
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track, pages 76–90
January 19–24, 2025. ©2025 Association for Computational Linguistics

76

PDC & DM-SFT: A Road for LLM SQL Bug-Fix Enhancing

Yiwen Duan, Yonghong Yu, Xiaoming Zhao, Yichang Wu, Wenbo Liu
Bytedance Inc.

[duanyiwen.86, yuyonghong, zhaoxiaoming.chuck, wuyichang, liuwenbo.arthur]@bytedance.com

Abstract

Code Large Language Models (Code LLMs),
such as Code llama and DeepSeek-Coder, have
demonstrated exceptional performance in the
code generation tasks. However, most exist-
ing models focus on the abilities of generating
correct code, but often struggle with bug re-
pair. We introduce a suit of methods to enhance
LLM’s SQL bug-fixing abilities. The methods
are mainly consisted of two parts: A Progres-
sive Dataset Construction (PDC) from scratch
and Dynamic Mask Supervised Fine-tuning
(DM-SFT). PDC proposes two data expansion
methods from the perspectives of breadth first
and depth first respectively. DM-SFT intro-
duces an efficient bug-fixing supervised learn-
ing approach, which effectively reduce the total
training steps and mitigate the "disorientation"
in SQL code bug-fixing training. In our evalu-
ation, the code LLM models trained with two
methods have exceeds all current best perform-
ing model which size is much larger.

1 Introduction

Recently, as large language models (LLMs) achieve
remarkable success, code LLMs emerge as useful
assistants when editing code. However, when we
shift focus to fixing code errors, we find that the
performance of open source pre-trained code LLMs
like DeepSeek-Coder (Guo et al., 2024), Wizard-
Coder (Luo et al., 2023) and Code Llama (Roziere
et al., 2023) is quite limited (as shown in Table 1).

In this paper, we especially focus on the code re-
pair task of SQL. Due to the complex nested query
structure, SQL code bugs are more difficult to solve
compared with other code languages. We formulate
the SQL code bug-fixing task as Equation 1.

SQLcorrect = f(Schema, SQLbug, R) (1)

Where the f represents the bug-fixing model.
Schema means the related tables schemas of bug

SQL code. SQLbug denote the SQL code which
contains some bugs need to be fixed. R is the return
message by the SQL execution system when you
run the bug SQL code. SQLcorrect is the bug-
fixing model’s output, which is expected the right
SQL code.

We propose a set of methods to enhance the
bug-fixing capabilities of Large Language Mod-
els (LLMs). This includes a method for mining
and collecting supervised data, termed Progressive
Dataset Construction (PDC), and an efficient train-
ing method based on dynamic masking, known as
Dynamic Mask-SFT (DM-SFT). Experiments show
that training with data collected via PDC method
generally improved the SQL bug-fixing capabili-
ties of open-source code LLMs by nearly +50%.
The Dynamic Mask-SFT training method further
enhanced model performance by approximately
+10% relative to the default generative SFT.

2 Related Work

Deep learning-based code bug repair has attracted
attention with the advancement of pre-trained
LLMs. Most methods follow a zero/few-shot learn-
ing paradigm, directly using LLMs to generate re-
paired code from context. Huang et al. (2023) ex-
plored fine-tuning LLMs for bug fixing, showing
significant improvements over previous tools.

Other approaches generate supervised data
by transforming correct code into buggy code.
BUGLAB (Allamanis et al., 2021) uses self-
supervision to train bug detectors, while Break-It-
Fix-It (Yasunaga and Liang, 2021) collaboratively
trains bug fixers and generators. However, generat-
ing realistic SQL bugs remains challenging due to
its differences from object-oriented languages.

Agent-based approaches like RepairAgent
(Bouzenia et al., 2024) and SELF-DEBUGGING
(Chen et al., 2023) enable LLMs to autonomously
fix bugs. But debugging SQL code at the task level



77

Figure 1: The initial training data collection via user
behavior logs mining.

is time-consuming, making repeated execution im-
practical.

3 Progressive Dataset Construction

In this section, we introduce a set of data collection
methods called Progressive Dataset Construction
(PDC). The methods include two parts: diverse
collecting from online system (breadth first) and
oriented generation of offline mining (depth first).
The diverse collecting through automated methods
ensures the diversity coverage and sustainable scal-
ability of the training datasets, thereby maintain-
ing a consistent alignment between the distribution
of training data and the behaviors of online users.
The oriented generation method is used for data
augmentation in cases where the model performs
poorly in evaluation and online serving. This ap-
proach requires assistance of code LLM and some
SQL corpora recall methods.

3.1 Diverse Collecting

Data Collecting. To collect initial training data,
we designed rules to mine online user behavior
logs. As shown in Figure 1, when users en-
counter SQL execution errors, the system logs
the erroneous code and error message. Users
then typically edit and correct the code until it
runs successfully, allowing us to extract many
(bugSQL, correctSQL) pairs from their behav-
ior.

Moreover, since the SQL environment includes
syntax checking, some users modify their code
based on syntax prompts and save it without
re-executing when the highlighted syntax error
prompts disappear. Thus, we also consider the
last ’save code’ operation after an execution error
as a signal for identifying correct SQL, as depicted
in Figure 1.

Figure 2: Execution filter for data quality.

Automated filtering. After collecting data
from online user logs, we apply an execu-
tion filter as shown in Figure 2. This retains
(bugSQL, correctSQL) pairs where the bug SQL
causes an error (red) and the correct SQL runs suc-
cessfully (green). We also remove samples where
the difference between the bug SQL and correct
SQL is too large to ensure data quality.

Spot check. Lastly, we conduct a manual sam-
pling inspection of the filtered data to ensure that
correct SQL is just transformed from bug SQL by
bug fix, without any SQL semantics change. If the
[bug SQL, correct SQL] pairs achieve inspection
pass rate over 85%, they meet our quality standards
and are deemed suitable as training data.

Diverse collecting samples for bug SQL repair
directly from online user behavior ensures an excel-
lent coverage of diversity. It aligns with the natural
data distribution in real service scenarios, which
is crucial for model training. Even after model’s
serving online, diverse collection remains essential
to identify cases where users reject model’s fixes
and make manual edits, indicating a mismatch with
their expectations.

3.2 Oriented Generation
Oriented generation is a data augmentation method
targeting difficult cases, such as unique syntax fea-
tures and rare long-tail error types. We used regex-
based templates to classify bugs from error mes-
sages and codes, organizing them into 81 categories
across three levels. As shown in the Appendix A.5
Figure 7.

The original SQL corpus consists of executable
SQL code from historical platform users. As illus-
trated in Figure 3, we apply this method to aug-
ment data for bug types that are challenging for the
model, following the steps outlined below:

(1) Identify target types. Initially, we target rare
long-tail bugs. After deployment, we focus on
types where model correction accuracy is low.

(2) Define an “error feature” for each type. Er-
ror features depend on the recall algorithm
used. For example, you can use syntax key-
words for recall, such as using the keyword



78

Figure 3: Overview of oriented generation method.

“group by” to match SQL code suitable for
generating “group by” errors.

(3) Recall candidate SQL code. We employ ap-
propriate rule based matching algorithm to pair
a rich corpus of SQL code with each bug type
via "error feature". As accuracy of match-
ing varies across different bug types, different
matching algorithm for different bug type is
needed sometimes.

(4) Generate bug SQL samples for each bug
type. This step requires assistance of a robust
code LLM for the generation of bug SQL code.
In our practice, the quality of bug SQL gener-
ated is closely tied to the prompt. We provide a
reference prompt in Appendix A.1 used in our
internal code fundamental LLM for bug SQL
generation.

The diverse collecting and oriented generation
methods respectively accomplish the supervised
dataset construction for the SQL bug fixing task
from the perspectives of breadth-first and depth-
first approaches. Both methods remain effective
post-deployment. The diverse collecting method,
driven by user behavior, gathers unsatisfactory sam-
ples for improvement (as mentioned at the end
of Section 3.1). Meanwhile, oriented generation
can specifically enhance the types of bugs where
the model’s performance is subpar. The collected
data can be utilized to improve the model’s perfor-
mance. The enhancement of model performance, in
turn, affects the distribution of the data collecting.
Therefore, this is a progressive dataset construction
method.

4 Dynamic Mask Supervised Fine-tuning

In this section, we present a detailed introduction to
an efficient training method for LLM SQL code bug
fixing, which refer to as dynamic mask supervised

fine-tuning (DM-SFT). The Figure 4 compares DM-
SFT with default generative SFT in terms of train-
ing and loss calculation. As described in the In-
troduction, the input prompt (Appendix A.2) com-
posed of three pieces information: [tables DDL,
bug SQL, report error]. The model’s output is a
complete, corrected SQL code. Notably, most lines
between the bug SQL and correct SQL are identical,
with only a few requiring changes.

In our collected training data, the count distribu-
tion of code lines that need to be modified when
editing from bug SQL to correct SQL (called as diff
lines) is shown in Appendix A.5 Figure 9. Over
92% of cases have fewer than 5 diff lines, meaning
most correct code is already present in the input
(bug SQL). In default generative fine-tuning, all
output tokens contribute equally to the calculation
of final loss, leading to issues like slow conver-
gence and unstable training, which we will detail
in the experimental section.

To address these issues, we propose a code bug
repair training method called dynamic mask SFT.
During the model training process, we divide the
correct SQL code that the model is expected to
predict post bug-fixing into two categories in line-
by-line basis:

(i) Consistent lines: Code lines unchanged from
the original bug SQL.

(ii) Diff lines: Code lines that require modifica-
tion.

Given a bug SQL code, related tables schema,
report error and corresponding correct SQL code,
we use (l0, l1, l2, · · · , d0, · · · , dm, · · · ln),m ≤ n
denoting the correct code lines. The li, i ∈ [0, n]
represents the consistent lines and dj , j ∈ [0,m]
represents the diff lines. We use u to denote to-
kens of consistent lines, and v to denote tokens of
diff lines. Equation 2 shows the loss function of
dynamic mask SFT.

L1 =−
∑

logP (uk+1 | uk, uk−1, . . . , u0)

∗ a(l(uk+1))
(2)

a(li) =

{
0 p
1 (1-p)

(3)

Where a(li) is the mask weight of line li as Equa-
tion 3, and mask weight of all tokens in line li
are the same. The p is random mask ratio factor,



79

Figure 4: A comparison of the default generative SFT
(top) and dynamic mask SFT (bottom) for the code bug-
fixing task.

used to control the proportion of masked code lines.
l(uk+1) represents the line number of code where
token uk+1 is located. In Equation 2, L1 represents
the language model loss of the consistent lines (af-
ter dynamic masking). In Equation 4, L2 represents
the language model loss of the diff lines.

L2 =−
∑

logP (vk+1 | vk, vk−1, . . . , v0) (4)

L = L1 + L2 (5)

The final total loss L, as shown in Equation 5, is
composed of L1 and L2.

Figure 4 highlights the similarities and differ-
ences between dynamic mask SFT and default SFT
on bug-fix training. The correct SQL code need to
be predicted is shown in grey. In the output label,
the parts that don’t need to be calculated in loss
are highlighted in green (input prompt and masked
code lines randomly selected with probability p).

5 Experiments and Results

In this section, we present a detailed overview of
our experimental setup and results, divided into
two main parts. First, we demonstrate the effective-
ness of the PDC and DM-SFT methods through a

series of ablation experiments. Next, we analyze
the impact of the random mask ratio p in DM-SFT
on model performance and training efficiency. Fi-
nally, our analysis of hallucination issues found in
model evaluation and experiments on reducing hal-
lucinations through continue pre-train (CPT) (Ke
et al., 2023) are detailed in Appendix A.4.

5.1 PDC and SFT Experiments

We demonstrate the efficacy of the suit of meth-
ods (PDC & DM-SFT) through a series of exper-
iments. We collected 3k diverse samples through
the diverse collecting method and 300+ oriented
enhancement samples based on code LLM by the
oriented generation method. Based on these 3.3k
data1, we conducted ablation experiments to verify
DM-SFT’s effectiveness.

We use DeepSeek-Coder-instruct (6.7b) as the
fundamental model and carry out the training exper-
iments on a cluster of 32 × NVIDIA A800 80GB
GPUs using the DeepSpeed (Rajbhandari et al.,
2020) framework stage 3. In terms of hyperpa-
rameters setting, we used batch size = 32, learning
rate = 1.2e-5, and AdamW optimizer (Loshchilov
and Hutter, 2017) with adam_beta1 = 0.9 and
adam_beta2 = 0.95 (more detailed experimen-
tal parameter configurations, please refer to code
release information in the final part of this section).

We constructed a 1,072-entry evaluation dataset.
748 entries were randomly sampled from execu-
tion logs on in data platform, reflecting natural
distribution of SQL error types in production. The
remaining 324 entries were crafted to cover 81 er-
ror types(one type four examples). This ensures
alignment with real-world scenarios and allows
performance estimates on long-tail errors. The
ground truth of the dataset is precisely annotated
by staff SQL engineers. During the model devel-
opment stage, we used machine automatic evalu-
ation (a method based on AST semantic compari-
son) results to select the approximate best training
steps and hyper-parameters. Besides, in some sam-
ples, there’s more than one correct way to fix the
bug. The final model’s bug fixing accuracy was
determined by human evaluation of staff SQL engi-
neers.2

1All SQL code was collected from the company’s internal
big data development platform and written by data engineers.
Over 90% of the SQL is task-level, with an average length
more than 100 lines. These SQL scripts are highly diverse,
covering various business scenarios such as e-commerce, short
videos, search, and advertising.

2Unlike typical data query platform SQL, the SQL code



80

Method Model Size Acc

Pretrain

gemma 7B 20.1%
StarCoderBase 7B 20.8%
StarCoder2 7B 22.5%
CodeQwen1.5-Chat 7B 27.8%
DeepSeek-Coder-instruct 6.7B 28.5%
DeepSeek-Coder-instruct 33B 29.8%
DeepSeek-Coder-V2-Lite-Instruct(MOE) 16B 28.8%
WizardCoder-V1.1 33 B 29.7%
internal code LLM * 40.5%

SFT

gemma 7B 29.0%
StarCoderBase 7B 32.6%
CodeQwen1.5-Chat 7B 42.6%
DeepSeek-Coder-instruct 6.7B 43.8%
DeepSeek-Coder-V2-Lite-Instruct(MOE) 16B 43.9%
internal code LLM * 46.6%

DM-SFT
CodeQwen1.5-Chat 7B 49.3%
DeepSeek-Coder-instruct 6.7B 49.8%
DeepSeek-Coder-V2-Lite-Instruct(MOE) 16B 49.7%

Table 1: Accuracy of different models and training methods.

In the evaluation, we first assessed the bug-fixing
capabilities of leading open code LLMs and our
powerful internal code LLM (a closed-source code
LLM, without any bug-fixing SFT enhancement)
as a baseline to evaluate our PDC data collection
methods. Furthermore, through ablation experi-
ments, we compared the impact of dynamic mask
SFT and default generative SFT on training.

We conducted independent tests on various mod-
els, with outputs subjected to blind manual evalua-
tion (evaluators were unaware of which model each
answer came from, and each bug-fixing sample was
cross reviewed by three individuals). The final fix-
ing accuracy of each model on the 1072-sample
evaluation dataset are shown in Table 1.

It is evident that among the models with around
the 7B parameters, DeepSeek-Coder-6.7B-instruct
achieves the highest fixing accuracy. Additionally,
we observe that the larger 33B model does not
exhibit significant improvement compared to the
7B model. Using DeepSeek-Coder-6.7B-instruct as
the foundational model, we conducted both default
generative dynamic mask SFT training on the 3.3k
training dataset collected through the PDC method.

As observed in Table 1, the 3.3k samples from

on a data development platform is often task-level, meaning a
single execution can take several hours and incur high costs.
In contrast, conducting reliable manual evaluations based on
classified error type labels and ground truth is more practical
and efficient.

the PDC method (Diverse collecting & Oriented
generation) significantly boosted the DeepSeek-
Coder model’s bug-fixing accuracy from 28.5% to
43.8%, a relative increase of over 50%. We also
conducted SFT experiments on other models with
parameter sizes around 7B, DeepSeek-Coder-V2-
Lite-Instruct (Zhu et al., 2024) and internal code
LLM, the findings were consistent.

Furthermore, we employed dynamic mask
SFT to train models on DeepSeek-Coder-6.7B-
instruct, CodeQwen1.5-7B-Chat and DeepSeek-
Coder-V2-Lite-Instruct, top-performing models
in default SFT. Results from manual evalu-
ations indicate that dynamic mask SFT can
enhance the model’s bug fixing capability
by approximately 10% compared to the de-
fault generative SFT training (DeepSeek-Coder-
6.7B-instruct: 43.8%→49.8%, CodeQwen1.5-7B-
Chat: 42.6%→49.3%), DeepSeek-Coder-V2-Lite-
Instruct: 43.9%→49.7%).

5.2 Mask Ratio Experiments

Taking the best-performing DeepSeek-Coder-6.7B-
instruct as the foundation model, we trained with
different p values to evaluate bug-fixing capability.
The results presented in Figure 5. After that, we
compared the impact of different random mask ra-
tio factors p on per-token loss reduction process, as
illustrated in Figure 6. From Figure 5 and Figure 6,



81

Figure 5: Bug fixing evaluation results with different
value of random mask ratio factor p.

we can draw the following three conclusions:

(i) In the early stages of training (less than 400
steps), a higher p value results in greater per-
token loss. In the later stages (after 500 steps),
the per-token loss converges regardless of the
value of p. This phenomenon is intuitive as
the mask ratio factor effectively amplifies the
weight of the diff code tokens loss on pre-
trained LLM, the loss of diff code is greater
than the loss of consistent code that has ap-
peared in the prompt. As the model gradually
converges, the difference in per-token loss
between the two diminishes.

(ii) Generally, the higher value of p, the fewer
training steps are required to reach the check-
point with the best bug-fixing capability. This
is a key advantage of dynamic mask SFT, in
addition to its ability to enhance the model’s
bug-fixing capabilities. This allows for im-
proved model performance with lower com-
putational costs and energy consumption.

(iii) From Figure 5, we can clearly see that when
the value of p is between [0.4, 0.7], all the
trained models achieve optimal performance.
When the value of p is 1 (completely ignoring
the loss of identical code lines), the perfor-
mance of the model is worse than those using
the default generative SFT (where p is 0).

The manual evaluation results of the ablation
experiments shown in Table 1 have adequately
demonstrated the effectiveness and applicability
of the Progressive Dataset Construction (PDC)

Figure 6: Loss reduction curves and best bug fixing
performance steps across typical random mask ratio
factors p during model training.

data collection method and the Dynamic Mask
SFT (DM-SFT) training approach in enhancing
the LLM’s capability for SQL code bug fixing. It
is noteworthy that by setting parameter p appro-
priately, the dynamic mask SFT method can en-
hance the model’s bug fixing capability while sig-
nificantly reducing the training time. This allows
the model to achieve optimal performance at earlier
training steps. This is appealing given the high cost
of computational resources of LLM training. In
later model iterations, we experimented with using
more training data, and DM-SFT maintained its
advantage. This detailed in Appendix A.3.

6 Conclusion

In this paper, we innovatively propose a set of meth-
ods to enhance LLMs for SQL bug fixing, from
data construction and model training aspects. For
data construction, we introduce two approaches:
a breadth-first diverse collecting method and a
depth-first oriented generation method. The di-
verse collecting method mines user behavior for
annotated data reflecting real-world scenarios dis-
tribution. The oriented generation method targets
specific model weaknesses by data augmentation.
Both methods are sustainable iteration and semi-
automated, requiring minimal manual labor. That’s
why named as Progressive Dataset Construction
(PDC). For training methodology, we propose the
dynamic mask SFT, which is applicable to all gener-
ative code bug repair tasks. This method improves
bug-fixing capability by nearly 10% compared to
default SFT and reduces the training time.



82

Limitations

Only generate the modification code lines We at-
tempted a highly efficient and intuitively appealing
approach that involves generating only the correct
code for the diff sections. Specifically, our ap-
proach required the model to output the lines of
code that needed modification and the corrected
code after changes. This definition could handle
all code rewriting operations, including additions
(where a single line of original code is replaced
by multiple lines), deletions (where multiple lines
of original code are replaced by an empty string),
and modifications (where multiple lines of original
code are replaced by multiple lines of new code).
Unfortunately, this method resulted in impaired
model performance due to the lack of context in
the outputs, making it challenging to achieve the ac-
curacy of generating complete code, both in prompt
engineering experiments on GPT-4 (Achiam et al.,
2023) and in SFT training on open-source code
LLMs.
Token level dynamic mask SFT A pertinent ques-
tion arises as to why consistent lines cannot use
token-level dynamic masking and must instead be
masked by code lines. Indeed, in our earliest prac-
tices, we masked at the token level. However, per-
plexingly, models masked at the token level strug-
gled to converge, and during evaluations, a portion
of the samples consistently failed to generate com-
plete and usable code. This remains a puzzle we
have not fully resolved. We hypothesize that for
programming languages, a line may correspond
to a more complete semantic module, and token-
level masking disrupts this contextual integrity. Re-
search on this aspect will continue in subsequent
studies.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Miltiadis Allamanis, Henry Jackson-Flux, and Marc
Brockschmidt. 2021. Self-supervised bug detection
and repair. Advances in Neural Information Process-
ing Systems, 34:27865–27876.

Islem Bouzenia, Premkumar Devanbu, and Michael
Pradel. 2024. Repairagent: An autonomous, llm-
based agent for program repair. arXiv preprint
arXiv:2403.17134.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the
large language model meets programming–the rise of
code intelligence. arXiv preprint arXiv:2401.14196.

Kai Huang, Xiangxin Meng, Jian Zhang, Yang Liu,
Wenjie Wang, Shuhao Li, and Yuqing Zhang. 2023.
An empirical study on fine-tuning large language
models of code for automated program repair. In
2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 1162–
1174. IEEE.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Kon-
ishi, Gyuhak Kim, and Bing Liu. 2023. Contin-
ual pre-training of language models. arXiv preprint
arXiv:2302.03241.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–
16. IEEE.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Michihiro Yasunaga and Percy Liang. 2021. Break-it-
fix-it: Unsupervised learning for program repair. In
International conference on machine learning, pages
11941–11952. PMLR.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931.



83

A Appendix

A.1 Bug SQL generation prompt of oriented generation method

Prompt

Based on the SCHEMAS and TARGET SQL, help to generate the error sql which is related to
SCHEMAS and similar to TARGET SQL. The generated error sql should contain error related to
ERROR INFO. You should obey the following RULES.
RULES

1. If the SCHEMAS are empty, it means the TARGET SPARK SQL is not related to any
schemas.

2. ERROR INFO should not appear in the explanation.

3. Except for error part of code, other parts of code should be same between correct sql and
error sql.

4. Comments and indents in generated error sql and correct sql should be the same.

5. If it is hard to generate error sql which is similar to the TARGET SQL related to ERROR
INFO, please return no in suitable field, otherwise it should be yes.

Below is a brief example which you can refer to (if the slots of the example are empty, please
ignore the Example section):
[EXAMPLE]
target sql:
TARGET_SQL_EXAMPLE_PLACEHOLDER
error info:
ERROR_INFO_EXAMPLE_PLACEHOLDER
error sql:
ERROR_SQL_EXAMPLE_PLACEHOLDER
Now give you the tables schema, corresponding target SQL and error type information as below.
Please write a error SQL that match the error type information.
[SCHEMAS]
SCHEMAS_PLACEHOLDER
[TARGET SPARK SQL]
TARGET_SPARK_SQL_PLACEHOLDER
[ERROR INFO]
ERROR_INFO_PLACEHOLDER
RESPONSE REQUIREMENT
Return json str which can be parsed by json.loads() of python3 as following:
{"error sql": "", "correct sql": "", "reason": "", "suitable": ""}



84

A.2 Bug fixing model’s input prompt

Prompt

Requirements: Directly generate the right SQL.
[TABLES SCHEMA]
TABLES_SCHEMA_PLACEHOLDER
[BUG SQL]
BUG_SQL_PLACEHOLDER
[ERROR MESSAGE]
ERROR_MESSAGE_PLACEHOLDER
Question: BUGFIX task
Based on the error SQL code, error messages, and input table schema, please fix the bugs and write
the corresponding correct SQL code. Remember not to change any existing comments and SQL
code without errors.
Response:

A.3 Experiments of Fine-Tuning Dataset Scaling Up
We progressively collected larger training datasets using the PDC method and continuously conducted
experiments on the effectiveness of dynamic mask SFT(DM-SFT) and default SFT(SFT). After model
deployed in production environment, we expand the dataset every two months. So far, experiments have
been conducted on SFT datasets of sizes 6.5k, 9.2k, and 12k. To maintain consistency, the evaluation still
uses the 1072-size dataset mentioned earlier (the larger dataset is extensions of the smaller one).

(1) 6.5k dataset: 5.9k of diverse collecting, 0.6k of oriented generation.

(2) 9.2k dataset: 7.6k of diverse collecting, 1.6k of oriented generation.

(3) 12k dataset: 9.6k of diverse collecting, 2.4k of oriented generation.

Table 2 shows the human evaluation accuracy on the test dataset(1072) using DeepSeek-Coder-instruct-
6.7B and CodeQwen1.5-Chat-7B as base models, comparing the DM-SFT method with the default SFT
method across various training dataset sizes. It is clear that even as more training data is collected, the
DM-SFT method can consistently maintains its competitive edge.

Model Train set Method Acc Acc improvement

DeepSeek-Coder-instruct-6.7B

6.6k
SFT 48.4%

+5.0%
DM-SFT 53.4%

9.2k
SFT 51.2%

+4.7%
DM-SFT 55.9%

12k
SFT 54.0%

+4.9%
DM-SFT 58.9%

CodeQwen1.5-Chat-7B

6.6k
SFT 48.3%

+2.8%
DM-SFT 51.1%

9.2k
SFT 51.9%

+3.8%
DM-SFT 55.7%

12k
SFT 54.9%

+3.8%
DM-SFT 58.7%

Table 2: Accuracy of DM-SFT/SFT Across Various Size of Train Dataset.



85

A.4 Continue Pre-train
Throughout the model development phase, we compared the bug fixing capabilities of DeepSeek-Coder-
6.7B-instruct and our internal code LLM on a case-by-case basis after fine-tuning them on the same
dataset. We found that compared to the internal code LLM, DeepSeek-Coder is more prone to producing
hallucination outputs when generating correct SQL code. Appendix A.5 Figure 10 presents a typical
example, where the left side shows the correct code snippet predicted by the internal code LLM (SFT), and
the right side shows the correct code snippet predicted by the DeepSeek-Coder (SFT) model. The constant
value 90000000 of the original code was erroneously increased by an additional 0 in DeepSeek-Coder
model’s prediction.

Through the analysis, we discovered that the differences in performance between the two foundation
models which have been fine-tuned with the same supervised data may stem from their familiarity for the
domain-specific SQL code style and distribution (the internal model’s pre-train corpus includes internal
code data). To validate this hypothesis, we have mined, cleaned, and deduplicated a dataset from internal
scenarios, and obtain a SQL code corpus with size of 53k. To ensure the rigor of the experiment, we
carefully inspected these entries to guarantee that there would be no overlap with the 1072 samples in
evaluation dataset.

We conduct continue pre-train (CPT) (Ke et al., 2023) on the 53k domain-specific corpus which we have
cleaned and use DeepSeek-Coder-6.7B-instruct, DeepSeek-Coder-V2-Lite-Instruct and CodeQwen1.5-
7B-Chat as foundation models. We then compared the capabilities of the models with and without
continued pre-training, As illustrated in Appendix A.5 Figure 11. We made some adjustments to the
learning rate, setting it to 1.5e − 5 for continue pre-train and later tune it to 1.0e − 5 for subsequent
SFT/DM-SFT. Through comparison, it is evident that after continue pre-train with domain-specific data,
the 6 combinations of models and training methods achieved a bug-fixing accuracy improvement range of
1.3% ∼ 2.3%. Additionally, the number of bad cases which involved with hallucination modification has
decreased across all models.

There’s worth mentioning that when using different models for continue pre-train, we adhered to the
same input formats as their original pre-train. Additionally, we compared two training methods: training
all parameters versus training the parameters outside of the embedding layer only during continue pre-train.
Although the parameters of the embedding layer constitute only a small portion of the total parameters
in most LLMs (for example, in DeepSeek-Coder 6.7b, the embedding layer accounts for approximately
1.96% of whole parameters), training with the embedding layer parameters frozen has proven challenging
to achieve the expected results in our practice. In Appendix A.5 Figure 12, we have documented the
training loss decline curves for both full parameter continue pre-train and continue pre-train with only non-
embedding layer parameters updated. It is evident that training with only non-embedding layer parameters
updated struggles to converge, whereas full parameter update in continue pre-train demonstrates good
convergence.

Finally, all source code related to our experiments are made publicly available in the corresponding
GitHub repository3. Except for continue pre-train data, all other SFT data and evaluation dataset released
in the same repository after anonymization. The continue pre-train data is included in another SQL corpus
opening initiative and is not currently available separately.

3https://github.com/D1026/sql-bugfix-public



86

A.5 Figures
Figure 7 illustrates SQL bugs categorized into a three-level classification by using an automated method
based on error messages and SQL code, ultimately classifying all resolvable errors into 81 subcategories.

Figure 8 is a larger and clearer version of Figure 4.

Figure 9 illustrates the distribution of the number of diff code lines in our collected training data. It can
be observed that over 50% of the bug SQL code require only a single line modification to be transformed
into correct SQL code.

Figure 10 illustrates a typical case where the internal code LLM successfully maintains the con-
stant ’90000000’. Meanwhile, the code generated by the DeepSeek incorrectly adds an extra ’0’
to the constant ’90000000’. Although both two model have trained by same SFT dataset. Our
internal code LLM pre-train corpus includes a substantial amount of internal SQL code. In compar-
ison, the proportion of SQL code in DeepSeek’s pre-train data is minimal. This may lead to the differences.

Figure 11 presents the bug-fixing accuracy differences across six combinations: three models X two SFT
training methods, with and without continued pre-train of the base model.

Figure 12 clearly demonstrates the differences in loss reduction when performing continued pre-train on
in-domain SQL code corpus, comparing full-parameter training and training with frozen embedding layer
parameters. Despite the embedding layer parameters constituting less than 2% of the total parameters in
DeepSeek-Coder6.7b, the loss reduction during continue pre-train with frozen embedding layer parameters
is highly unstable. Moreover, the final converged loss value shows a significant disparity compared to
full-parameter continue pre-train.



87

Figure 7: SQL bugs three level classification



88

Figure 8: A comparison of the default generative SFT (top) and dynamic mask SFT (bottom) for the code bug-fixing
task.



89

Figure 9: Distribution of diff lines proportion in SQL code

Figure 10: Hallucination modification by DeepSeek-Coder. Left: Output from internal code LLM (limit value
consistent with original code). Right: Output from DeepSeek-Coder-Bugfix (limit value erroneously increased by
an additional 0 character).



90

Figure 11: Performance differences of models with and without continued Pre-train on domain-specific
corpus (pre-train before SFT/DM-SFT). ’cq7’:CodeQwen1.5-7B-Chat, ’ds6.7’:DeepSeek-Coder-6.7B-instruct,
’dsV2’:DeepSeek-Coder-V2-Lite-Instruct

Figure 12: Training Loss Curve for Two Continue Pre-train Methods


	Introduction
	Related Work
	Progressive Dataset Construction
	Diverse Collecting
	Oriented Generation

	Dynamic Mask Supervised Fine-tuning
	Experiments and Results
	PDC and SFT Experiments
	Mask Ratio Experiments

	Conclusion
	Appendix
	Bug SQL generation prompt of oriented generation method
	Bug fixing model's input prompt
	Experiments of Fine-Tuning Dataset Scaling Up
	Continue Pre-train
	Figures


