (Table 6), where we average
over six seed values.

Fine-tuning ratio Accuracy F1 UAP
0.2 0.839280 0.815721 0.822517
0.4 0.847798 0.830100 0.834376
0.6 0.858406 0.844764 0.847707
0.8 0.870781 0.861326 0.862864
1.0 0.877853 0.872465 0.873006

Table 6: Ablation: fine-tuning ratio, i.e., percentage of
available data used for fine-tuning of embedding model

Triplet soft Triplet hard Triplet all Contrastive
Accuracy (%) 87.56 87.75 88.24 87.46
F1 score (%) 86.63 86.65 87.51 87.08
UAP (%) 86.77 86.84 87.60 87.11

Table 7: Ablation: different loss functions

Embedding dimension 256 512 1024 1536
Accuracy (%) 87.95 87.56 87.46 88.33
F1 score (%) 87.23 86.63 86.43 87.34
UAP (%) 87.32 86.77 86.60 87.49

Table 8: Ablation: dimension of embedding model

Pooling strategy MEAN MAX CLS
Accuracy (%) 87.56 87.97 86.89
F1 score (%) 86.63 87.75 86.00
UAP (%) 86.77 87.76 86.13

Table 9: Ablation: Sentence-BERT pooling strategy

Fine-tuning epochs 3 5 10 20
Accuracy (%) 86.40 87.46 87.56 87.46
F1 score (%) 85.12 86.56 86.63 86.62
UAP (%) 85.37 86.69 86.77 86.74

Table 10: Ablation: fine-tuning epochs

Normalization No Normalization Normalization
Accuracy (%) 87.56 87.46
F1 score (%) 86.63 86.68
UAP (%) 86.77 86.79

Table 11: Ablation: normalization of vector embeddings


	Introduction
	Related Work
	LlamaGuard
	NeMo
	OpenAI MOD API
	Perspective API
	WildGuard
	AEGIS fine-tuned models

	Methodology
	Problem Statement
	Data
	Embedding Model
	Overall Architecture

	Data Preprocessing
	Classifier Setup

	Results
	Limitations and Future Work
	Conclusion
	Appendix
	Hyperparameters used for evaluation
	Inference time comparison with LlamaGuard
	AEGISSafetyDataset category distribution
	Ablation tests


