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Abstract
Aligning Large Language Models (LLMs) with
human feedback is crucial for their develop-
ment. Existing preference optimization meth-
ods such as DPO and KTO, while improved
based on Reinforcement Learning from Human
Feedback (RLHF), are inherently derived from
PPO, requiring a reference model that adds
GPU memory resources and relies heavily on
abundant preference data. Meanwhile, current
preference optimization research mainly tar-
gets single-question scenarios with two replies,
neglecting optimization with multiple replies,
which leads to a waste of data in the applica-
tion. This study introduces the MPPO algo-
rithm, which leverages the average likelihood
of model responses to fit the reward function
and maximizes the utilization of preference
data. Through a comparison of Point-wise,
Pair-wise, and List-wise implementations, we
found that the Pair-wise approach achieves the
best performance, significantly enhancing the
quality of model responses. Experimental re-
sults demonstrate MPPO’s outstanding perfor-
mance across various benchmarks. On MT-
Bench, MPPO outperforms DPO, ORPO, and
SimPO. Notably, on Arena-Hard, MPPO sur-
passes DPO and ORPO by substantial margins.
These achievements underscore the remarkable
advantages of MPPO in preference optimiza-
tion tasks.

1 Introduction

As large language models (LLMs) advance at an
impressive pace, their performance on various tasks
approaches and even exceeds that of humans. Gen-
erally, the complete training process for a LLM en-
tails three main stages: pre-training (Brown et al.,
2020), task-specific fine-tuning (Supervised Fine-
Tuning, SFT) (Wei et al., 2021; Wang et al., 2022)
and preference optimization.

The pre-training phase involves unsupervised
learning on large text datasets, which provides
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There are many planets in the solar system, such as 
Earth, Mars, Jupiter, and so on.

The planets in the solar system include Mercury, Venus, 
Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.

The solar system contains Earth.

What planets are there in the solar system?

Figure 1: A simple example: When answering ques-
tions, the LLMs may generate multiple responses, but
the quality of different responses varies.

LLMs with a broad foundation of language knowl-
edge (Hu et al., 2022; Almazrouei et al., 2023).
However, since pre-trained models typically learn
general language patterns, their performance on
specific tasks may be insufficient. Therefore, pre-
trained LLMs often require further SFT to excel in
practical applications.

The SFT process typically involves supervised
learning, where the model is trained on a labeled
dataset tailored to the target task (Gudibande et al.,
2024). SFT enhances LLMs’ performance on task-
specific metrics, such as accuracy and relevance.
However, as depicted in Figure 1, SFT models may
produce responses that diverge from human pref-
erences when responding to queries (Carlini et al.,
2020; Pryzant et al., 2023). Thus, an efficient pref-
erence optimization strategy is crucial for aligning
their responses with human values and preferences.

Recent studies on preference optimization, in-
cluding reinforcement learning with human feed-
back and direct preference optimization (DPO)
(Rafailov et al., 2023), have established effective
methods for aligning language models. These ap-
proaches have proven successful, as exemplified
by models like GPT-4 (Josh et al., 2023) (Ouyang
et al., 2022) and Llama-3 (Abhimanyu et al., 2024).

Preference alignment methods have proven suc-
cessful not only in aligning with human values but
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Figure 2: The primary differences between MPPO and DPO are three-fold: (1) MPPO directly models the reward
function using the average likelihood of the responses. (2) MPPO can utilize any number of negative samples for
training in sparse scenarios. (3) The optimization objective of MPPO does not require a reference model or any
hyperparameters, making the model more stable.

also across various downstream tasks such as en-
hancing factual accuracy (Tian et al., 2023; Cheng
et al., 2024) and code-based question answering
(Gorbatovski and Kovalchuk, 2024). However, as
shown in Figure 2, existing preference alignment
methods often require the use of reference models,
and the optimization goals are not directly related
to the generation of responses.

In this work, we innovatively introduce the use
of the average likelihood value of model responses
as an approximation for the reward function, named
Multi Pair-wise Preference Optimization (MPPO).
In the real world, we can generate multiple re-
sponses for the same query using different models,
although these responses may not be dense. We re-
fer to this as a sparse data scenario, which is more
reflective of practical situations. We further explore
how to better leverage the preference information
from multiple preference samples. In summary, our
work makes the following contributions:

• We propose a new algorithm that directly op-
timizes the policy model without training a
reward model or relying on a reference model.

• Our discussion on preference optimization for
multiple responses to a single query in sparse
data scenarios has led to conclusions that are
more suitable for practical applications.

• We thoroughly analyze three primary imple-
mentations of MPPO: Point-wise, Pair-wise,
and List-wise. Among them, the Pair-wise

approach achieves optimal performance, offer-
ing insights that can inspire the development
of other preference optimization algorithms.

• Our experiments on the UltraFeedback (Cui
et al., 2023) dataset demonstrate that the pro-
posed algorithm outperforms previous meth-
ods on the MT-Bench and also surpasses algo-
rithms like DPO and ORPO on Arena-Hard.

2 Related Works

In this section, we review the existing research
on preference optimization for LLMs. Reinforce-
ment learning from human feedback (RLHF) has
been widely applied in the methods of preference
optimization. In these methods, people first con-
struct a reward model on preference dataset (Casper
et al., 2023), and then fine-tune the LLMs with re-
inforcement learning algorithms such as proximal
policy optimization (PPO) (Schulman et al., 2017)
or its variants to maximize the estimated rewards.
To enhance the stability of RLHF, Christiano et al.
(Christiano et al., 2017) and Ouyang et al. (Ouyang
et al., 2022) proposed incorporating KL regular-
ization based on the SFT model into preference
optimization.

While PPO has achieved significant success in
training high-performance prognostic models, this
method requires prior training of a reward model
(Gao et al., 2022; Wang et al., 2024). The reward
model demands a large amount of dense data to
ensure modeling accuracy, and the instability in
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training the reward model causes high sensitivity to
hyperparameters (Wang et al., 2024). Completing
the full training also necessitates loading multiple
models, which consumes extensive GPU memory
resources, thereby presenting a series of practical
challenges.

To address the stringent need for a reward model,
numerous scholars have pursued innovation (Song
et al., 2023). Recent studies, such as DPO (Rafailov
et al., 2023), have attempted to reparameterize the
reward function by integrating reward modeling
with the preference learning stage, thereby reduc-
ing the training costs of the preference optimiza-
tion phase. Further research building on DPO,
such as KTO (Ethayarajh et al., 2024), circumvents
the need for paired preference samples and allows
for effective preference optimization even in the
presence of imbalanced positive and negative sam-
ples. DPOP (Pal et al., 2024) specifically optimizes
against a potential issue encountered by DPO, that
is, the diminishing likelihood of the model’s assess-
ment of preference examples during training, to
prevent this occurrence. However, methods such
as DPO, KTO (Ethayarajh et al., 2024), and DPOP
(Pal et al., 2024) still rely on a KL regularizer cen-
tered around SFT, and complete training still de-
mands the loading of both the policy model and
reference model.

In response to this challenge, odds ratio pref-
erence optimization (ORPO) (Hong et al., 2024)
investigates the role and impact of SFT in model op-
timization with pairwise preference datasets, seam-
lessly integrating the SFT phase with the preference
optimization stage and incorporating probability
ratios into the optimization objective, thus elimi-
nating the mandatory use of the reference model
during the preference optimization phase. Sim-
ple preference optimization (SimPO) (Meng et al.,
2024) introduces length-normalized rewards and
marginal target rewards, which similarly omit the
reference model, rendering the preference optimiza-
tion process both efficient and concise.

Our subsequent research will focus on how to
effectively and concisely achieve preference opti-
mization, as well as how to better model rewards in
real-world scenarios with preference samples that
include multiple responses.

3 Methodology

In this section, we first introduce the background of
DPO. Then, we present the fundamental principle

of our approach: fitting the reward function with
the responses’ average likelihood of the model. Ex-
tending from this principle, we have outlined three
primary methods of implementation.

3.1 Direct Preference Optimization
DPO is a highly successful method for offline pref-
erence optimization. Compared to the RLHF train-
ing approach, DPO reparameterizes the reward
function r(x, y) using a closed-form expression
with the optimal policy:

r(x, y) = β log

(
πθ(y|x)
πref(y|x)

)
+ β logZ(x), (1)

where πθ is the policy model, πref is the reference
policy, typically the supervised SFT model, and
Z(x) is the partition function. Integrating the re-
ward model into the Bradley-Terry objective:

p(yw > yl|x) = σ(r(x, yw)− r(x, yl)). (2)

DPO expresses the probability of preference data
through a policy model rather than a reward model,
thus generating the following objective:

LDPO(πθ;πref) = −E(x,yw,yl)∼D[
logσ

(
βlog

πθ(yw|x)
πref(yw|x)

− βlog
πθ(yl|x)
πref(yl|x)

)]
,

(3)

where (x, yw, yl) are preference pairs consisting
of the query, the winning response, and the losing
response from the preference dataset D. DPO inte-
grates reward modeling with the preference learn-
ing stage, thus reducing the training costs of the
preference optimization phase.

3.2 MPPO: Fitting the Reward Function to
the Average Likelihood of the Model
Responses

Using Eq. (3) as the optimization objective in DPO
has three drawbacks: (1). It necessitates loading a
reference model during training, which results in
additional GPU memory requirements and compu-
tational costs. (2). Training data requires strictly
positive and negative preference pairs. When deal-
ing with multiple responses to a single query, this
requirement leads to significant data redundancy
and inefficiency. (3). DPO uses the policy model to
represent the probability of preference data, but this
does not fully correspond to the actual probability
of the preference data.
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To address the aforementioned issue, we pro-
posed MPPO, which uses the average likelihood
fitting of the model’s responses as the reward func-
tion:

rMPPO(x, y) =

|y|∏
i=1

πθ(yi|x, y<i)
1
|y| , (4)

where πθ(yi|x, y<i) represents the probability of
generating the i-th token yi given the input x and
the preceding tokens y<i. Here, |y| denotes the
length of the response y, which is the total number
of tokens in the response. This function calcu-
lates the geometric mean of the likelihoods for all
tokens in the response. When the model is well-
constructed, this approach increases the likelihood
of generating better responses, guiding the model
to favor producing superior responses.

3.3 Three Primary Methods of
Implementation

The MPPO algorithm can be implemented in vari-
ous ways, making it crucial to evaluate these meth-
ods to determine the most effective approach for
aligning LLMs.

To more comprehensively study which aspects
of preference data and implementation methods
are most critical, we assume access to complete
preference information and a diverse dataset that
includes annotations for both high-quality and low-
quality responses, as well as specific scores for
each response (i.e., one query with n responses and
corresponding scores for those responses), we ex-
amine the effectiveness of different implementation
strategies based on this premise.

There are three primary implementation ap-
proaches: Point-wise, Pair-wise, and List-wise. In
the following discussion, we denote p as:

p =

|y|∏
i=1

πθ(yi|x, y<i)
1
|y| . (5)

3.3.1 Implementation Approach Based on
Point-Wise

The idea behind Point-wise approaches is that each
query, response, and score is considered individ-
ually during training, rather than as pairs. This
allows the score to be aligned with Point-wise pre-
dictions. Since the score takes on discrete values,
this process can be treated as a multi-class clas-
sification problem. Optimization objectives can

include cross-entropy loss and mean squared error,
as described in Eq. (6) and Eq. (7), respectively.

LPoint-CE(πθ) = −E(x,y)∼D

[
score · log(p)+

(1− score) · log(1− p)

]
, (6)

LPoint-MSE(πθ) = −E(x,y)∼D
[
(score − p)2

]
,

(7)

where score represents the reward value assigned
to each response, and y can be both yw and yl.

3.3.2 Implementation Approach Based on
Pair-Wise

Pair-wise approaches focus on handling pairs of
data or binary relations within datasets. At each
instance, two response samples are selected—one
designated as the positive sample and the other
as the negative sample, based on their respective
scores. The objective is to increase the average
likelihood of selecting the positive sample while
decreasing the likelihood of selecting the negative
sample.

In the special case where each piece of data only
contains one positive sample and one negative sam-
ple, the reward formula r(x, y) = p can be sub-
stituted into the Bradley-Terry ranking objective
p(yw > yl|x) = σ(r(x, yw) − r(x, yl)), resulting
in Pair-Single optimization function (8):

LPair-Single(πθ) = −E(x,yw,yl)∼D [log σ(pw − pl)] .

(8)

However, in practical settings, obtaining large
volumes of human preference data is comparatively
easy and efficient. For example, a series of re-
sponses can be quickly generated from an identical
query. Consequently, we consider the implementa-
tion of a Pair-wise approach when there are N + 1
responses to the same prompt. A straightforward
approach is to mark the response with the highest
score value among the N + 1 answers as the posi-
tive sample, and all the others as negative samples.
This extends the Pair-Single method to two new
variants: Pair-Multi-N-Separate (Pair-MNS) and
Pair-Multi-N-Merge (Pair-MNM), as shown in Eq.
(9) and Eq. (10).

LPair-MNS(πθ) = −E(x,yw,yli )∼D N∑
i=1

log σ(pw − pli)︸ ︷︷ ︸
total of N items

 , (9)
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LPair-MNM(πθ) = −E(x,yw,yli )∼D[
log σ

(
N · pw −

N∑
i=1

pli

)]
. (10)

Subsequently, we adopted OpenAI’s strategy
for selecting data when training reward models,
which involves randomly choosing a pair from K
data points for comparative training (Ouyang et al.,
2022). In our method, we randomly select two data
points from the N+1 responses and compare them
based on their scores. The sample with the higher
score is treated as the positive instance, while the
one with the lower score is considered the negative
instance. Based on this, we extend Equations (9)
and (10) to incorporate this training framework as
Pair-Multi-Combination-Separate (Pair-MCS) and
Pair-Multi-Combination-Merge (Pair-MCM) in Eq.
(11) and Eq (12):

LPair-MCS(πθ) = −E(x,yw,yli )∼D N∑
i=1

log σ(pw − pli)︸ ︷︷ ︸
total of C2

N+1 items

 , (11)

LPair-MCM(πθ) = −E(x,yw,yli )∼Dlog σ
 N∑

i=1

(pw − pli)︸ ︷︷ ︸
total of C2

N+1 items


 . (12)

3.3.3 Implementation Approach Based on
List-Wise

Unlike Pair-wise methods, which focus on pairwise
preferences between items, the List-wise approach
considers the ordering of items across the entire list.
This method aims to directly optimize ranking mod-
els based on a list’s overall ranking quality. In this
context, the list of responses contains N + 1 items.
Notably, when N = 1, the List-wise and Pair-wise
approaches are equivalent. A specific implemen-
tation of the List-wise method is List-MLE (Lan
et al., 2014). List-MLE applies Maximum Like-
lihood Estimation (MLE) directly to ranking list
data, integrating Eq. (4) into the List-wise ranking
loss to derive the List-MLE optimization function:

LList-MLE(πθ) = −E(x,y1,...,yN+1)∼D[
log

N+1∏
i=1

exp(pi)∑N+1
j=i exp(pj)

]
, (13)

where pi represents the reward value for the i-th
item, and the items are arranged in descending
order of their reward values.

4 Experimental Settings

4.1 Training Configurations

4.1.1 Model
For training, we utilized the Llama3-8B model
(Abhimanyu et al., 2024), following the setups of
Zephyr (Tunstall et al., 2023) and SimPO. The
training process began by fine-tuning a founda-
tional model on the UltraChat-200k dataset (Ding
et al., 2023) to obtain a supervised fine-tuned (SFT)
model. This SFT model then served as the initial
model for preference optimization on the Ultra-
Feedback dataset (Cui et al., 2023).

To ensure transparency, the SFT model was
trained on open-source data, and we used the
publicly available Llama3-8B-SFT weights from
SimPO as our baseline. Preference optimization
was conducted using three different implementa-
tions of MPPO: Point-wise, Pair-wise, and List-
wise. Within each implementation, we experi-
mented with different variations to determine the
most effective alignment method for LLMs.

Unlike SimPO, which required extensive hy-
perparameter tuning, our approach only involved
adjusting the learning rate, significantly reducing
training costs while maintaining consistency and
reliability.

4.1.2 Datasets
We conducted preference optimization training on
the UltraFeedback dataset, which includes 64k in-
structions. For each instruction, four models gen-
erated responses, and GPT-4 rated each response
from 1 to 10 based on instruction adherence, au-
thenticity, honesty, and helpfulness, with higher
scores indicating better responses.

In the Point-wise implementation, each instruc-
tion with its four responses and reward values was
split into four separate samples, totaling 256k data
points (64k*4). Reward values were normalized to
a range of 0.1 to 1 by dividing by 10.

In the Pair-Single implementation, the highest-
scoring response was labeled positive, and one of
the remaining three responses was randomly cho-
sen as negative.

In the List-wise implementation, all four re-
sponses were sorted by their scores and trained
together as a list.
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4.2 Leaderboard Evaluation

To evaluate our model, we use two of the most
popular open-ended instruction-following bench-
marks: MT-Bench and Arena-Hard (details in Table
1). MT-Bench encompasses 80 tasks across 8 cate-
gories, with each task consisting of two rounds of
question-and-answer phases. The newly released
Arena-Hard is an enhanced version of MT-Bench
that includes 500 clearly defined technical problem-
solving queries. We report scores in accordance
with the evaluation protocols of each benchmark.
For MT-Bench, we provide the average score using
GPT-4-Turbo-0409 as the evaluating model, which
implements stricter grading criteria. For Arena-
Hard, we report the win rate in comparison to the
baseline model (GPT-4-0314).

5 Results and Analysis

In this section, we present the results of our experi-
ments in Section 5.1, which include the outcomes
for various implementations of MPPO and com-
parisons with SOTA preference optimization algo-
rithms such as DPO, KTO, ORPO, and SimPO. In
the subsequent subsections, 5.2 and 5.3, we draw
several conclusions regarding preference optimiza-
tion by analyzing and comparing these experimen-
tal results.

We have primarily explored four Research Ques-
tions (RQs) regarding the MPPO method:

• RQ1: Are all implementations of MPPO:
Point-wise, Pair-wise, and List-wise effective?
Which method is the most effective?

• RQ2: Is the use of multiple samples (N +
1) preferable to optimizing with just a single
positive and a single negative sample?

• RQ3: In sparse data scenarios, is the opti-
mization goal of collaboratively leveraging
multiple samples for preference optimization
effective?

• RQ4: In sparse data scenarios with multiple
responses, is it necessary to consider multiple
samples for reward fitting (MCM), or is it suf-
ficient to focus on just one optimal response
(MNM)?

5.1 Main Results

In Table 2, we present the results of various im-
plementations of MPPO and several preference

optimization algorithms on MT-bench and Arena-
hard benchmarks. It is observable that while all
algorithms yield certain performance gains in the
preference optimization for the SFT model, the
magnitude of these improvements varies. The Pair-
MNM implementation of MPPO achieved the high-
est scores on the MT-Bench leaderboard, surpass-
ing the SFT model and the DPO, SimPO by 1.54
points, 0.23 points, and 0.19 points, respectively,
demonstrating a significant enhancement and estab-
lishing itself as the latest SOTA algorithm.

In the Arena-Hard evaluation, the Pair-MNM
implementation of MPPO placed second with a win
rate of 21.6, only trailing behind SimPO, which had
a win rate of 23.4. Pair-MNM outperformed DPO
(win rate of 15.9), KTO (12.8), and ORPO (10.7).

5.2 Comparison of Three Implementation
Approaches: Point-wise, Pair-wise, and
List-wise (RQ1)

Based on the analysis results in Table 2, while
MPPO algorithm has various implementation
strategies, not all strategies can achieve effective
goals. Firstly, among the three MPPO implementa-
tion strategies, the Pair-wise method stands out, out-
performing the List-wise and Point-wise methods
in both MT-Bench and Arena-hard benchmarks.

The Point-wise method, despite high expecta-
tions, did not perform as well as anticipated. In
fact, it underperformed compared to the original
SFT model on the MT-Bench evaluation set. This
suggests that relying solely on the magnitude of
label information is inadequate and that incorporat-
ing preference information is crucial. Figure 3 illus-
trates the issue with the Point-wise method’s Point-
CE training: the scores for all answers remain rel-
atively high (between 0.1 and 1) throughout the
training period. Consequently, the average like-
lihood of each answer increases uniformly. How-
ever, the score difference between the best response
and several poor responses decreases, making it
harder to distinguish high-quality response from
lower-quality ones. This explains why the Point-
CE model performs worse than the SFT model.

Additionally, it is important to note that there is
only a positive correlation, not an exact correspon-
dence, between the responses’ average likelihood
and reward values. Therefore, directly approximat-
ing these specific values may not be effective. The
inherent randomness of scores generated by GPT-4
also adds complexity to the modeling process.

In conclusion, the List-wise approach exhibits
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Exs. Baseline Model Judge Model Scoring Type Metric
MT-Bench 80 - GPT-4-Turbo-0409 Single-answer grading Rating of 1-10
Arena-Hard 500 GPT-4-0314 GPT-4-Turbo-0409 Pairwise comparison Win rate

Table 1: Comparison of baseline and judge models on MT-Bench and Arena-Hard datasets.

Method Mt-Bench Arena-Hard
SFT 4.62 3.3
DPO 5.93 15.9
KTO 5.87 12.8
ORPO 5.49 10.7
SimPO 5.97 23.4
Point-CE 4.38 12.8
Point-MSE 4.43 13.1
Pair-Single 5.96 19.1
Pair-MNS 5.84 5.1
Pair-MNM 6.16 21.6
Pair-MCS 5.72 14.6
Pair-MCM 5.77 7.8
List-MLE 5.87 5.4

Table 2: The results of MT-Bench and Arena-Hard. The
SFT models are trained on the UltraChat dataset, and
then preference optimization models are trained from
the SFT models using algorithms such as DPO, MPPO,
etc.
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Figure 3: Training Logs for Point-CE (N=3). (a) shows
the variation in average likelihood for the chosen and
three rejected samples; (b) illustrates the overall loss
variation during the training period.

certain disadvantages compared to Pair-wise meth-
ods. While it performs well on the MT-Bench
benchmark, its performance is poor on Arena-
Hard. This indicates the instability of the List-wise
method, as well as the higher level of challenge pre-
sented by the Arena-Hard evaluation set compared
to the MT-Bench. Although List-wise approach
take preference information into account, it focus
on preference ranking and do not strongly reflect
preference information. Therefore, the list ranking
information can be considered as weak preference
information.
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Figure 4: Based on the Pair-wise implementation ap-
proach, the training records (N=3) are organized and
listed from top to bottom as follows: (a) and (b). Pair-
Single implementation; (c) and (d). Pair-MNS imple-
mentation; (e) and (f). Pair-MNM implementation; (g)
and (h). Pair-MCM implementation.

5.3 Comparison of Implementation
Methodology Based on Pair-wise

In various implementations based on the Pair-wise
strategy, the Pair-MNM approach achieved the best
evaluation results. Subsequently, we will compare
other Pair-Wise-based implementations to analyze
the reasons behind the superior performance of
Pair-MNM.

Considering all responses will enhance the
preference model. (RQ2) Compared to Single-
pair optimization, the Pair-MNM approach eval-
uates all samples collectively. It designates the
highest-quality answer as the positive sample and
classifies the remaining responses as negative. This
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method enhances the incorporation of preference
information by focusing on increasing the average
likelihood of the chosen answers and decreasing
that of the rejected ones. As shown in Figures 4a
and 4c, Pair-MNM effectively amplifies the distinc-
tion between the chosen answer and each rejected
one throughout the training process. This results in
improved model performance, as it better learns to
differentiate between varying responses.

Incorporating Multiple Rejections Collabo-
ratively for Optimal Objective Achievement in
Preference Optimization. (RQ3) Both Pair-MNM
and Pair-MNS approaches, while based on the
Single-pair method and considering multiple re-
jections, differ in how they handle these rejections.
Pair-MNS calculates the average likelihood differ-
ence between the chosen instance and each rejected
instance separately, summing the log-sigmoid val-
ues of these differences. This means each rejected
instance independently influences the optimization
objective. In contrast, Pair-MNM considers all
rejected instances collectively, aiming to synergisti-
cally account for their combined impact to optimize
the overall objective.

The subtle differences in the optimization objec-
tives lead to different outcomes during training, as
depicted in Figures 4 c-f. While the loss curves and
average likelihood trends are fundamentally similar,
Pair-MNM consistently achieves an average likeli-
hood of approximately 0.05 higher than Pair-MNS.
This suggests that Pair-MNM, by integrating the
discrepancies between multiple rejections relative
to the chosen instance, results in a more effective
decision boundary.

Just need one Optimal Response. (RQ4)
The main difference between Pair-MNM and Pair-
MCM lies in how positive and negative samples
are selected in sparse data scenarios. Pair-MNM
chooses the highest-scoring sample as positive and
labels all others as negative. In contrast, Pair-MCM
uses a method similar to OpenAI’s approach: it
draws two samples from N+1 data points, com-
pares them based on their scores, and labels the
higher-scoring sample as positive.

Unlike Pair-MNM, which treats all rejected sam-
ples equally, Pair-MCM adjusts suppression inten-
sity based on each sample’s score, applying greater
suppression to lower-scoring samples and less to
higher ones. As illustrated in Figure 4g, this ap-
proach sometimes results in incorrect promotion of
samples relative to the positive sample, as seen in
the mean likelihood trends.

Our experiments show that Pair-MCM does not
perform better in sparse data scenarios. Thus, for
multiple-answer preference optimization in such
contexts, focusing on a single optimal response
(Pair-MNM) and suppressing other samples is more
effective for achieving better model performance
and preference optimization.

6 Conclusion

In this article, we present MPPO (Multi Pair-wise
Preference Optimization), a preference optimiza-
tion algorithm designed for directly modeling re-
ward models in sparse data scenarios. Compared
to existing methods, MPPO demonstrates superior
performance on the Llama3-8B model. Our analy-
sis reveals that Pair-wise implementations outper-
form Point-wise and List-wise approaches. Ad-
ditionally, considering all responses enhances the
preference model, and collaboratively addressing
multiple rejections yields optimal results. Notably,
only one optimal response is needed, eliminating
the need for multiple sampling of preference pairs.
MPPO effectively illustrates how to leverage prefer-
ence data from multiple responses to a single query
and addresses common challenges in real-world
sparse data applications.

Limitations and Ethics

Our work primarily proposes a preference opti-
mization algorithm for directly modeling reward
models in sparse data scenarios, without the need
for a reference model. We acknowledge that the
main limitations of this study are as follows:

1. We covered various implementation methods,
including Point-wise, Pair-wise, and List-wise, as
well as others like logistic ranking loss and ListNet.
Future work will explore a broader range of meth-
ods and analyze their strengths and weaknesses in
more detail.

2. We did not clearly define the boundary be-
tween data-rich and data-scarce scenarios in prefer-
ence optimization. This will be addressed in future
work through further discussion and experimental
analysis.

All experiments are conducted on publicly avail-
able datasets; no scientific ethical violations or pri-
vacy infringements occurred.
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