@inproceedings{wang-etal-2025-sibyl,
title = "Sibyl: Empowering Empathetic Dialogue Generation in Large Language Models via Sensible and Visionary Commonsense Inference",
author = "Wang, Lanrui and
Li, Jiangnan and
Yang, Chenxu and
Lin, Zheng and
Tang, Hongyin and
Liu, Huan and
Cao, Yanan and
Wang, Jingang and
Wang, Weiping",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.10/",
pages = "123--140",
abstract = "Recently, there has been a heightened interest in building chatbots based on Large Language Models (LLMs) to emulate human-like qualities in multi-turn conversations. Despite having access to commonsense knowledge to better understand the psychological aspects and causality of dialogue context, even these powerful LLMs struggle to achieve the goals of empathy and emotional support. Current commonsense knowledge derived from dialogue contexts is inherently limited and often fails to adequately anticipate the future course of a dialogue. This lack of foresight can mislead LLMs and hinder their ability to provide effective support. In response to this challenge, we present an innovative framework named Sensible and Visionary Commonsense Knowledge (Sibyl). Designed to concentrate on the immediately succeeding dialogue, this paradigm equips LLMs with the capability to uncover the implicit requirements of the conversation, aiming to elicit more empathetic responses. Experimental results demonstrate that incorporating our paradigm for acquiring commonsense knowledge into LLMs comprehensively enhances the quality of their responses."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2025-sibyl">
<titleInfo>
<title>Sibyl: Empowering Empathetic Dialogue Generation in Large Language Models via Sensible and Visionary Commonsense Inference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lanrui</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiangnan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenxu</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongyin</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huan</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yanan</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jingang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weiping</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently, there has been a heightened interest in building chatbots based on Large Language Models (LLMs) to emulate human-like qualities in multi-turn conversations. Despite having access to commonsense knowledge to better understand the psychological aspects and causality of dialogue context, even these powerful LLMs struggle to achieve the goals of empathy and emotional support. Current commonsense knowledge derived from dialogue contexts is inherently limited and often fails to adequately anticipate the future course of a dialogue. This lack of foresight can mislead LLMs and hinder their ability to provide effective support. In response to this challenge, we present an innovative framework named Sensible and Visionary Commonsense Knowledge (Sibyl). Designed to concentrate on the immediately succeeding dialogue, this paradigm equips LLMs with the capability to uncover the implicit requirements of the conversation, aiming to elicit more empathetic responses. Experimental results demonstrate that incorporating our paradigm for acquiring commonsense knowledge into LLMs comprehensively enhances the quality of their responses.</abstract>
<identifier type="citekey">wang-etal-2025-sibyl</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.10/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>123</start>
<end>140</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sibyl: Empowering Empathetic Dialogue Generation in Large Language Models via Sensible and Visionary Commonsense Inference
%A Wang, Lanrui
%A Li, Jiangnan
%A Yang, Chenxu
%A Lin, Zheng
%A Tang, Hongyin
%A Liu, Huan
%A Cao, Yanan
%A Wang, Jingang
%A Wang, Weiping
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F wang-etal-2025-sibyl
%X Recently, there has been a heightened interest in building chatbots based on Large Language Models (LLMs) to emulate human-like qualities in multi-turn conversations. Despite having access to commonsense knowledge to better understand the psychological aspects and causality of dialogue context, even these powerful LLMs struggle to achieve the goals of empathy and emotional support. Current commonsense knowledge derived from dialogue contexts is inherently limited and often fails to adequately anticipate the future course of a dialogue. This lack of foresight can mislead LLMs and hinder their ability to provide effective support. In response to this challenge, we present an innovative framework named Sensible and Visionary Commonsense Knowledge (Sibyl). Designed to concentrate on the immediately succeeding dialogue, this paradigm equips LLMs with the capability to uncover the implicit requirements of the conversation, aiming to elicit more empathetic responses. Experimental results demonstrate that incorporating our paradigm for acquiring commonsense knowledge into LLMs comprehensively enhances the quality of their responses.
%U https://aclanthology.org/2025.coling-main.10/
%P 123-140
Markdown (Informal)
[Sibyl: Empowering Empathetic Dialogue Generation in Large Language Models via Sensible and Visionary Commonsense Inference](https://aclanthology.org/2025.coling-main.10/) (Wang et al., COLING 2025)
ACL
- Lanrui Wang, Jiangnan Li, Chenxu Yang, Zheng Lin, Hongyin Tang, Huan Liu, Yanan Cao, Jingang Wang, and Weiping Wang. 2025. Sibyl: Empowering Empathetic Dialogue Generation in Large Language Models via Sensible and Visionary Commonsense Inference. In Proceedings of the 31st International Conference on Computational Linguistics, pages 123–140, Abu Dhabi, UAE. Association for Computational Linguistics.