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Abstract

We introduce a novel Transformer-based
method for document segmentation, tailored for
practical, real-world applications. This method
utilizes overlapping text sequences with a
unique position-aware weighting mechanism to
enhance segmentation accuracy. Through com-
prehensive experiments on both public and pro-
prietary datasets, we demonstrate significant
improvements, establishing new state-of-the-
art standards by achieving up to a 10% increase
in segmentation F1 score compared to existing
methods. Additionally, we explore the appli-
cation of our segmentation method in down-
stream retrieval-augmented question answering
tasks, where it improves the quality of gener-
ated responses by 5% while achieving up to
four times greater efficiency. These results un-
derscore our model’s potential as a robust and
scalable solution for real-world text segmenta-
tion challenges.1

1 Introduction

Retrieval-Augmented Generation (RAG) enhances
Large Language Models (LLMs) by incorporating
relevant external information into their generation
processes, leading to more accurate, contextually
appropriate, and up-to-date responses. A crucial
component of RAG is text segmentation, essential
for dividing documents into coherent segments that
can be efficiently retrieved and utilized in prompts
for LLMs.

We develop question-answering systems for au-
tomotive drivers, providing answers based on ve-
hicle manuals. This system employs natural lan-
guage processing (NLP) techniques to interpret
user queries, search for relevant information in
a knowledge base, and generate answers with an
LLM based on the retrieved knowledge. Although
LLMs perform well at synthesizing information

1Our code is publicly available at https://github.com/
saeedabc/WeSWin

to produce natural, coherent responses, they usu-
ally need to be anchored in relevant knowledge to
accurately address domain-specific inquiries and
prevent hallucinations, thereby necessitating the in-
tegration of RAG. Our QA system’s effectiveness
hinges on the segmentation of vehicle manuals into
semantically coherent chunks, each encapsulating a
single topic or subtopic, ensuring that the LLM re-
ceives cohesive, relevant information for response
generation.

Text segmentation has evolved from rule-based
and statistical methods to sophisticated deep learn-
ing techniques. Traditional approaches, such
as those utilizing lexical overlaps (Hearst, 1997)
or semantic relatedness graphs (Glavas et al.,
2016), primarily focused on surface-level text
features to identify topic boundaries. In con-
trast, more recent developments leverage RNN
and Transformer-based methods, which provide
dense, context-aware representations capable of
capturing subtle semantic nuances (Koshorek et al.,
2018; Lukasik et al., 2020; Zhang et al., 2021; Yu
et al., 2023). Many supervised methods tackle
text segmentation as a sequence-labeling task to
directly predict segment boundaries. In particular,
Koshorek et al. (2018) introduced a hierarchical
BiLSTM model trained on their automatically la-
beled dataset, WIKI-727K, derived from English
Wikipedia, demonstrating the significance of large-
scale training data. Lukasik et al. (2020) proposed
BERT-based vanilla and hierarchical architectures
for document and discourse segmentation, chal-
lenging the traditional reliance on RNNs. The
limited input size of Transformers, however, ne-
cessitates breaking a longer document into smaller
sequences for efficient processing, typically using
sliding windows. Zhang et al. (2021) presented
a RoBERTa-based sequence labeling framework
with adaptive sliding windows that dynamically
adjust the processing window based on prior seg-
mentation decisions. Yet, its reliance on the last

https://github.com/saeedabc/WeSWin
https://github.com/saeedabc/WeSWin
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identified boundary to initiate the next sequence
can hinder scalability in processing long documents
and potentially propagate errors to subsequent
boundaries. Glavas et al. (2021) also employed
sliding windows in their hierarchical RoBERTa-
based approach, but suffered from oversimplified
sequence formation with fixed-size sentences and
sub-optimal aggregation. Yu et al. (2023) pro-
posed a multi-task, sentence-level sequence label-
ing framework based on Longformer, achieving
state-of-the-art on Wiki-727K (Koshorek et al.,
2018) and WikiSection (Arnold et al., 2019) bench-
marks. However, their use of one-sentence over-
lap in sliding windows does not fully alleviate the
context cut-off problem, resulting in performance
shortcomings compared to our model, despite the
additional training overhead and data requirements.
As a recent LLM-based approach in document
segmentation, Duarte et al. (2024) proposed a dy-
namic sliding window method to detect semantic
shifts using recurrent prompts to LLMs. However,
this approach is computationally demanding, offers
limited scalability, and requires initial paragraphs,
which may not always be available or applicable
across all domains. Despite the advances made
by these methods, they all face limitations in their
effective and efficient use of context, resulting in
sub-optimal segmentation performance.

In this work, we propose an overlapping sliding-
window technique for document segmentation that
aggregates position-weighted sentence predictions
across multiple windows during inference. This
method implicitly increases the effective context
visibility for individual sentence predictions within
a document, without relying on models with large
context sizes that would be prohibitively expen-
sive for most practical applications. To optimize
the aggregation of these sentence predictions, we
introduce position-aware weighting methods that
adjust their contribution toward the final decision.
We conduct comprehensive experiments using both
publicly available datasets and a vehicle manual
dataset, demonstrating that our proposed method
consistently outperforms existing state-of-the-art
approaches.

2 Problem Statement

Given a document D = ⟨s1, s2, . . . , sn⟩ consist-
ing of n sentences, document segmentation aims
to divide D into semantically cohesive segments
or chunks. To this end, we frame the problem as

a sentence-level binary classification task that pre-
dicts the probability pi of each sentence si in D
being the last sentence of a cohesive segment.

3 Methodology

We introduce WeSWin, a text segmentation method
based on Weighted Sliding Windows. This end-
to-end Transformer-based model is trained on se-
quences with sentence-level labels. During the
inference phase, overlapping sliding windows are
generated from the input document, and decisions
regarding each sentence from multiple windows are
aggregated using a specialized weighting scheme.

3.1 WeSWin Model Training
We fine-tune and evaluate three commonly-used
pretrained Transformer encoders—BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), and Long-
former (Beltagy et al., 2020)—for document seg-
mentation. Since the input size of these models is
typically much smaller than the token count of a
document, the document must first be partitioned
into smaller sequences of tokens for processing.

Training Sequence Formation. Given a docu-
ment D = ⟨s1, s2, . . . , sn⟩ consisting of n sen-
tences, and their respective binary class labels
⟨y1, y2, . . . , yn⟩, yi = 1 indicates that sentence
si is the last sentence of a semantic segment, while
yi = 0 indicates otherwise. To obtain training
sequences, we start from the first sentence of a doc-
ument. Each sequence includes as many sentences
as possible to fill the Transformer’s token capacity.
The next sequence begins with the last sentence of
the previous sequence, and this process continues
until all sentences in the document are covered.

Inspired by previous works (Glavas and Soma-
sundaran, 2020; Zhang et al., 2021; Yu et al., 2023),
we introduce a special token, [SNT ], appended
after each sentence in the sequence to encode con-
textual information. A tokenized sequence S over
D is formulated as:

⟨[CLS], s1, [SNT ], s2, [SNT ], . . . sm, [SNT ], [EOS]⟩

where si is the ith sentence in the sequence and is
tokenized as ti,1, ti,2, . . . , ti,|si| (where |si| is the
number of tokens in si) ,[CLS] and [EOS] mark
the beginning and end of the sequence respectively,
and |S| ≤ T , where T is the maximum input size
of the Transformer in terms of tokens. For example,
T is 512 for BERT and RoBERTa, but it can be set
as high as 4096 for Longformer.
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Figure 1: WeSWin inference pipeline. p(j)i represents
the prediction for sentence si when observed in se-
quence j, while pi represents the final prediction.

Training Pipeline. Given the training sequences
along with their sentence labels, we fine-tune a pre-
trained Transformer encoder model with a segmen-
tation classification head. The transformer takes
a sequence as input and computes the contextual
representations of its individual tokens. The con-
structed embedding of each [SNT ] token is then
fed into the segmentation head, which is a binary
Softmax classifier that outputs the probability of
each [SNT ] token marking the end of a semantic
segment. The standard binary cross-entropy loss
is used over all [SNT ] predictions in the training
batch. The exception to this is the last (i.e., right-
most) sentence of a sequence which is not included
in loss calculation because it lacks the appropriate
context for detecting whether the topic shifts after-
ward. However, such a sentence is also the first
sentence in the next sequence. Thus, the sentence
label participates in training in the next sequence,
while serving solely as context for the current one.

3.2 WeSWin Model Inference

We propose an inference method using sliding win-
dows over documents, with an adjustable degree of
sentence overlap between consecutive sequences.
This method allows multiple predictions for indi-
vidual sentences, effectively increasing the overall
context visibility for a more informed, aggregated
decision. Figure 1 illustrates the inference pipeline,
where tokenized sequences are derived from doc-
ument partitioning and fed to the Transformer en-

coder with a segmentation classifier to derive ini-
tial sentence predictions. For each sentence si,
sentence aggregation is applied to the overlapping
predictions p(j)i to derive the final decision pi.

3.2.1 Inference Sequence Formation
We propose a sliding-window sequence formation
method with a k-Sentence Stride, referred to as
SS-k. With a stride of k > 0, each new sequence
begins at the (k + 1)th sentence of the previous
sequence (if applicable) and continues up to a max-
imum of T tokens. This process repeats until the
entire document is covered. Due to sequence over-
lap, a sentence may receive multiple predictions
from its inclusion in several sequences. These prob-
abilities are then aggregated to derive a single deci-
sion determining the probability of a topic shift for
each sentence.

3.2.2 Weighted Aggregation of Multiple
Sentence Predictions

Since near-boundary sentences in a sequence expe-
rience abrupt context cut-offs (either to the right or
left), their predictions may be less robust than those
of sentences positioned farther from the boundaries.
Therefore, we propose a position-aware weighting
mechanism to effectively aggregate the estimated
probabilities:

pi =
∑

j: si∈Sj

w
(j)
i p

(j)
i

p
(j)
i represents the topic shift probability of sen-

tence si within the sequence span j, with a corre-
sponding weight w(j)

i . The main idea is to adjust
the influence of each sentence’s prediction on the
final aggregated result based on its position within
the sequence: Near-boundary sentences receive rel-
atively lower contribution weights. We propose
three position-aware weighting functions, selecting
the best one based on validation performance.

Linear Positional Weights. The linear weight
for the ith sentence in a sequence containing m
sentences is defined as:

lin(i,m | k, ϵ) = ϵ+ (1− ϵ) ·
(
min(di,m, k)

k

)
where di,m = min(i − 1,m − i) is the distance
of the ith sentence to its closer boundary of the se-
quence, ϵ > 0 is the assigned weight for the bound-
ary sentences, and k is a positive integer controlling
how fast the weight increases as the sentence index
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Figure 2: Alternative Linear and Polynomial weighting
functions for a sample sequence.

moves from a boundary position to the center. (See
the blue curves in Figure 2)

Polynomial Positional Weights. The polynomial
weight assignment function is defined as:

poly(i,m | k, p, ϵ) =

ϵ+ (1− ϵ) ·
(
1−

(
1− min(di,m, k)

k

)p)
where i, m, di,m, and ϵ are the same as in the Linear
function. Here, both k and p control how fast the
weight changes. (See the green curves in Figure 2)

Figure 3: a) A sample average position-loss distribution,
l(.), displayed for the first and last 15 sentence positions
from each side b) Sample Loss-based positional weight-
ing functions for a sequence of 30 sentences.

Loss-based Positional Weights. We propose a
weighting function proportional to the model’s per-
formance at individual sentence positions in the
validation set. Specifically, we calculate the aver-
age validation loss for each sentence position rela-
tive to the nearest sequence boundary, denoted as

the position-loss distribution l(.). The loss-based
weight of sentence i in a sequence with m sen-
tences is defined as:

lob(i,m | k, ϵ) =

ϵ+ (1− ϵ) ·


max
1≤i′≤i

c(i′,m) if i ≤ k,

max
i≤i′≤m

c(i′,m) if i > m− k,

max
k<i′≤m−k

c(i′,m) otherwise.

where ϵ > 0 sets the minimum weight for bound-
ary positions, and the positive integer k controls
the (asymmetric) growth rate from boundary po-
sitions to the center. c(.) is the normalized com-
plement of l(.), for which the max function serves
as a smoothing operator, ensuring weights are non-
decreasing from the sides to the center. Figure 3
shows a sample position-loss mass, derived from
SS-4 partitioned sequences over 1000 randomly
selected validation documents from Wiki-727K, at
the top and a few derived weighting functions at
the bottom.

4 Experiments

We evaluate our WeSWin model on three publicly
available segmentation benchmarks: Wiki-727K
(Koshorek et al., 2018) and en_city and en_disease
subsets of WikiSection (Arnold et al., 2019). Com-
prised of Wikipedia articles, Wiki-727K serves
as an open-domain benchmark, whereas en_city
and en_disease are domain-specific. Addition-
ally, our method is applied and tested on a propri-
etary dataset known as AutoManual, which fea-
tures human-labelled segmentation information.
We further propose evaluating our method on a
downstream RAG task using another proprietary
dataset, AutoQA, which contains question-and-
answer pairs derived from AutoManual. Further
details and statistics of these datasets are provided
in Appendix A.1.

4.1 Comparison with SoTA Methods

We compare our proposed model with several
state-of-the-art (SoTA) baselines on the Wiki-
727K (Koshorek et al., 2018) segmentation bench-
mark. We trained our model using three different
Transformer models: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and Longformer (Belt-
agy et al., 2020). Table 1 shows the results on
Wiki-727K, where the models are grouped by the
backbone model used. With BERT or RoBERTa
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Backbone Model Wiki-727K
F1 Prec Rec

RNN Bi-LSTM (Koshorek et al., 2018) 57.7 69.3 49.5

BERT
Hier. BERT (Lukasik et al., 2020) 66.5 69.8 63.5
SeqModel:BERT-Base (Zhang et al., 2021) 68.2 70.6 65.9
WeSWin:BERT (ours) 75.17 75.35 74.99

RoBERTa SeqModel:RoBERTa-Base (Zhang et al., 2021) 70.2 66.2 74.7
WeSWin:RoBERTa (ours) 77.74 77.97 77.51

Longformer
Longformer-Base+TSSP+CSSL (2048) (Yu et al., 2023) 77.16 - -
WeSWin:Longformer-1024 (ours) 77.38 77.36 77.39
WeSWin:Longformer-2048 (ours) 77.91 79.7 76.2

Table 1: F1, Precision, and Recall comparison of WeSWin with SoTA segmentation models on Wiki-727K. The
best and second-best F1 results in each group are highlighted in bold and underlined, respectively. Results for our
models are derived from 1000 randomly selected test documents, calculated at the sentence level. Results for the
baselines are taken from their respective papers, where a dash (’-’) indicates that no data were reported.

as the backbone, our model significantly outper-
forms the best baseline, achieving more than a
10% relative improvement in F1 score. Specifically,
our WeSWin:BERT achieves an F1 score of 75.17,
while our WeSWin:RoBERTa achieves 77.74. We
trained and tested our Longformer checkpoints
with two alternative context size of 1024 or 2048 to-
kens, both of which outperforming the Longformer-
based SoTA with the 2048 context size, achieving
F1 scores of 77.38 and 77.91, respectively.2

In Table 2, we further evaluate our method on the
domain-specific en_city and en_disease datasets
(Arnold et al., 2019), comparing it to SoTA meth-
ods. The listed checkpoints are pre-trained on Wiki-
727K and then fine-tuned on domain-specific data.
Notably, our WeSWin:RoBERTa model, despite
having an input size of only 512, outperforms the
costlier Longformer baseline with an input size
of 2048 on the en_city dataset (86.8 vs 85.14 F1
score), while also performing competitively on
en_disease (77.26 vs 77.33 F1 score).

4.2 Impact of Overlapping Windows

Trained and tested on Wiki-727K, Figure 4 illus-
trates the F1 scores across different Transformer
baselines when employed with different sliding-
window document partitioning methods, denoted
by SS-k (for k = 6, 4, 2), introduced in Section
3.2.1. Sequence overlap increases as k decreases.
SP, or Single Prediction, partitions the document
using the same sequence formulation method em-
ployed during training, as discussed in Section 3.1.
In this approach, adjacent sequences share one sen-
tence, and predictions for the last sentence in a
sequence are deferred to the next sequence, where

2Consistent with the literature, the last sentence in a docu-
ment is always excluded from evaluation in this work, and all
section headers are simply omitted.

Figure 4: F1 score comparison of our WeSWin:BERT,
RoBERTa, and Longformer across SP and SS-k parti-
tioning methods when trained and tested on Wiki-727K.

it becomes the first sentence.
Figure 4 shows that aggregating predictions for

a sentence across overlapping sequences (from SS-
k) significantly improves performance compared
to the single prediction (SP) setting. Generally, a
higher degree of overlap results in higher F1 scores
across all Transformer models. The two smaller
context models, BERT and RoBERTa, benefit most
from overlapped partitioning. However, as the con-
text size increases, as seen with Longformer-1024
and Longformer-2048, the gains from increased
overlap become less pronounced.

4.3 Effect of Weighted Aggregation
We evaluate the impact of proposed weighting func-
tions on aggregated predictions from overlapping
windows. Figure 5 compares F1 scores from dif-
ferent weighting functions (including uniform) on
Wiki-727K using WeSWin:BERT. SS-k document
partitioning is employed in this experiment with
five different stride values. Results generally in-
dicate that all proposed weighting methods im-
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Model en_city en_disease
F1 Prec Rec F1 Prec Rec

SECTOR >T+bloom (Arnold et al., 2019) 74.9 - - 59.3 - -
LongT5-Base-SS (Inan et al., 2022) 82.3 - - 68.3 - -
Longformer-Base+TSSP+CSSL (2048) (Yu et al., 2023) 85.14 - - 77.33 - -
WeSWin:RoBERTa (512) (ours) 86.8 88.82 84.86 77.26 76.51 78.03

Table 2: F1 score comparison of WeSWin:RoBERTa with SoTA segmentation models on en_city and en_disease.

Figure 5: F1 score comparison of Uniform, Linear,
Polynomial, and Loss-based weighting methods across
several partitioning settings, tuned and tested with
WeSWin:BERT.

prove the model’s accuracy compared to Uniform
aggregation. Among these methods, Loss-based
weighting tends to outperform Linear and Polyno-
mial approaches. However, since this is not always
the case across different models, we consider all
methods as potential candidates and select the best
function based on the corresponding validation per-
formance for the specific partitioning method used.

4.4 Efficiency Comparison of Transformers

Figure 6 illustrates the F1 score against infer-
ence speed (measured in documents processed per
minute, or Doc/Min) for our WeSWin:RoBERTa
and Longformer-2048. When comparing each
model at the lightest partitioning baseline (SP),
RoBERTa, with a speed of 11.69 Doc/Min, per-
forms 110% faster than Longformer-2048, which
processes at 5.56 Doc/Min. The difference in
runtime becomes more pronounced in SS-k par-
titioning settings where RoBERTa performs up
to 170% faster than Longformer-2048 (3.28 vs
1.22 Doc/Min) in SS-3. This demonstrates that
RoBERTa serves as a competitive baseline to
Longformer-2048 while being more than twice as
efficient in inference. Notably, the smaller context
size also makes the training process significantly
faster and less GPU-intensive.

Figure 6: F1 score trend versus runtime efficiency
(Doc/Min) across different partitioning overlaps for
WeSWin:RoBERTa and Longformer-2048.

4.5 Segmentation on Industry Data

We apply and evaluate our segmentation model
on AutoManual, a real-world dataset with human-
labeled segments from an automotive user manual.
AutoManual includes 12 chapters (9 for training, 1
for validation, and 2 for testing) and features longer,
more diverse text than Wikipedia-based articles.

Given that the code or checkpoints for the
baselines presented in Section 4.1 were not
made publicly available, we employed two LLM-
based chunking methods as baselines for our
WeSWin:RoBERTa. Firstly, denoted as LLM-
TextTiling, we extended the TextTiling (Hearst,
1997) algorithm to utilize LLM embeddings.
Specifically, we used a k-sentence window on each
side of a candidate break, applied max-pooling to
the cosine similarities, and then used thresholding
to identify topic shifts. As a second baseline, we
implemented a modified version of LumberChun-
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Model AutoManual AutoQA

F1 Prec Rec GPT
Score

BERT
Score RougeL Prompt Size

(tokens)
Chunking

Runtime (s)
LLM-TextTiling 34.57 27.58 46.32 5.32 51.05 41.30 254 153
MultiSent-LumberChunker 64.83 69.12 61.04 6.92 64.33 50.86 253 161
WeSWin:RoBERTa (ours) 81.21 87.5 75.76 7.28 64.75 49.23 245 40.3

Table 3: Comparison of WeSWin:RoBERTa against baselines in document segmentation using the AutoManual
dataset and in downstream RAG using the AutoQA dataset.

ker (Duarte et al., 2024), denoted as MultiSent-
LumberChunker, which performs prompt-based
segmentation at the sentence level with multi-
ple outputs—unlike the original LumberChunker,
which operates at the paragraph level with a single
output per iteration. For this, we utilize GPT-4o
(OpenAI, 2023) to predict sentence IDs that mark
the beginning of new topics or subtopics within
an adaptive sliding window of k sentences. The
prompt used in this baseline is included in Ap-
pendix A.3. Hyperparameters for each method
were tuned on the validation set (detailed in Ap-
pendix A.2). Segmentation results presented in
Table 3 demonstrate that WeSWin significantly out-
performs both baselines in terms of F1 score, Pre-
cision, and Recall on the AutoManual dataset.

4.6 RAG Evaluation on Industry QA Data

We demonstrate the effectiveness of our segmenta-
tion model in the downstream task of question an-
swering through the RAG framework. Specifically,
we utilize our WeSWin:RoBERTa chunker to per-
form retrieval-augmented question answering on
the AutoQA dataset, which comprises 50 human-
labeled question and long-form answer pairs de-
rived from the test set of AutoManual.

The retrieval process involves segmenting Au-
toManual chapters into chunks. Embedding vectors
for these chunks are derived using OpenAI Embed-
dings (OpenAI, 2023). During inference, given
a question, a FAISS search (Johnson et al., 2019)
is conducted on the embedding vector against the
chunk database to find the top chunk with the high-
est similarity. For answer generation, we create a
prompt incorporating the input query and the re-
trieved chunk as context, and ask GPT-4o (OpenAI,
2023) to identify the span of text from the context
that best answers the question. The prediction is
then evaluated against the ground truth using three
metrics: GPTScore (employing GPT-4o as a judge
to provide matching scores out of 10), BERTScore
(Zhang et al., 2020), and RougeL (Lin, 2004). RAG
and GPTScore prompts are included in Appendix

A.4.
In Table 3, we compare our WeSWin:RoBERTa

chunker with the two previously introduced base-
lines on the AutoQA dataset. Operating under a
comparable context size (or prompt size) setting,
our model outperforms the best baseline by over 5%
in GPTScore (7.28 vs 6.92) and operates four times
faster in runtime (40.3 vs 161 seconds).3 In terms
of BERTScore and RougeL, WeSWin significantly
surpasses LLM-TextTiling and performs compara-
bly to MultiSent-LumberChunker. Furthermore,
our RoBERTa-based model is considerably smaller
than GPT-4 and incurs no monetary cost.

5 Conclusion

In this work, we introduced WeSWin, a sentence-
level sequence labeling framework for document
segmentation that is based on and compatible with
various Transformer encoders, including BERT,
RoBERTa, and Longformer. WeSWin employs a
position-aware aggregation of sentence decisions
from overlapping sliding windows to accurately
predict topic shifts. We achieved state-of-the-art
results with all three Transformer models on two
public segmentation benchmarks. Additionally,
when applied to an automotive user manual within
a QA system for drivers, WeSWin significantly
outperformed existing baselines on two propri-
etary datasets in both segmentation and RAG-based
question-answering. Notably, our solution oper-
ates up to four times faster and is much more cost-
effective compared to the baselines.
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Dataset #Train #Validation #Test #Segment/Doc #Sentence/Doc #Word/Doc
Wiki-727k 582,160 72,354 73,232 6.2 52.6 1,117.3
en_city 13,679 1,953 3,907 6.8 53.2 1058.3
en_disease 2,513 359 718 7.7 54.6 1122.8
AutoManual 9 1 2 112.8 755.9 9,797.0

Table 4: Cardinality and length statistics of text segmentation datasets. #Train, #Validation and #Test denote the
number of documents in the training, validation, and test sets, respectively.

non-text elements such as images and tables and
ensure that each segment is properly divided into
sentences using the Punkt tokenizer (Bird et al.,
2009).

The WikiSection dataset (Arnold et al., 2019)
consists of segmented Wikipedia articles in domain-
specific settings. Within this dataset, the en_city
subset includes 19.5k articles about various city-
related topics, while the en_disease subset contains
3.6k medical and health-related documents with
scientific details from Wikipedia.

AutoManual is a proprietary dataset contain-
ing information on vehicle operation, maintenance,
safety features, technical specifications, and trou-
bleshooting, organized hierarchically into chap-
ters, sections, subsections, paragraphs, and sub-
elements such as text, list items, tables, and figures.
The dataset is processed into flattened chapter texts,
each human-labeled with segmentation information
indicating the segment boundaries.

AutoQA consists of 50 human-labeled ques-
tion and long-form answer pairs derived from the
test set of AutoManual. Each answer is a multi-
sentence span or paragraph that directly addresses
the paired question, ensuring relevance and com-
pleteness.

A.2 Hyperparameter Setting

We train our Transformer baselines on Wiki-727k
using a learning rate of 1e-5 for a maximum of
three epochs, employing early stopping to prevent
overfitting. For the en_city, en_disease, and Au-
toManual datasets, we adjust the learning rate to
5e-6 and extend training to five epochs, also utiliz-
ing early stopping. The batch size is set at 8 for
BERT and RoBERTa models, and at 4 for Long-
former baselines. The BERT and RoBERTa models
are trained on a GTX 1080 Ti GPU, while the Long-
former baselines utilize an RTX A6000.

Inference hyperparameters are set based on per-
formance over the validation set. To determine
the optimal document partitioning method, we test
and compare the Single Prediction (SP) method as
well as several SS-k methods, including k = 6, 4,

and 2. When aggregating multiple predictions from
overlapping sequences, we experiment with various
weighting functions as hyperparameters—Uniform,
Linear, Polynomial, and Loss-based—to find the
best fit. In this context, we set ϵ to 0.1, k to either
5, 8, 10, or 12, and p to 2 for the Polynomial func-
tion. We also explore decision thresholds within
the range of [0.3, 0.7] to derive binary sentence
labels from the final output probabilities.

In the RAG experiment (Section 4.6), we em-
ploy SS-10 partitioning with lob(.|k = 5, ϵ = 0.1)
as the weighting function for sentence aggrega-
tion using our WeSWin:RoBERTa. For MultiSent-
LumberChunker, we set k to 50 sentences as
the optimal sequence size for the sliding window
provided to the LLM for prediction. For LLM-
TextTiling, we optimized k = 3 sentences to the
left and right, applying a max-pooling operation
over their embeddings.

A.3 Prompt used in
MultiSent-LumberChunker

The prompt used in MultiSent-LumberChunker to
perform text segmentation is provided in Table 5.

A.4 Prompt used in RAG Inference and
GPTScore

The prompt for the generation component of RAG
is provided in Table 6, while the prompt used for
deriving GPTScore in RAG evaluation is shown in
Table 7.
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You are an intelligent assistant. Your task is to predict the points within an input
text document where the topic or subtopic undergoes a shift.

Details:
- The input consists of consecutive sentences, each provided in a new line in
the format <ID>: <Sentence>.
- Your goal is to identify the IDs of sentences where a relatively distinct or even
slightly different topic or subtopic begins, excluding the very first sentence of
the document.

Additional Consideration:
- Avoid very long groups of sentences. Aim for a good balance between
identifying the topic shifts and keeping groups manageable.

Output Format: A list of sentence IDs (only), each on a new line in document
order.

<ID 1>: <Sentence 1>
<ID 2>: <Sentence 2>
...
<ID m>: <Sentence m>

Table 5: MultiSent-LumberChunker Prompt

You are an intelligent assistant. Your task is to
answer the given question solely based on the
information provided in the context.
Extract the span of sentences from the given con-
text that most accurately and relevantly answers
the given question. If no relevant answer can
be derived from the context, respond with "Not
found."

Question:
<question>

Context:
<context>

Table 6: RAG Prompt

You are an intelligent evaluator. Your task is to as-
sess how well the candidate answer aligns with the
provided ground-truth context while accurately
addressing the question.
Focus on factual correctness strictly in relation to
the given context.
Assign a score between 0 and 10, where 10 repre-
sents a perfect answer.
Do not provide explanations—only the score.

Question:
<question>

Context:
<answer>

Candidate Answer:
<predicted answer>

Table 7: GPTScore Prompt
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