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Abstract

In this work, we propose Few Shot Domain
Adapting Graph (FS-DAG), a scalable and effi-
cient model architecture for visually rich doc-
ument understanding (VRDU) in few-shot set-
tings. FS-DAG leverages domain-specific and
language/vision specific backbones within a
modular framework to adapt to diverse doc-
ument types with minimal data. The model
is robust to practical challenges such as han-
dling OCR errors, misspellings, and domain
shifts, which are critical in real-world deploy-
ments. FS-DAG is highly performant with less
than 90M parameters, making it well-suited
for complex real-world applications for Infor-
mation Extraction (IE) tasks where computa-
tional resources are limited. We demonstrate
FS-DAG’s capability through extensive experi-
ments for information extraction task, showing
significant improvements in convergence speed
and performance compared to state-of-the-art
methods. Additionally, this work highlights the
ongoing progress in developing smaller, more
efficient models that do not compromise on
performance.

1 Introduction

Recent advancements of Vision-Language Mod-
els (VLMs) (Zhang et al., 2024), Large Multi-
modal Models (LMMs) (Chen et al., 2024; Li
et al., 2024), and Large Language Models (LLMs)
(Brown, 2020; Touvron et al., 2023), have sig-
nificantly enhanced performance across various
natural language processing and computer vision
tasks. Despite their success, these models are often
computationally expensive, requiring substantial
resources that are impractical for many real-world
industrial applications (Sanh et al., 2019; Kaddour
et al., 2023). Furthermore, their ability to adapt
to specific domains, especially in the context of
visually rich documents (VRDs) remains limited
due to the high cost of pre-training and fine-tuning
on domain-specific data (Li et al., 2021).

VRDs face challenges stemming from diverse
layouts, domain-specific terminology, and text vari-
ations in style and size. OCR-free models tend to
underperform compared to key-value models that
utilize a separate OCR component, and even these
models struggle with such variations. Large-scale
models, with their monolithic architectures, often
rely on vast data for domain adaptation, complicat-
ing their deployment. For example, state-of-the-art
models like LayoutLM (Xu et al., 2020a) and its
successors demand extensive fine-tuning for new
domains, making their deployment both costly and
time-consuming (Huang et al., 2022).

To address these issues, we introduce FS-DAG, a
few-shot learning framework designed for domain-
specific document understanding with less than
90M parameters. Few-shot learning methods have
gained attention for their ability to train models
with limited labeled data, which is crucial in in-
dustrial applications where data scarcity is a com-
mon challenge. Our approach leverages a modu-
lar architecture that integrates domain-specific and
language-specific feature extractors, allowing FS-
DAG to adapt quickly to new domains with mini-
mal data, thereby overcoming the barriers associ-
ated with large-scale models (Lee et al., 2022).

Our approach emphasizes few-shot learning by
leveraging Graph Neural Networks (GNNs) (Khe-
mani et al., 2024; Wu et al., 2020) to enable rapid
adaptation, robustness to OCR errors, and reduced
latency in real-world applications. We provide
empirical evidence of the model’s performance
through extensive experiments, showing significant
improvements over larger methods with more than
100M parameters. To summarize, we make the
following contributions to VRDU in a few-shot
learning environment:

1. A modular framework for few-shot learn-
ing that efficiently combines domain-specific and
language-specific textual and visual feature extrac-
tors in a graph-based architecture.
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2. We propose shared positional embedding &
consistent reading order for GNN along with vari-
ous training strategies for the model’s robustness
and effective adaptation with minimal data.

3. We provide comprehensive experimental re-
sults demonstrating that FS-DAG achieves state-
of-the-art performance and robustness in few-shot
learning scenarios while reducing latency and com-
putational costs.

2 Related Work

The development of efficient and scalable NLP
models has gained significant attention in recent
years, particularly with the rise of LLMs such
as GPT-3 (Brown, 2020), LlaMa (Touvron et al.,
2023), Mixtrals (Jiang et al., 2024). While these
models have achieved remarkable success in vari-
ous tasks, their application in industrial settings re-
mains challenging due to their high computational
demands and difficulty in adapting to domain-
specific tasks.

Recent work have focused on enhancing the effi-
ciency of these models through techniques such
as model distillation (Sanh et al., 2019), prun-
ing (Cheng et al., 2024), and efficient fine-tuning
methods like LoRA (Hu et al., 2022). These ap-
proaches aim to reduce the computational cost of
LLMs while maintaining their performance, mak-
ing them more suitable for deployment in resource-
constrained environments.

In the context of VRDU, graph-based models
have shown promise, particularly in capturing the
complex relationships between textual and visual
elements in documents. Models such as SDMGR
(Sun et al., 2021), DocParser (Rausch et al., 2021),
PICK (Yu et al., 2021) and others (Liu et al., 2019;
Rastogi et al., 2020; Yao et al., 2021) leverage
GNNs to improve IE from documents. However,
these models often require large amounts of train-
ing data and are not designed for quick adaptation
to new domains.

FS-DAG builds on these approaches by intro-
ducing a few-shot learning framework that can effi-
ciently adapt to new document types with minimal
data. This capability is particularly important in
industrial applications, where labeled data is often
limited, and the ability to quickly adapt to new do-
mains is crucial. Additionally, FS-DAG addresses
practical challenges such as robustness to OCR
errors and domain shifts, which are common in
real-world deployments.

Figure 1: An illustration of the model architecture for
FS-DAG. Given a document image (I); its text regions
{ri} are extracted using an OCR engine. We cluster
and sort the {ri} to create a reading sequence {s}; tex-
tual features {ti} are extracted using a linear projection
layer on top of a pre-trained language model process-
ing {s}. In contrast, visual features {vi} are extracted
using ROI-Align on top of the feature map from the
Visual Model and {ri}. The deep fusion module uses
Kronecker product to fuse {ti} and {vi} to initialize the
node features {ni}. The node features are propagated
and aggregated in the GNN during the message passing,
which uses positional embedding {pi} and multi-head
attention to learn the edge features dynamically. The
classification head will finally classify the node features
into one of the key-value classes.

3 Our Approach

Figure 1 illustrates our proposed model architec-
ture. FS-DAG formulates the Key Information Ex-
traction (KIE) (Huang et al., 2019) task as a graph
node classification problem using pre-trained fea-
ture extractors and graph multi-head attention in a
few-shot learning environment.
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3.1 Model Architecture

The FS-DAG model (Agarwal et al., 2024b) is de-
signed to address the unique challenges associated
with VRDU in few-shot learning scenarios. Unlike
traditional monolithic models (Yu et al., 2021; Xu
et al., 2020b,a; Huang et al., 2022; Xu et al., 2021)
that often require large amounts of data and exten-
sive computational resources, FS-DAG employs
a modular architecture that efficiently integrates
domain-specific and language-specific textual and
visual feature extractors with a GNN.

GNNs are particularly well-suited for VRDU
tasks due to its ability to capture complex spatial
and structural relationships between elements in
a document. In FS-DAG, each document is rep-
resented as a graph where nodes correspond to
these elements representing their textual and visual
features, while the edges represent their spatial
and semantic relationships. This graph represen-
tation allows the model to learn more robust and
context-aware representations (Sun et al., 2021; Li
et al., 2021). FS-DAG further incorporates shared
positional embeddings and a multi-head attention
mechanism within the GNN. Shared positional em-
beddings provide a consistent reference for the spa-
tial location of elements across different document
types, while multi-head attention enables dynamic
weighting of node connections, thereby improving
feature aggregation and learning efficiency.

The FS-DAG architecture allows for the seam-
less integration of pre-trained domain-specific (Lee
et al., 2020; Liu et al., 2021) and language-specific
feature extractors. This flexibility enables the
model to quickly adapt to new domains with min-
imal data, significantly reducing the need for ex-
tensive retraining. By leveraging both textual and
visual backbones tailored to specific domains, FS-
DAG achieves superior performance compared to
monolithic architectures that lack such adaptability.
To further stabilize and boost the model’s perfor-
mance in a low-data setting, we modify the training
strategies (Agarwal and Pachauri, 2023) and add
augmentations for the graph (Agarwal et al., 2024a)
and the visual modules. The individual components
of the model are described further in the Appendix
A.1.

3.2 Training Strategies

Training strategies are essential in few-shot train-
ing as we aim to attain the maximum model per-
formance without overfitting the training dataset.

To ensure higher performance and robustness of
FS-DAG, we adopt various well-known strategies
in the training process.

We include augmentation during training to en-
able the model to learn faster and be robust to vari-
ous image and graph orientations. The augmenta-
tion technique focuses explicitly on the robustness
of the visual embedding and the graph module. We
introduce rotation (± z degree), perspective trans-
form, affine transform, and scaling and padding
as the augmentations in the pipeline. These tech-
niques enable the learning of better positional em-
beddings, visual embeddings, and node features as
they change how the document is perceived and
viewed. We also include specific graph augmen-
tation (Agarwal et al., 2024a) which improves the
convergence of FS-DAG with minimal data while
making it robust to distribution shifts in textual or
visual features

The proposed architecture does not support
entity-linking currently and relies only on message
propagation of the node features for the node clas-
sification task. Hence, we eliminate the edge loss
function to stabilize the model training with the
dedicated task.

Owing to the inductive bias from the pre-trained
feature extractors, we introduce Label Smoothing
(Müller et al., 2019) to the cross-entropy loss of
node classification during training. Finally, to re-
duce overfitting in a few-shot learning paradigm,
we add instance normalization (Ulyanov et al.,
2016) over the node features of the graph. These
changes enable us to train the model with better
robustness and faster convergence.

4 Experiments

FS-DAG is extensively evaluated on multiple
datasets against state-of-the-art models based on
their official implementations in terms of perfor-
mance, robustness to OCR errors, and model com-
plexity. The official open-source code base was
used to compare the result with other state-of-the-
art models, followed by hyper-parameter tuning to
get the best results for a fair comparison.

All experiments were conducted thrice on a ma-
chine with 16 cores, 32GB of RAM. We trained
FS-DAG using a node and edge embedding size of
64 and two GNN layers, with label smoothing set to
0.1. Due to the unavailability of official codebases
for tasks, we could not benchmark architectures
such as FormNet (Lee et al., 2022) and StrucTexT
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(Li et al., 2021). Few-shot techniques like LASER
(Wang and Shang, 2022), which do not leverage
visual features, were also excluded from the com-
parison. Additionally, LMMs like LLaVA(Li et al.,
2024), Phi-3 (Abdin et al., 2024), and InternVL
(Chen et al., 2024) were not benchmarked due to
their considerable model size, which posed prac-
tical constraints. Other methods, such as (Or and
Urbach), were omitted because they make multiple
assumptions about the data structure and are not
end-to-end trainable. To ensure a fair comparison,
we focused on models with a size of less than 500M
parameters.

4.1 Datasets & Metrics

For the VRDU task of KIE, publicly available
datasets such as SROIE (Huang et al., 2019),
CORD (Park et al.), and WildReceipt (Sun et al.,
2021) primarily consist of document receipts from
restaurants. While datasets like FUNSD (Guil-
laume Jaume, 2019) and Kleister (Graliński et al.,
2020) include various forms and longer documents,
they typically focus on high-level key-value pairs.
These datasets are valuable for academic research
but often fall short of meeting the nuanced require-
ments of industry-specific data extraction, which
demands handling fine-grained classes.

The majority of public datasets are concentrated
on receipts, invoices, train tickets, and simple
forms, which lack the diversity needed to cover
the broad range of use cases in industry domains
such as finance, healthcare, and logistics. These
datasets also rarely capture documents that require
detailed, character-by-character annotations within
boxes or placeholders, which are highly relevant in
industrial applications. Zilong et al.(Wang et al.,
2022) highlight these limitations and propose a new
benchmark dataset for VRDU in both few-shot (10
and 50 samples) and conventional (100 and 200
samples settings. However, the document types
in this dataset are limited to political ad-buys and
registration forms, featuring only high-level fields
(≤ 10) for extraction, thus not fully addressing the
requirements of various industry verticals.

In this study, we use WildReceipt as a representa-
tive dataset from the existing public datasets, given
its applicability to real-world receipt processing
tasks. Additionally, we incorporate an industry-
specific dataset1 that better reflects the characteris-
tics needed across multiple domains, as outlined in

1https://github.com/oracle-samples/fs-dag

Dataset
Category

Dataset
Name

# of
classes

1

Ecommerce Invoice 34
Adverse Reaction
Health Form

46

Medical Invoice 33
University
Admission Form

65

Visa Form
(Immigration)

45

2

Medical Authorization 34
Personal Bank
Account

94

Equity Mortgage 70
Corporate Bank
Account

40

Online Banking
Application

28

Medical Tax
Returns

52

Medical Insurance
Enrollment

68

Table 1: Highlights the number of key-value classes
across the each document type in the two categories.

Table 1. This dataset includes document types filled
character-by-character and features fine-grained
key-value pair annotations at the word level, mak-
ing it more aligned with the demands of industrial
applications. We compare state-of-the-art models
under the same few-shot setting on these datasets
and conduct an extensive ablation study on the pro-
posed methods. Performance on the given datasets
is evaluated using the F1 score, as defined by the
ICDAR 2019 robust challenge (Huang et al., 2019),
with the averaged F1 score over all classes being
reported.

4.2 Results and Discussions

We extensively conduct experiments with the two
industrial dataset categories, owing to their diver-
sity and industry relevance compared to publicly
existing datasets. For benchmarking the models,
we used five documents for training, while the re-
maining documents were used for testing. The
split pattern was consistent across all the document
types in both dataset categories. All the experi-
ments for FS-DAG and other state-of-the-art mod-
els were run thrice, and the average results of the
three runs are reported. We report the average F1
score across the document types in each dataset
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Model Params
Avg.

Training
Time

Avg.
Inference

Time

Category 1 Dataset Category 2 Dataset
w/o OCR

Error
w/ OCR
Error

Perf.
Drop

w/o OCR
Error

w/ OCR
Error

Perf.
Drop

BERTBASE 110M 27 mins 959 ms 89.84 64.60 25.24 92.03 58.97 33.06
Distill-BERT 65M 25 mins 565 ms 90.50 59.12 31.38 93.63 55.71 37.91
SDMGR 5M 28 mins 1207 ms 89.14 87.03 2.11 98.03 94.65 3.38
LayoutLMv2BASE 200M 44 mins 1907 ms 94.03 74.57 19.46 93.26 89.71 3.55
LayoutLMv3BASE 125M 35 mins 1363 ms 97.24 91.40 5.84 99.31 95.77 3.54
FS-DAG (ours) 81M 21 mins 773 ms 98.89 97.96 0.93 99.93 99.02 0.91

Table 2: Summary of model complexity, performance, robustness, and computational efficiency across five document
types in the Category 1 dataset and seven document types in the Category 2 dataset. The best performance is
highlighted in bold, and the second-best is underlined.

category.
Few-shot Key Information Extraction (KIE)

Task. Column "w/o OCR Error" of Category 1 &
Category 2 Datasets of Table 2 summarises the aver-
age F1-score results for both the dataset categories
mentioned in Table 1 when the input OCR results
of the document has no detection or recognition
errors. It can be seen that FS-DAG outperforms
its peer models with a high-performance gap. It
can also be seen that LayoutLMv3 outperforms
LayoutLMv2 while reducing the model complex-
ity. LayoutLMv3 has very competitive results with
FS-DAG but has higher model complexity. FS-
DAG’s performance can be attributed to the pre-
trained models plugged in as feature extractors and
position embeddings in the graph layer. It is also
observed that the performance of FS-DAG and Lay-
outLMv3 are similar though the model complexity
differs. FS-DAG outperforms SDMG-R by 9.75%
and 1.9% for category 1 and 2 datasets, respectively.
It highlights that the proposed changes over other
graph models enable FS-DAG to have competitive
performance with other larger multi-model models.
The detailed experiment results are presented in
Appendix B.

Model Robustness. KIE models often depend
on OCR engines to extract text, which are then
used as input. Despite improvements, OCR engines
still produce errors, particularly with poor-quality
documents. Some LMMs (e.g., Donut, LLaVa)
incorporate OCR capabilities but suffer from simi-
lar limitations while significantly increasing model
size beyond 500M parameters. We assess model
robustness to OCR and misspelling errors by mea-
suring performance drops due to misclassification.
A robust model shows minimal performance de-
cline, while models heavily reliant on text modality
exhibit a more significant drop.

To evaluate robustness, we train models with
ground-truth OCR data but introduce standard
OCR errors with a probability of 0.1 during infer-
ence using nlpaug (Ma, 2019) (details in Appendix
B). The average F1-scores under these conditions
are shown in Column "w/ OCR Error" of Table
2, with the performance drop reported in Column
"Perf. Drop".

FS-DAG demonstrates consistent robustness to
OCR and misspelling errors with a performance
drop of less than 1%, enhancing its reliability
for real-world applications. Notably, SDMG-R
also shows a lower performance drop compared
to other models, underscoring the advantage of
graph-based models in effectively integrating a
document’s modalities, as opposed to transformer-
based models that heavily rely on textual sequences
and tokenization.

Model Complexity. Table 2 also compares
the model parameters, training and inference time
across models. FS-DAG has substantially higher
parameters compared graph-based SDMG-R owing
to the pluggable pre-trained backbones. However,
FS-DAG has almost 60-40% fewer parameters than
other pre-trained transformer-based models like
LayoutLMv2 or LayoutLMv3. LayoutLMv3 has
competitive results with FS-DAG but with 64%
additional model parameters.

The "Avg. Training Time" is reported against
both the dataset categories for all the models.
SDMG-R requires longer training because it’s
trained from scratch, unlike other models that are
only fine-tuned. Additionally, training time in-
creases with model size.

The "Avg. Inference Time" is reported against
both the dataset categories for all the models. Dis-
tilBERT demonstrates the lowest latency but also
exhibits lower performance across the datasets.
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Model Params
Avg. Perf. (%)

(F1-Score)
BERTBASE 110M 82.80
Distill-BERT 65M 80.70
SDMG-R 5M 82.80
LayoutLMv2BASE 200M 86.00
LayoutLMv3BASE 125M 87.14
FS-DAG 81M 93.90

Table 3: Summary of the average F1-Score (%) across
the 25 classes in the WildReceipt dataset. The best
performance is highlighted in bold, while the second-
best performance is underlined.

FS-DAG achieves low latency while maintaining
higher performance. Meanwhile, LayoutLMv3 has
a latency that is 76% higher than FS-DAG, offering
competitive performance but with reduced robust-
ness. The lower model complexity reduces the cost
of adopting the proposed model for the industry
while outperforming other models.

Wildreceipt KIE Task. Table 3 shows the av-
erage F1-score on the publicly available dataset
WildReceipt (Sun et al., 2021), which extracts key-
value pairs (25 classes) from restaurant receipts
from various restaurants. The results reported
here take an average of all the 25 classes in the
dataset compared to the 12 classes reported by Sun
etal (Sun et al., 2021). The results show that FS-
DAG outperforms the graph-based model by 11.1%
while outperforming the LayoutLMv2 by 7.9% and
LayoutLMv3 by 6.76% . These results demonstrate
that FS-DAG is not only effective for a few-shot set-
ting for a given document type but can scale across
datasets with multiple-document types given suffi-
cient training data with lesser model complexity.

Effect of Domain-Specific Language Model:
We swap the pre-trained language model backbone
(Distill-BERT) of FS-DAG with domain-specific
language models for some of the datasets. The
results in Table 4 and 5 showcase that using a lan-
guage model which is better adapted to the finance
and medical domain enables FS-DAG to perform
better than using a generic language model as a tex-
tual feature extractor. Thus, the proposed modular
architecture design enables higher performance in
domain-specific use cases.

4.3 Ablation Study
We performed an ablation study on the industrial
dataset to evaluate the effects of the architectural
and training modifications, as detailed in Table 6.
The starting point for each experiment is the skele-

Base
Architecture

Langauge
Model used

# of Params
(FS-DAG)

Ecommerce
Invoice

FS-DAG
(proposed)

Distill-BERT 81M 95.1
BERTBASE 110M 96.26

ProsusAI/finbert 125M 98.63

Table 4: Results of replacing DistilBERT in FS-DAG
with BERT and finance-domain-specific models on the
eCommerce Invoice.

Base
Architecture

Langauge
Model used

# of Params
(FS-DAG)

Adverse
Reaction

Health Form

FS-DAG
(proposed)

Distill-BERT 81M 96.53
BERTBASE 110M 97.13

BiomedVLP-
CXR-BERT-

general
125M 98.98

Table 5: Results of replacing DistilBERT in FS-DAG
with BERT and medical-domain-specific models on the
medical form.

ton FS-DAG architecture (row #1), with node and
edge dimensions as 64. From rows #2s to #2e in
Table 6, we study the individual contribution of the
proposed changes in the few-shot setting. The re-
sults show that each component individually leads
to a performance gain between 2%-6%. From rows
#3 to #5 in Table 6, we combine the individual com-
ponent and observe a performance gain increasing
from 4% to 10% against row #1. The experiments
conclusively show the importance and impact of
the proposed changes and training for FS-DAG.

Effect of Pre-trained Language Model: We
use Distill-BERT as the pluggable pre-trained lan-
guage model for all the experiments for extracting
textual features. Adding a pre-trained language
model and using the first sub-token to represent a
text region {ri} improves the F1-score by 0.95%
on average (Table 6: From #1 vs. #2a). Further
pooling all the sub-token representations of a text
region {ri} to get the token representation, we see
the performance improves by 3.30% on average
(Table 6: From #1 vs. #2b). It highlights that pool-
ing the sub-token representation to represent a text
region {ri} gives a better and richer representa-
tion that enables the model to learn in a few-shot
setting.

Effect of Pretrained Visual Model: We use
UNET with a Resnet-18 backbone pre-trained on
PubTabnet (Smock et al., 2022) for extracting the
visual features. The model F1-score increases by
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Model #

Architectural Changes Proposed Avg
Perf. (%)

(F1 Score)

Perf.
Gain (%)

(F1 Score)

Pre-trained LM
w/ first token
embedding

Pre-trained LM
w/ pooling token

embeddings

Pre-trained
Visual Model

Position
Embedding

in GNN

Training
Strategies

FS-DAG

1 88.31 NA
2a ✓ 89.26 0.95
2b ✓ 91.61 3.30
2c ✓ 91.33 3.02
2d ✓ 93.64 5.33
2e ✓ 93.86 5.55
3 ✓ ✓ 92.43 4.12
4 ✓ ✓ ✓ 97.37 9.06
5 ✓ ✓ ✓ ✓ 98.89 10.58

Table 6: The detailed ablation study results on different components and training of FS-DAG are reported for
the Category 1 dataset. We observe that each proposed change has a significant positive impact on the model
performance. The final proposed architecture of FS-DAG configuration is shown in experiment row #5.

3.02% (Table 6: From #1 vs. #2c) on average
across the five few-shot datasets. It highlights that
using a pre-trained visual feature extractor enables
FS-DAG to learn better in a few-shot setting. How-
ever, it can also be seen that the impact of pre-
trained visual features is lesser than the textual
features.

Effect of Position Embedding: We introduce
learnable position embedding in the GNN layer of
the model. The model F1-score increases by 5.33%
(Table 6: From #1 vs. #2d) on average across
the five datasets, showcasing that the position em-
bedding plays an essential role in the GNN layers
learning, helping it to adapt to the given document
type.

Effect of Training Strategies: Apart from the
model architecture changes, the training strategy
for models in a few-shot learning environment
plays an important role. The proposed training
strategies for FS-DAG led to an increase of F1-
score of 5.55% (Table 6: From #1 vs. #2e) on
average across the five datasets.

Finally, combining the different components
shows an improvement (Table 6: From #3 to #5),
showcasing that the proposed components comple-
ment each other and leading to an overall average
gain of 9.28% for the proposed model in a few-shot
setting.

5 Conclusion

FS-DAG presents a compelling alternative to large-
scale models like VLMs, LMMs and LLMs, par-
ticularly for visually rich document understanding
tasks in industrial applications like document clas-
sification, key value extraction, entity-linking and
graph classification. By focusing on efficiency,

scalability, and practical deployment, FS-DAG ad-
dresses the key limitations of these larger models,
including their high computational cost and the
challenges associated with training and running
them in resource-constrained environments.

This work demonstrates FS-DAG’s technical
strengths and emphasizes its practical application
in real-world environments, where its robustness,
customizability, and low computational demands
significantly lower operational costs, making ad-
vanced models more accessible across various in-
dustries. Currently, FS-DAG is adopted by over
50+ customers and provided through hyperscale
cloud providers with over 1M+ API calls monthly.

Future research will focus on extending FS-
DAG’s capabilities to zero-shot learning and en-
hancing its adaptability to a broader range of indus-
trial scenarios.
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A Appendix

A.1 Details of Model Architecture

A.1.1 Text Embeddings
Training language models from scratch are
resource-intensive, time-consuming, and needs to
generalize better in a few-shot learning environ-
ment. Hence, we designed our architecture to have
a pluggable language model. It enables choos-
ing multi-lingual domain-specific language mod-
els like BioBERT(Lee et al., 2020), BiomedNLP-
PubMedBERT (Gu et al., 2021), FinBERT (Liu
et al., 2021), for various use cases requiring fine-
grained features, like in the medical, finance, or
law domain, while also helping choose regional
or multi-lingual language-based models. Standard
use cases can rely on models like BERT (Devlin
et al., 2018), Distill-BERT (Sanh et al., 2019), and
Alberta (Lan et al., 2019) based on the performance
and latency requirement of the model.

As shown in Figure 1, a document image I is
parsed via an OCR engine (word-level) to extract
text regions {ri}. Formally, for a document with
a total number of words L we have the i-th (0 <
i ≤ L) text region as the i-th word in the document.
We then cluster and sort the {ri} to get a consistent
reading sequence {s} for the document, which later
enables us to extract contextual text representation
using a pre-trained language model. The reading
sequence {s} is the document’s reading order to
ensure consistent feature extraction during training
and inference.

The reading sequence {s} is then passed through
a language model which tokenizes and decodes the
sequence to return a sequence of token embedding,
where yj ∈ RDt is the text-embedding for the to-
ken in {s}, Dt is the dimension of the text embed-
ding. The language model tokenizes the words/text
regions {ri} within {s} into multiple tokens for
which we get the text embedding {yj}. Hence, we
pool text embeddings of the tokens belonging to
a particular {ri} to get the textual embedding of
the document’s original word/text region. During
the model training, the language model weights
are frozen, and the extracted textual embedding of
the words/text regions {ri} is projected over linear
layers to adapt them as per the document type. For-
mally, for a sequence of length L, we have the i-th
text embedding as:

ti =MLP 1(LangModelEmb(ri)) (1)

MLP 1 is a learnable multi-layer perceptron that
fine-tunes the textual embedding of a word/text
region from the Language Model. The LangMod-
elEmb layer clusters and sorts the text regions {ri}
to create the reading sequence {s} and extracts
and pools the token embeddings {yj} to create the
textual embedding of the given word/text regions
{ri}.

A.1.2 Visual Embeddings
Text in documents is designed to capture human
attention based on the text’s color, font size, tex-
ture, and appearance. Hence to extract the vi-
sual features (AGARWAL, 2021), we use a UNET
(Ronneberger et al., 2015) with a Resnet-18 (He
et al., 2016) backbone as a visual feature extrac-
tor. The Resnet-18 backbone is pre-trained on the
document’s dataset (Zhong et al., 2019; Himanshu,
2019) and can be swapped with any other feature
extractor based on the document type. Since visual
features in VRDs are very extensive and document
type dependent, we do not freeze weights of the
visual backbone, letting it adapt in the few-shot
setting during end-to-end training.

As shown in Figure 1, a document image I is
passed through the pre-trained visual model to ex-
tract feature maps. The RoI Align layer (Sun et al.,
2021; He et al., 2017) extracts the visual embed-
ding vi for every text region {ri} using the bound-
ing box coordinates on the output feature maps of
the visual model.

vi = RoIAlign(V isFeatMap (I), ri) (2)
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The VisFeatMap layer extracts the visual feature
map based on the feature extractor backbone used.
The RoIAlign layer extracts {vi} , where vi ∈ RDv

based on the {ri} bounding box co-ordinates, and
Dv is the dimension of the visual embedding.

A.1.3 Node & Edge Embeddings
The graph nodes {ni} are initialized by fusing the
textual features {ti} and visual features {vi} in the
deep fusion block as shown in Figure 1. The deep
fusion block uses the Kronecker product as per
(Sun et al., 2021) and projects the result on linear
layers as :

ni = MLP 2 (ti ⊗ vi) (3)

⊗ is the Kronecker product operation, while
MLP 2 is a learnable multi-layer perceptron, where
ni ∈ RDn and Dn is the dimension of the visual
embedding.

The spatial relation {sij} between the two con-
necting nodes {ni} and {nj}, where 0 < i, j ≤ L,
is defined by calculating the relative distance be-
tween the nodes using the bounding box coordi-
nates < x0, y0, x1, y1 > as described in (Sun et al.,
2021; Agarwal et al., 2024d).The spatial relation
sij is normalized after passing it through linear pro-
jection layers to initialize the edge embedding e′ij
as follows:

e′ij = Nl2(MLP 3 (sij)) (4)

MLP 3 is a learnable multi-layer perceptron that
transforms the spatial relation information sij into
e′ij , where eij ∈ RDe and De dimension of the
edge embedding. Nl2 is the l2 normalization op-
eration. In the GNN layer, e′ij interacts with the
node and position embeddings to refine the edge
embedding and interaction between nodes using
multi-head attention.

A.1.4 Position Embeddings & Multi-head
Attention

We divide the entire document in a K x K grid as
shown in Figure 1, and all the text regions {ri}
in a particular grid, share the same positional em-
bedding. The positional embedding enables the
graph module to learn more about a node’s abso-
lute positioning and neighbors. The size of the grid
K becomes a hyper-parameter that can be updated
based on the document type. In our experiments,
we found the value of K=25 to work consistently
well across all the datasets.

Given a text region {ri}, with the bounding
box coordinates as < x0, y0, x1, y1 >, the indi-
vidual horizontal and vertical position embedding
are computed as:

Poshor = PosEmbhor (x0) | | PosEmbhor (x1)
(5)

Posver = PosEmbver (y0) | | PosEmbver (y1)
(6)

We separately learn the horizontal and vertical po-
sitional embedding. Finally, the positional embed-
ding {pi}, where pi ∈ RDp for a given node con-
catenates the horizontal and vertical positional em-
beddings and passes it through a non-linear func-
tion TanH as suggested in (Dwivedi et al., 2021).

pi = TanH(Poshor | | Posver ) (7)

The positional embedding is integrated and trained
during the message propagation along the edges
and multi-head attention. The different attention
heads focus on the groups and segments within the
nodes that strongly influence each other. The atten-
tion scores enable dynamic weighing of the edge
connections to enable better node feature aggrega-
tion along various positional grids.

ehij = MLP 4( ni | | pi | | e′ij | | nj | | pj) (8)

eh
ij = MLP 5(e

h
ij) (9)

We concatenate the node embeddings {ni} and
{nj} with their corresponding positional embed-
ding {pi} and {pj} before concatenating it with the
initial edge embedding e′ij between them. MLP 4

is a multi-layer perceptron that transforms the
concatenated embeddings for each attention head.
ehij ∈ RDne X Dh X Dn , where Dne represents the
number of edges in the graph, Dh represents the
number of heads in the network and Dn represents
the node embedding dimension. MLP 5 is a multi-
layer perceptron that transforms ehij into a scaler
for each of the edges, where eh

ij ∈ RDne X Dh X 1.
Finally, we refine the node features {ni} of the
graph module K times as follows :

nk+1
i = nk

i + σ(NIN (MLP k
6(∥

h

∑
j ̸=i

αkh
ij ekh

ij )))

(10)
where nk

i ∈ RDn indicates the features of the ith
graph node at time step k. αkh

ij is normalized edge
weight at time step k for a particular attention head.
ekhij is the transformed concatenated representation
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of a particular attention ahead at time step k as
described in Equation 9. MLP k

6 is a linear trans-
formation at time step k. NIN is the instance norm
over the embeddings before passing it through σ,
which is the non-linear activation function ReLU.
αkh
ij is the learnable normalized weights between

nodes i and j for every attention head h at time step
k. It is given by :

αkh
ij =

exp(eh
ij)∑

j ̸=i exp(eh
ij)

(11)

B Experiments, Extended

B.1 Dataset & Metrics, Extended
In Table 1 we share the class distribution of the
various document types proposed in the dataset.
Sample images for each document type (Agarwal
et al., 2024c) in Category 1 are highlighted in Fig-
ure 2. In Figure 3, we highlight the sample im-
ages for each document type in Category 2. It can
be seen that document types visually in Category
2 are fundamentally different from documents in
Category 1 in how they are generated and filled
with capturing necessary information for the busi-
ness. These document types capture relevant infor-
mation within specific placeholders, mostly filled
character-by-character by a human or digital ap-
plication. Document types in Category 2 datasets
are still actively used worldwide, and more pub-
licly available datasets for such documents must be
available to steer research and evaluation of mod-
els. The released dataset will thus help further
push boundaries for different document types in a
few-shot setting.

B.2 Results, Extended
The main paper reports average results across the
different datasets for various state-of-the-art mod-
els. Here, we present the results on individual doc-
ument types across both the dataset category for
fine-grained analysis.

Model Robustness. To stimulate real-world mis-
spelling or OCR errors in documents (Agarwal
et al., 2024c; Patel et al., 2024), we use nlpaug
(Ma, 2019) to introduce text recognition errors dur-
ing the inference of models. Table 7 showcases the
most common errors observed across various hu-
man misspellings and available OCR engines. The
benchmarking of all the document types across the
dataset categories when input errors are introduced
during inference are detailed in Table 9 and 12.

Character Common OCR Errors

1 l(lower case of L),
I (Upper case of i)

l (lowercase of L) I (Upper case of i)
6 b
5 S
, .

Sample Augmentation
Original OCR Error Text

The quick brown fox
ate 5 chocolates

The quick brown fox
ate S chocoIates

Table 7: Highlights most common OCR errors across
popular OCR engines, along with a sample augmenta-
tion using nlpaug.

Finally, we observe the drop in performance for
individual document types across the two dataset
categories in Table 10 and 13. The observations
are discussed in the following sections.

Category 1 Dataset (KIE Task). Table 8 shows
the F1-score results of FS-DAG on the five industry
document types from the category 1 dataset while
comparing it to other state-of-the-art models. All
the models are trained and tested in this benchmark
with ground-truth annotations. We can observe that
FS-DAG outperforms most of its peers by a consid-
erable margin. At the same time, LayoutLMv3 has
very similar performance compared to FS-DAG,
and the best model varies based on the dataset with
a small margin. In Table 9, we report the F1-score
when the training has been done with ground-truth
OCR annotations. At the same time, during infer-
ence, misspelling and OCR errors are introduced
at the word level with a probability of 0.1. Table
10 reports the drop in performance when the model
is tested under the two different scenarios as repre-
sented in Table 8 and 9. Models which are robust to
input errors or less dependent on textual modality
show a lower drop in performance.

It is observed that language models like
BERTBASE and Distill-BERT have the maximum
drop in performance as they rely entirely on
textual modality. Multimodal model like Lay-
outLMv2 shows a higher performance drop than
LayoutLMv3, suggesting that LayoutLMv2 is more
dependent on the textual features. FS-DAG has the
least fall in performance, followed by SDMG-R,
implying better robustness to misspelling or OCR
errors. The best-performing model for different
document types vary and is highlighted in bold in
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Figure 2: Sample images from each of the five document types released as part of the Category 1 dataset.

Figure 3: Sample images from each of the seven document types released as part of the Category 2 dataset.

Table 8. However, FS-DAG outperforms its peers
with the most consistent performance with lesser
model complexity.

Category 2 Dataset (KIE Task). Table 11
shows the F1-score results of FS-DAG on the
seven industry document types from the category
2 dataset while comparing it to other state-of-the-
art models. All the models are trained and tested
in this benchmark with ground-truth OCR annota-
tions. We can observe that FS-DAG outperforms
most of its peers by a considerable margin, while
LayoutLMv3 has a similar performance. In Ta-

ble 12, we report the F1-score when the training
has been done with ground-truth annotations. At
the same time, during inference, misspelling and
OCR errors are introduced at the word level with a
probability of 0.1. Table 13 reports the drop in per-
formance when the model is tested under the two
different scenarios as represented in Table 11 and
12. SDMG-R, LayoutLM Series have performance
drop in similar range which is higher compared
to FS-DAG. The best-performing model for differ-
ent document types vary and is highlighted in bold
in Table 11. FS-DAG outperforms its peers with
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Model Params
F1- Score across Category 1 Dataset (Inference without OCR Errors)

Ecommerce
Invoice

Adverse Reaction
Health Form

Medical
Invoice

University
Admission Form

Visa Form
(Immigration)

Avg Perf.

BERTBASE 110M 91.60 81.00 98.60 86.20 91.80 89.84
Distill-BERT 65M 90.30 82.50 99.20 90.70 89.80 90.50

SDMGR 5M 90.58 89.86 90.15 90.10 85.01 89.14
LayoutLMv2BASE 200M 97.20 88.60 100.00 95.97 88.40 94.03
LayoutLMv3BASE 125M 95.80 95.00 100.00 97.20 98.20 97.24
FS-DAG (ours) 81M 98.30 98.51 99.90 98.40 99.34 98.89

Table 8: Reports the field-level F1 scores for the KIE task in a few-shot learning setting for the five domain-specific
document types from the category 1 dataset are reported. The best performance is highlighted in bold, while the
second-best performance is underlined.

Model
F1 Score across Category 1 Dataset (Inference with OCR errors)

Ecommerce
Invoice

Adverse Reaction
Health Form

Medical Invoice
University

Admission Form
Visa Form

(Immigration)
Avg

Performance
BERTBASE 83.20 36.30 84.90 60.40 58.20 64.60

Distill-BERT 78.60 38.70 84.70 46.30 47.30 59.12
SDMGR 90.00 86.50 87.67 87.00 84.00 87.03

LayoutLMv2BASE 93.80 42.30 93.74 85.00 58.02 74.57
LayoutLMv3BASE 95.40 81.20 99.20 89.60 91.60 91.40
FS-DAG (ours) 98.01 97.93 99.50 96.80 97.56 97.96

Table 9: Reports the field-level F1 scores for the KIE tasks when the models are trained with ground-truth
OCR (without any errors), and testing happens with words having OCR errors with a probability of 0.1. FS-
DAG outperforms the competitor models with a substantial performance gap, highlighting the generalizability
and robustness of the model.The best performance is highlighted in bold, while the second-best performance is
underlined.

Model
Drop in F1 Score across Category 1 Dataset (Table 2 - Table 3)

Ecommerce
Invoice

Adverse Reaction
Health Form

Medical Invoice
University

Admission Form
Visa Form

(Immigration)
Avg

Perf. Drop
BERTBASE 8.40 44.70 13.70 25.80 33.60 25.24

Distill-BERT 11.70 43.80 14.50 44.40 42.50 31.38
SDMGR 0.58 3.36 2.48 3.10 1.01 2.11

LayoutLMv2BASE 3.40 46.30 6.26 10.97 30.38 19.46
LayoutLMv3BASE 0.40 13.80 0.80 7.60 6.60 5.84
FS-DAG (ours) 0.29 0.58 0.40 1.6 1.78 0.93

Table 10: Highlights the fall in model performance (difference between results in Table 2 vs. Table 3) when the
test document has misspelling or OCR errors with a probability of 0.1. FS-DAG shows the minimum drop in
performance overall and consistently higher performance compared to other models. The best performance is
highlighted in bold, while the second-best performance is underlined

the most consistent performance with lesser model
complexity. It is observed that language models
like BERTBASE and Distill-BERT have the maxi-
mum drop in performance (comparatively higher
than document types in Category 1) as they rely
entirely on textual features.
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Models Params
F1- Score across Category 2 Dataset (Inference without OCR Errors) Avg

Perf.
Medical

Authorization

Personal
Bank

Account

Equity
Mortage

Corporate
Bank

Account

Online
Banking

Application

Medical
Tax

Returns

Medical
Insurance

Enrollment
BERTBASE 110M 96.1 95.3 87.4 92.4 89.2 89.1 94.7 92.03

Distill-BERT 65M 95.7 97 92.3 92 91.1 90.2 97.1 93.63
SDMGR 5M 95.67 99.13 95.67 99.7 98.3 99 98.77 98.03

LayoutLMv2BASE 200M 96.9 88.1 94.1 96.4 87.5 97.9 91.9 93.26
LayoutLMv3BASE 125M 96.9 99.9 100 99.9 100 100 98.5 99.31

FS-DAG 81M 100 100 99.9 100 100 100 99.6 99.93

Table 11: Reports the field-level F1 scores for the KIE task in a few-shot learning setting for the seven domain-
specific document types from the category 2 dataset are reported. The best performance is highlighted in bold, while
the second-best performance is underlined.

Models Params
F1- Score across Category 2 Dataset(Inference with OCR errors) Avg

Perf.
Medical

Authorization

Personal
Bank

Account

Equity
Mortage

Corporate
Bank

Account

Online
Banking

Application

Medical
Tax

Returns

Medical
Insurance

Enrollment
BERTBASE 110M 50.60 40.80 67.40 58.90 75.30 69.00 50.80 58.97

Distill-BERT 65M 40.30 42.60 64.90 50.70 77.70 66.00 47.80 55.71
SDMGR 5M 88.27 90.70 95.23 98.37 99.10 98.47 92.40 94.65

LayoutLMv2BASE 200M 93.24 80.19 97.28 91.39 89.43 91.12 85.31 89.71
LayoutLMv3BASE 125M 88.60 98.00 99.45 95.37 98.49 99.84 90.61 95.77

FS-DAG 81M 98.40 98.50 99.09 99.43 99.5 99.67 96.57 99.02

Table 12: Reports the field-level F1 scores for the KIE tasks when the models are trained with ground-truth
OCR (without any errors), and testing happens with words having OCR errors with a probability of 0.1. FS-
DAG outperforms the competitor models with a substantial performance gap, highlighting the generalizability
and robustness of the model.The best performance is highlighted in bold, while the second-best performance is
underlined.

Models Params
Drop in F1 Score across Category 2 Dataset (Table 4 - 5) Avg

Perf.
Drop

Medical
Authorization

Personal
Bank

Account

Equity
Mortgage

Corporate
Bank

Account

Online
Banking

Application

Medical
Tax

Returns

Medical
Insurance

Enrollment
BERTBASE 110M 45.50 54.50 20.00 33.50 13.90 20.10 43.90 33.06

Distill-BERT 65M 55.40 54.40 27.40 41.30 13.40 24.20 49.30 37.91
SDMGR 5M 7.40 8.43 0.44 1.33 0.80 0.53 6.37 3.39

LayoutLMv2BASE 200M 3.66 7.91 3.18 5.01 1.93 6.78 6.59 3.55
LayoutLMv3BASE 125M 8.30 1.90 0.55 4.53 1.51 0.16 7.89 3.55

FS-DAG 81M 1.60 1.50 0.81 0.57 0.50 0.33 1.03 0.91

Table 13: Highlights the fall in model performance (difference between results in Table 4 vs. Table 5) when the
test document has misspelling or OCR errors with a probability of 0.1. FS-DAG shows the minimum drop in
performance overall and consistently higher performance compared to other models.
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