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Abstract

Recommendation Models (RMs) are crucial
for predicting user preferences and enhancing
personalized experiences on large-scale plat-
forms. As the application of recommendation
models grows, optimizing their online serv-
ing performance has become a significant chal-
lenge. However, current serving systems per-
form poorly under highly concurrent scenarios.
To address this, we introduce RecStream, a
system designed to optimize stream configura-
tions based on model characteristics for han-
dling high concurrency requests. We employ a
hybrid Graph Neural Network architecture to
determine the best configurations for various
RMs. Experimental results demonstrate that
RecStream achieves significant performance
improvements, reducing latency by up to 74%.

1 Introduction

Recommendation Models are machine learning
models used to predict users’ preferences. An RM
often consists of embedding lookup layers, which
are memory-intensive parts, and several fully con-
nected layers, which are compute-intensive parts.
In recent years, companies like Google (Zhao et al.,
2019; Covington et al., 2016), Alibaba (Zhou et al.,
2018, 2019), and Netflix (Koren et al., 2009) have
increasingly applied deep learning techniques to en-
hance the representation and prediction capabilities
of RMs. RMs are critical for online services, partic-
ularly on large-scale platforms where personalized
experiences drive user engagement and revenue.
According to (Corinna Underwood, 2020), 75%
of Netflix views and 60% of YouTube homepage
clicks are driven by RMs. According to (Liu et al.,
2022), Baidu processes billions of concurrent re-
quests each day.

Given the significant role of recommendation
systems, optimizing their online serving perfor-
mance has become an important challenge. To
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Figure 1: Online inference performance was evaluated
at five levels of concurrency: 1, 25, 50, 75, 100. Results
showed that at a concurrency level of 100, the inference
latency can increase by as much as 57 times compared to
the low concurrency scenario (WnD-54-L). The detailed
numerical results are provided in Appendix A.

handle such a massive volume of requests, produc-
tion environments require an efficient online serv-
ing system which can 1) process massive concur-
rent requests within strict service level agreement
(SLAs) (Liu et al., 2022; Jiang et al., 2021) to en-
hance user satisfaction and maximize revenue, and
2) make the best use of computational infrastruc-
ture to reduce unnecessary costs. However, current
deep learning frameworks like Tensorflow (Abadi
et al., 2015) and TorchRec (Ivchenko et al., 2022)
are mainly focused on model training and lack serv-
ing efficiency. Machine learning compilers like
TVM (Chen et al., 2018) improve inference latency
by optimizing the computation graph topology and
operator efficiency, but also lack online serving
ability. Model serving frameworks like Tensor-
flow Serving (Olston et al., 2017) are proposed to
meet online serving requirements, but they also
perform poorly under high concurrency. We used
Tensorflow Serving (Olston et al., 2017) to test
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several RMs under different concurrency scenar-
ios and found that the inference latency increased
drastically as concurrency increases. The increased
latency primarily stems from the default CUDA
stream scheduling mechanism, which processes op-
erators in a First Come First Served (FCFS) manner,
leading to resource contention. When processing
concurrent requests, operators from different re-
quests are sent to the same stream and cause con-
tention for GPU resources. Although using multi-
ple streams could alleviate this issue, the optimal
stream configuration varies for different models
due to the different model topologies and opera-
tor characteristics, which presents challenges for
stream configuration of online serving.

To address these challenges, we propose Rec-
Stream, a system designed to find the optimal
stream configurations for different models based on
their model characteristics. It is difficult to deter-
mine the optimal stream configuration through sim-
ple rule-based methods because model topology,
operator characteristics, and concurrency levels all
impact latency. In recent years, Graph Neural Net-
works (GNNs) have gained popularity due to their
powerful graph processing capabilities. To effec-
tively consider both model characteristics and con-
currency levels, we propose a heterogeneous graph
neural network that integrates concurrency infor-
mation into graph features for joint optimization.
We conducted experiments on multiple production
models under different concurrency levels, and the
results demonstrate that our approach can achieve
up to 75% performance improvement.

2 Related Work

Deep learning serving systems Many efforts have
been made to build efficient serving systems sys-
tems (Fan et al., 2019; Liu et al., 2021, 2022; Gupta
et al., 2020; Gujarati et al., 2020; Han et al., 2022;
Ng et al., 2023; Strati et al., 2024). As a lead-
ing search engine company, Baidu proposed a se-
ries of DNN-based recommendation model serving
systems (Liu et al., 2021; Fan et al., 2019; Liu
et al., 2022), which handle massive requests effi-
ciently. DeepRecSys (Gupta et al., 2020) proposes
a recommendation serving scheduler to maximize
throughput by considering the characteristics of
online traffic patterns, model compute characteris-
tics, and hardware systems. Clockwork (Gujarati
et al., 2020) builds a fully distributed serving sys-
tem by considering whether the GPU can meet

the request deadlines, which can serve thousands
of DNNs per server while achieving tight request-
level service-level objectives (SLOs). REEF (Han
et al., 2022) utilizes DNN kernel properties and
employs a preemption scheme to better schedule
between latency-critical and best-effort DNN in-
ference tasks. Paella (Ng et al., 2023) enables
software control of kernel execution order over
the black-box GPU scheduler through a model
compiler, local clients, and scheduler co-design.
Orion (Strati et al., 2024) schedules operators by
considering both their compute and memory re-
quirements under multi-model concurrent serving
scenarios. However, these existing optimization
works on serving systems do not take the concur-
rency level into consideration, thus lack flexibility
when deployed in online services.

Machine Learning Compilers In recent years,
machine learning compilers have been widely pro-
posed (Sabne, 2020; Chen et al., 2018; Pan et al.,
2024; Zheng et al., 2023; Tillet et al., 2019; Zheng
et al., 2022; NVIDIA, 2024a) due to their high ef-
ficiency and good portability. XLA (Sabne, 2020)
and TVM (Chen et al., 2018) compile the ma-
chine learning computation graph into a series of
fused computing kernels on a variety of devices,
including CPUs, GPUs, and accelerators (e.g., FP-
GAs, ASICs). BladeDISC (Zheng et al., 2023)
tackles the dynamic shape problem in ML models
by shape information propagation and a compile-
time and runtime combined code generation ap-
proach. Astitch (Zheng et al., 2022) uses a hier-
archical data reuse technique and adaptive thread
mapping to optimize memory-intensive ML com-
putations. Recom (Pan et al., 2024) optimizes the
heavy embedding computations in RMs by using
a novel inter-subgraph parallelism-oriented fusion
method to generate efficient code.” Additionally,
Triton (Tillet et al., 2019) was proposed to gener-
ate efficient GPU kernels for deep learning work-
loads. Our work is orthogonal to these compilation-
related works and can be further accelerated with
the proposed structured features and runtime mod-
ules after compilation optimization.

Graph Neural Networks Recently, GNNs have
been widely used due to their ability to process
data with graph structures. Graph Convolutional
Networks (GCN) (Kipf and Welling, 2017) effec-
tively aggregate features from a node’s local neigh-
borhood, making them particularly suitable for
downstream tasks by extending convolution op-
erations to graph structures using spectral graph
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theory. GraphSAGE (Hamilton et al., 2018) scales
to large graphs and supports inductive learning,
making it applicable to dynamic graphs and repre-
sentation learning for unseen nodes by introducing
a sampling and aggregation framework. Graph Au-
toencoders (GAE) (Hamilton et al., 2017) apply
autoencoder architectures to graph data to capture
latent representations of nodes. Recently, GNNs
have also been applied to compiler. For exam-
ple, (Brauckmann et al., 2020) uses GNNs instead
of sequence models to capture the graph represen-
tations of code for learning compiler optimization
tasks.

3 Method

In this section, we describe the details of our Rec-
Stream. We introduce the graph construction in
Section 3.1, describe the network architecture in
Section 3.2, and present the loss function in Section
3.3.

3.1 Graph Construction for GNN

Graph Definition. We formulate the computa-
tion graph as a directed graph G = (V,E), where
V is the set of nodes and E ⊆ V × V is the set of
edges. Each node v ∈ V corresponds to an opera-
tor in the model, and each directed edge (u, v) ∈ E
represents a data dependency from operator u to
operator v. This structure captures the flow of com-
putation and data within the model.

Node Feature Construction. Each node v is as-
sociated with a feature vector Fv ∈ Rd that en-
capsulates essential attributes of the operator. The
feature vector comprises three main components:

Latency (lv): The average execution time of
operator v at different concurrency levels. This
scalar value provides insight into the operator’s
performance characteristics.

Operator Type (tv): A one-hot encoded vec-
tor representing the type of operator, where tv ∈
{0, 1}K and K is the total number of operator
types. The k-th element of tv is set to 1 if operator
v is of type k, and 0 otherwise.

Attribute Values (av): A vector comprising
both categorical and numerical attributes of the
operator. Categorical attributes (e.g., data types)
are one-hot encoded, while numerical attributes
(e.g., tensor shapes, dimensions) are normalized to
ensure consistent scaling.

The complete node feature vector is constructed
by concatenating these components:

hv = lv ⊕ tv ⊕ av (1)

where ⊕ denotes vector concatenation.

3.2 Network Architecture

The architecture of RecStream is shown in Figure
2. With the graph G and node features {Fv}v∈V
defined, we employ a GNN to predict the optimal
stream configuration.

Graph Neural Network Layers. We utilize two
GCNs (Kipf and Welling, 2017) layers to process
the graph. The GCN layers update each node’s
representation by aggregating information from its
neighbors:

h(l+1)
v = ReLU

W · 1

|N (v)|
∑

v′∈N (v)

h
(l)
v′


(2)

where h
(l+1)
v represents the updated feature vector

of node v at layer (l+ 1), h(l)v′ indicates the feature
vector of neighboring nodes at layer l, W is the
weight matrix of the GCN, and N (v) denotes the
set of neighbors of node v.

Graph Embedding. After the GCN layers, we
obtain updated node representations h(L). We ag-
gregate these representations into a single graph-
level embedding hG using a global mean pooling
operation:

hG =
1

|V |
∑
v∈V

h(L)v (3)

This embedding captures the overall structural
and feature information of the computation graph.

Concurrency Representation. We represent the
current concurrency level as a one-hot encoded
vector c ∈ {0, 1}C , where C is the maximum con-
currency level considered.

We concatenate the graph embedding hG with
the concurrency vector c:

Z = hG ⊕ c (4)

Output Layer. The combined vector Z is passed
through two fully connected layers with ReLU ac-
tivation functions, followed by a final fully con-
nected layer and a Softmax function to produce
the probability distribution y ∈ RS over possible
stream configurations:
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Figure 2: The architecture of our RecStream

y = Softmax(FCN(Z)) (5)

where S is the total number of stream options.

3.3 Loss Function
Our goal is to predict the optimal stream configura-
tion under different concurrency levels. For each
concurrency level, the ground truth is the number
of streams that yield the best average latency per-
formance. During training, this ground truth is
transformed into a one-hot vector representation
Y ∈ 0, 1S , where S is the total number of possi-
ble stream configurations. The model predicts a
probability distribution over these configurations,
denoted as y.

The standard cross-entropy loss is then used to
compare the predicted distribution y with the one-
hot encoded ground truth. The loss function L is
defined as:

L = −
S∑

i=1

Yi log (yi) (6)

4 Experiments

In this section, we detail the experimental setup.

4.1 Experimental Setup
Service Framework. We implemented RecStream
based upon DeepRec (Intelligence, 2023), an open-
source recommendation model serving system de-
signed for production-scale environments. Com-
pared to the default TensorFlow Serving (Olston
et al., 2017), DeepRec incorporates multi-stream

and stream merging technologies to enhance online
inference performance. These features enable more
efficient utilization of GPU resources by allowing
concurrent execution of multiple inference tasks
and reducing kernel launch overhead.

Hardware and Software Configuration. All
experiments were conducted on a server equipped
with an Intel Xeon Platinum 8352Y CPU and an
NVIDIA A30 GPU with 24 GB HBM2 memory,
which is the same as our production environment
setup. The system runs on CentOS with CUDA
driver version 525 and CUDA Toolkit 12.0. All
code was compiled using GCC 9.3.0 and nvcc with
the -O3 optimization flag to ensure performance.

Models Evaluated. We evaluated four real-
world rms that are actively deployed in our online
services. All these models are based on the Wide
and Deep (WnD) architecture (Cheng et al., 2016),
which is widely adopted in the recommendation
systems domain due to its ability to handle both
memorization and generalization by combining lin-
ear and nonlinear feature transformations.

The models, denoted as WnD-14, WnD-28,
WnD-54-S, and WnD-54-L, were selected to repre-
sent a broad spectrum of recommendation model
complexities and structures:

• WnD-14 and WnD-28 are lightweight models
with lower computational demands (14 and
28 MFLOPs, respectively) and differ in the
number of operators and features they process.
They are representative of models used in sce-
narios where latency and resource constraints
are critical, such as mobile applications or
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real-time recommendation systems.

• WnD-54-S and WnD-54-L are more complex
models (both with 54 MFLoperators) but dif-
fer in their architectural designs. WnD-54-S
has fewer operators (71 operators) with more
complex computations per operator, represent-
ing models that perform intensive computa-
tions with deep feature interactions. WnD-
54-L has more operators (101 operators) with
simpler computations per operator, reflecting
models that utilize wide architectures with ex-
tensive feature combinations.

These models cover a range of architectural pat-
terns commonly found in recommendation systems,
including variations in depth, width, and operator
complexity. By evaluating RecStream on these di-
verse models, we aim to demonstrate its effective-
ness across different types of RMs used in various
real-world applications.

Table 1 summarizes their key characteristics. We
utilized tf.profiler and NVIDIA Nsight Com-
pute (NVIDIA, 2024b) for performance profiling
and FLOPs computation.

These models, if not optimized, have a large
number of small computational kernels, which can
lead to significant kernel launch overhead on GPUs.
To mitigate this, we applied optimizations using
TVM (Chen et al., 2018), an open-source deep learn-
ing compiler stack that enhances performance by
fusing kernels and reducing launch overhead. The
FLOPs for each model were computed by sum-
ming the operations of both TensorFlow original
operators and TVM-generated optimized operators.

Data Collection. To train our GNN-based model
for stream configuration, we collected model per-
formance data (i.e. mean latency) under differ-
ent concurrency levels and stream configurations.
Specifically, we conducted experiments at five lev-
els of concurrency: 1, 8, 15, 22, and 30. At each
concurrency level, a fixed number of clients contin-
uously sent requests to the server to maintain the

Table 1: Model Characteristics

Model FLOPS (MFLOPs) #Ops

WnD-14 14 616
WnD-28 28 179
WnD-54-S 54 71
WnD-54-L 54 101

desired level of concurrency. It is noteworthy that
the inference latency is defined as the duration of
model computation excluding serialization, deseri-
alization, and network transmission times. Finally,
our dataset was composed of the model character-
istics (e.g., model topology and operator character-
istics) and latency under different combinations of
concurrency and stream.

Training Details. We implemented our GNN
model using PyTorch Geometric (PyG) (Fey and
Lenssen, 2019), a library specialized for graph
neural networks. We employed the Adam opti-
mizer (Kingma and Ba, 2017) with a learning rate
of 0.001. To prevent overfitting, we applied a
dropout rate of 0.5 after the GCN layers. The model
was trained for 200 epochs with a batch size of 32.
We split the dataset into training (80%) and test
(20%) sets.

Baselines. We compared the performance of
RecStream with the following baseline approaches:

1. DeepRec-SS (DeepRec Single Stream): This
baseline uses the DeepRec framework with
a single CUDA stream for all inference
tasks. This configuration is similar to the
default setting of TensorFlow Serving (Ol-
ston et al., 2017), which also utilizes a single
CUDA stream without concurrency optimiza-
tion. Therefore, the performance of DeepRec-
SS effectively represents that of TF-Serving,
serving as a standard baseline without any
concurrency optimization.

2. DeepRec-Default (DeepRec Default Config-
uration): The default configuration of Deep-
Rec, which utilizes a fixed number of four
CUDA streams for inference. This setting
is commonly used in production due to its
balance between performance and resource
utilization.

3. DeepRec-Rand (DeepRec Random Configu-
ration): In this baseline, we randomly assign
stream configurations for different models and
concurrency levels within a reasonable range.

5 Results

In this section, we present and analyze the perfor-
mance of RecStream compared to the baselines.

5.1 Latency
Figure 3 indicates that, as concurrency increases,
nearly all schemes outperform DeepRec-SS config-
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Figure 3: The mean latency of RecStream and other baselines under different levels of concurrency. The detailed
numerical results are provided in Appendix A

urations, demonstrating the advantages of multi-
stream. When compared to DeepRec-SS, Rec-
Stream achieves the best performance gain for
model WnD-54-L at the concurrency level of
100. While RecStream does not outperform other
multiple-stream baselines under single concur-
rency, its optimization gains relative to the other
baselines increase significantly as concurrency in-
creases. Compared to DeepRec-Default, Rec-
Stream maintains a consistent advantage. For
model WnD-54-L, RecStream achieves a perfor-
mance gain of nearly 74% compared to DeepRec-
Default. It’s noteworthy that, in some cases (e.g.,
WnD-54-L, concurrency 75), DeepRec-Rand per-
forms better than DeepRec-Default, indicating that
applying a fixed stream configuration across all
models can yield suboptimal results. Overall, the
experimental outcomes confirm that RecStream ef-

fectively selects the most suitable stream configu-
rations for various models under different concur-
rency levels.

5.2 Ablation Study

Concurrency We found that as concurrency in-
creases, the performance improvements of Rec-
Stream over DeepRec-SS and DeepRec-Default
gradually increase. This is due to the network ar-
chitecture in RecStream. With the help of GNN,
RecStream can understand the model architecture
and find optimal stream configurations under dif-
ferent concurrency levels.

FLOPs Additionally, we observed that model
size significantly influences RecStream’s perfor-
mance. As the number of operators increases, Rec-
Stream’s gain increases. For RecStream, the la-
tency of WnD-54-L (nearly 1s) is far less than that
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of WnD-54-S (nearly 2.5s) at the concurrency level
of 100. Although WnD-54-S and WnD-54-L have
the same FLOPs, WnD-54-L has more operators.
We argue that this is because as the number of op-
erators increases, the contention between operators
increases. By reducing contention, RecStream can
achieve better performance.

5.3 Overhead Analysis

Here, we analyze the overhead of our proposed
method.

Offline Overhead: The primary overhead of
RecStream is during the offline training phase of
the GNN Models. The training process is efficient
and can be completed within a few hours. More-
over, models in production environments do not
change frequently, so the GNN model does not
require frequent retraining.

Online Overhead: In the online serving phase,
RecStream introduces negligible overhead. Once
trained, the GNN model is lightweight and can
quickly predict the optimal stream configuration
based on the model’s characteristics and the cur-
rent concurrency level. This prediction is per-
formed infrequently (e.g., when the concurrency
level changes significantly) and does not impact
the inference latency.

Despite the need for offline training, the pro-
posed method is worthwhile. In recommendation
systems, latency is a critical factor impacting user
experience and system efficiency. Even small re-
ductions in latency can lead to substantial cost sav-
ings and increased revenue.

6 Conclusion

In this work, we present RecStream, a hybrid net-
work architecture that determines optimal online
serving configurations based on model character-
istics and concurrency levels. By utilizing GCNs,
RecStream can find the best stream configuration
for various RMs under different levels of concur-
rency. RecStream outperforms other simple, fixed
stream configuration methods that use the same
settings for all RMs.
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Concurrency DeepRec-SS DeepRec-Default DeepRec-Rand RecStream

1 0.04 0.04 0.04 0.04
25 0.33 0.11 0.18 0.09
50 0.66 0.22 0.19 0.19
75 0.98 0.33 0.40 0.28
100 1.30 0.45 0.53 0.36

Table 2: Mean Latency (in seconds) for WnD-14 under Different Concurrency Levels

Concurrency DeepRec-SS DeepRec-Default DeepRec-Rand RecStream

1 0.02 0.03 0.03 0.02
25 0.37 0.23 0.23 0.22
50 0.76 0.48 0.55 0.46
75 1.13 0.73 0.77 0.70
100 1.53 0.99 1.12 0.96

Table 3: Mean Latency (in seconds) for WnD-28 under Different Concurrency Levels

Concurrency DeepRec-SS DeepRec-Default DeepRec-Rand RecStream

1 0.08 0.08 0.08 0.08
25 0.93 0.61 0.73 0.60
50 1.86 1.25 1.28 1.18
75 2.81 1.88 2.04 1.81
100 3.75 2.56 3.00 2.39

Table 4: Mean Latency (in seconds) for WnD-54-S under Different Concurrency Levels

Concurrency DeepRec-SS DeepRec-Default DeepRec-Rand RecStream

1 0.07 0.08 0.07 0.07
25 0.98 0.68 0.70 0.65
50 1.99 1.40 1.56 1.18
75 3.06 1.28 2.20 1.03
100 4.05 1.31 2.88 1.05

Table 5: Mean Latency (in seconds) for WnD-54-L under Different Concurrency Levels
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