
Proceedings of the 31st International Conference on Computational Linguistics, pages 1555–1561
January 19–24, 2025. ©2025 Association for Computational Linguistics

1555

Polysemy Interpretation and Transformer Language Models: A Case of
Korean Adverbial Postposition -(u)lo

Seongmin Mun
Humanities Research Institute

Ajou University
Suwon-si, Gyeonggi-do, South Korea

stat34@ajou.ac.kr

Gyu-Ho Shin
Department of Linguistics

University of Illinois Chicago
Chicago, IL, USA
ghshin@uic.edu

Abstract
This study examines how Transformer lan-
guage models utilise lexico-phrasal informa-
tion to interpret the polysemy of the Korean
adverbial postposition -(u)lo. We analysed the
attention weights of both a Korean pre-trained
BERT model and a fine-tuned version. Results
show a general reduction in attention weights
following fine-tuning, alongside changes in the
lexico-phrasal information used, depending on
the specific function of -(u)lo. These findings
suggest that, while fine-tuning broadly affects
a model’s syntactic sensitivity, it may also alter
its capacity to leverage lexico-phrasal features
according to the function of the target word.

1 Introduction

Langacker (2002) critiques the traditional view
that ‘case’ pertains solely to a structure lacking
any semantic content. He argues that, despite vary-
ing degrees of abstractness, functional morphemes
such as case particles also carry meanings. This is
also found in Korean, a Subject-Object-Verb lan-
guage with overt case-marking via dedicated parti-
cles (i.e., bound morphemes that add grammatical
meaning/function to the content words to which
they are attached; Sohn, 1999). The semantics of
Korean case particles depends on the context in
which they occur, and these particles often involve
many-to-many mappings between form and mean-
ing/function (Choo and Kwak, 2008). For example,
the adverbial postposition -(u)lo (-ulo after a con-
sonant), which is the focus of the present study,
is interpreted with six major functions: criterion
(CRT), direction (DIR), effector (EFF), final state
(FNS), instrument (INS), and location (LOC) (Mun
and Desagulier, 2022; Shin, 2008). (1) exemplifies
the use of -(u)lo as INS within a sentence.

(1) 전선이
censen-i
wire-NOM

고무로
komwu-lo
rubber-INS

감겼다.
kam-ki-ess-ta.
wind-PSV-PST-DECL

‘The wire was wound in/with rubber.’

Several studies have performed automatic analyses
of this postposition (e.g., Bae et al., 2020a,b; Hong
et al., 2020), reporting strong model performance in
addressing its polysemous nature using transformer
language models, as measured by F-scores ranging
from 0.776 (Park et al., 2019) to 0.856 (Bae et al.,
2020a). However, the exact reasons for the superior
performance of transformers compared to other
architectures remain somewhat unclear (Puccetti
et al., 2021; Yun et al., 2021).

To address the performance of transformer lan-
guage models, recent studies have increasingly fo-
cused on analysing the models’ attention weights
(i.e., The higher the attention weight exchanged be-
tween one word token and another, the greater the
syntax-sensitive behaviour between them; Clark
et al., 2019; Kovaleva et al., 2019; Vig, 2019) and
comparing the patterns with human language be-
haviours (Hawkins et al., 2020; Ryu and Lewis,
2021; Timkey and Linzen, 2023). For example,
Ryu and Lewis (2021) examined whether infor-
mation from preceding reflexive pronouns or verbs
is more critical for a model’s assessment of the
grammaticality of English sentences. The results
of the study indicate that the surprisal value of the
verb or reflexive pronoun affects subject-verb and
reflexive pronoun agreement processing and that
the Transformer model is influenced by distrac-
tors when processing such constructions. Hawkins
et al. (2020) investigated whether language models’
attention weights are influenced by token informa-
tion in English double-object versus prepositional
dative sentences, particularly when the sentence
interpretation varies depending on the verb. The
findings indicate that larger models are more effec-
tive in understanding sentence meaning. For trans-
former language models, comprehension accuracy
increases after processing the initial verb and its
associated noun but declines when handling subse-
quent nouns.

While there is substantial research on under-
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standing transformer language models through at-
tention weights in English, little is known as to the
role of attention weights in interpreting polysemy
in languages that are underrepresented in the field
and typologically different from English. In this
study, we turn our attention to Korean, an under-
studied language for this purpose, with a special
focus on the relationship between a BERT model’s
attention weights and its polysemy interpretation
of the adverbial postposition -(u)lo, which is fre-
quently used and documented in the previous liter-
ature (e.g., Cho and Kim, 1996; Nam, 1993; Park,
1999). For a better demonstration of model perfor-
mance, we also designed an attention distribution
tailored for Korean, inspired by Vig (2019), and
applied it to our analysis.

2 Methods

2.1 Data and Model Creation

Previous research on the various functions of this
postposition often employed a specific clausal com-
position [NP1 NP2 -(u)lo VP] (Jeong, 2010), as in
(2). In the given sentence, pemi-i serves as NP1,
kolmok as NP2, and talan-ass-ta is used as the
VP. We adhered to this basic structure by extract-
ing a total of 60 sentences (10 instances for each
of 6 functions) from a corpus developed in Mun
and Desagulier (2022). We then manually reviewed
these instances and made additional adjustments
to ensure that all sentences maintained a nearly
consistent structure.

(2) 범인이
pemin-i
criminal-NOM

골목으로
kolmok-ulo
alley-DIR

달아났다.
talana-ss-ta.
flee-PST-DECL

‘The criminal fled into the alley.’

To observe the attention weights for the input sen-
tences, we employed a BERT-based pre-trained
model – KoBERT (Jeon et al., 2019)1 – and fine-
tuned it by using the corpus tagged with the func-
tions of the target postposition -(u)lo as released in
Mun and Desagulier (2022). The model was trained
on function tags to capture the six major functions
of the target postposition. During the training phase,
we set the parameters in the following way, as ad-
vised by previous studies (e.g., McCormick, 2019;
Mun and Desagulier, 2022; Vázquez et al., 2020;
Wu et al., 2019): batch size (16), epoch (30), seed

1Note that we did not use GPT-based models, as they are
trained unidirectionally and utilise information only in a se-
quential (i.e., left-to-right) manner.

(42), sequence length (256), epsilon (0.00000008),
and learning rate (0.0001).

2.2 NP/VP Treatment and Attention
Transformation

The attention weights in a transformer language
model generally consist of 12 heads and 12 layers,
with attention matrices generated based on tokens
segmented by each model’s tokeniser. Since the
KoBERT tokeniser used in this study employs a
syllable-based WordPiece algorithm for Korean,
a sentence is not always split perfectly based on
whitespace. Therefore, this study applied an im-
proved method illustrated in Figure 1 to better ob-
tain the attention outputs such as Vig (2019) while
maintaining the structure of [NP1 NP2 -(u)lo VP]
in the attention weights.

Figure 1: NP/VP treatment and attention transformation
(example (1)).

First, we manually modified the structure of the
input sentences while retaining the base form [NP1
NP2 -(u)lo VP] by removing the case marker from
the first noun and the final ending of the verb. Next,
we tokenised the input sentences using both the
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Factor β SE |T | p

NP1 (Intercept) 0.168 0.012 13.009 < 0.001∗∗∗

Model -0.126 0.014 8.474 < 0.001∗∗∗

Function -0.001 0.006 0.163 0.871
Model × Function 0.015 0.008 1.802 0.076

NP2 (Intercept) 0.353 0.013 27.111 < 0.001∗∗∗

Model -0.122 0.015 7.822 < 0.001∗∗∗

Function -0.017 0.007 2.223 0.030∗

Model × Function 0.022 0.009 2.426 0.018∗

VP (Intercept) 0.454 0.016 27.182 < 0.001∗∗∗

Model -0.251 0.018 13.874 < 0.001∗∗∗

Function -0.002 0.009 0.270 0.787
Model × Function 0.026 0.010 2.513 0.014∗

Table 1: Model outputs (by phrase). ∗ < 0.05; ∗∗∗ < 0.001

KoBERT tokeniser and the Stanza morphological
analyser (Qi et al., 2020). The tokenisation results
from KoBERT were then concatenated to align
with the morphological analysis from Stanza, and
the information from each concatenated token was
summed to produce a single set of attention weights.
Finally, to derive a representative value for the
attention weights indicating how -(u)lo interacts
with surrounding morphemes, the attention weights
across all 144 values (i.e., 12 heads * 12 layers)
were summed. This method was applied to both
the pre-trained KoBERT model (which was not
fine-tuned on the corpus specifying the functions
of -(u)lo) and the fine-tuned model (trained on the
corpus specifying the functions of -(u)lo), resulting
in 60 analysed attention weights per model.

3 Results: Two Case Studies

Figure 2 presents the attention weights (standard-
ised via min-max normalisation) exchanged be-
tween -(u)lo and surrounding morphemes in a
sentence. Visual inspection of the figure reveals

two major findings. First, the attention weights ex-
changed between -(u)lo and its surrounding mor-
phemes were higher in the pre-trained model com-
pared to the fine-tuned model. Second, in the pre-
trained model, the attention weights increased se-
quentially across the morphemes (i.e., NP1 < NP2
< VP) for all functions of -(u)lo. In contrast, while
the fine-tuned model exhibited similar increasing
attention weights for most functions, the weights
for the functions involving CRT and INS decreased
from NP2 to VP.

Based on these visual trends, we conducted two
specific case studies to examine how transformer
models interpret -(u)lo and identify which pharase
is crucial for resolving its polysemy.

3.1 Do Attention Weights Differ Between the
Pre-trained and Fine-tuned Models in
Interpreting -(u)lo’s Polysemy?

We conducted linear mixed-effects modelling
(fixed effects: Model, Function; random effects:
Morpheme-in-phrase; maximal random-effects

Factor β SE |T | p

Pre-trained Model (Intercept) 0.410 0.011 36.930 < 0.001∗∗∗

Phrase 0.176 0.013 12.867 < 0.001∗∗∗

Function -0.013 0.005 2.309 0.022∗

Phrase × Function 0.008 0.006 1.324 0.188
Fine-tuned Model (Intercept) 0.243 0.008 28.151 < 0.001∗∗∗

Phrase 0.110 0.010 10.371 < 0.001∗∗∗

Function -0.001 0.004 0.381 0.704
Phrase × Function 0.004 0.004 0.999 0.322

Table 2: Model outputs (by model). ∗ < 0.05; ∗∗∗ < 0.001
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Figure 2: Results: attention weights (standardised via min-max normalisation) that -(u)lo exchanged between -(u)lo
and its surrounding morphemes in a sentence. X-axis = phrases used in the sentence; Y-axis = attention weights. Bar
= standard deviation.

structure allowed by the model (Barr et al., 2013)).
As Table 1 shows, there was a main effect of Model
in all the phrases, indicating that the attention
weights differed between the pre-trained model and
the fine-tuned model in interpreting the polysemy
of -(u)lo. We also found a main effect of Function
and an interaction effect between the two factors
in NP2, and an interaction effect between the two
factors in VP. Post-hoc analysis (using emmeans;
S. R. Searle and Milliken, 1980) revealed that the
difference occurred in the CRT model (p < .001).

The results reveal two key aspects regarding
model performance. First, the morphosyntactic sen-
sitivity of -(u)lo to surrounding morphemes was
higher in the pre-trained model compared to the
fine-tuned model. This suggests that -(u)lo exhib-
ited greater overall syntactic sensitivity in the pre-
trained model, particularly in the -(u)lo-VP depen-
dency. Second, the notable differences between the
two models in CRT implies that the syntactic sensi-
tivity of -(u)lo as a CRT marker may have changed
substantially with fine-tuning, given our training
and simulation environments.

3.2 Do the Attention Weights Exchanged
Between -(u)lo and Its Surrounding
Morphemes Vary Depending on the
Phrases?

Table 2 shows the outputs of another linear mixed-
effects modeling (fixed effects: Phrase, Function;
random effects: Morpheme-in-phrase; maximal

random-effects structure allowed by the model
(Barr et al., 2013)) to compare the attention weights
across all the phrases within each model.

We found a main effect of Phrase in both mod-
els, indicating that -(u)lo interacted with NP1, NP2,
and VP by exchanging different attention weights
with each phrase. In addition, there was a main
effect of Function in the pre-trained model, indi-
cating that the attention weights for -(u)lo varied
depending on its function. However, this effect dis-
appeared after fine-tuning, indicating that the fine-
tuning procedure altered the syntactic sensitivity of
-(u)lo, leading to more even distribution of attention
weights across all phrases.

The high attention weights between -(u)lo and
the VP in Figure 2 suggest that the interaction
strength with the VP can vary depending on the
semantic function. For example, different attention
weights when -(u)lo serves as a marker for DIR
versus INS indicate that the model has learned ap-
propriate syntactic binding between -(u)lo and the
VP based on each function. These differences in
function-specific attention distribution show that
KoBERT effectively distinguishes the contextual
meanings of polysemous words, providing key in-
sights into how the model interprets polysemy.

Based on Clark et al. (2019) arguing that BERT’s
attention weights reflect the degree of syntactic re-
lationships between a word and its surrounding
words, the overall reduction in attention weights af-
ter fine-tuning in our simulations suggests that the
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model adjusted the interaction strength with units
involved in interpreting the functions of postposi-
tions. This is further supported by the statistical
model outputs – the fine-tuned model did not ex-
hibit a main effect of Function. When specific syn-
tactic relationships are unnecessary for a given task,
attention weights may become non-operational,
thereby minimising the model’s focus on less cru-
cial information and enhancing performance effi-
ciency. During fine-tuning, KoBERT likely learnt
to interpret the various functions of postpositions
uniformly by leveraging broader contextual infor-
mation and selectively retaining critical informa-
tion only when necessary. Therefore, the reduc-
tion in attention weights points to an adjustment
in syntactic sensitivity, facilitating more effective
recognition of each function.

4 Concluding Remarks

In this on-going project, we report three major find-
ings. First, the attention weights exchanged for in-
terpreting the polysemy of the Korean adverbial
postposition -(u)lo generally decreased as the lan-
guage model underwent fine-tuning. Second, with
fine-tuning, the attention weights exchanged for
this postposition varied according to its function in
different phrases. Third, the differences in attention
weights across the three phrases was mitigated as
the language model was fine-tuned. We continue
to extend this study by incorporating other metrics
such as surprisal and entropy to further examine
the models’ interpretability of -(u)lo in relation
to the lexico-phrasal units surrounding this post-
position. We also plan to enhance the test set by
increasing the number of sentences per function to
ensure more robust findings.

Limitations

The current study identifies several areas for fur-
ther investigation. One area involves the reliance
on a fixed set of syntactic units, which does not en-
compass the comprehensive range of constructions
using -(u)lo. The current study focused on three
units — NP1, NP2, and VP — surrounding the
target postposition during fine-tuning and model
evaluation. Although we presented outcomes re-
lated to NP1 through visualisation and statistical
modelling, we acknowledge that our scope in this
respect is somewhat limited. In future research,
we plan to broaden our analysis to include diverse
linguistic units and structural compositions that

may influence a computational model’s interpre-
tation of this postposition. Exploring other BERT-
based language models, such as DistilBERT (Sanh
et al., 2019), RoBERTa (Liu et al., 2019), and
ELECTRA (Clark et al., 2020), may also provide a
more comprehensive evaluation of Transformer lan-
guage models for this task. Finally, incorporating
additional evaluation metrics, such as performance
on real-world language tasks and comparisons be-
tween model performance and human judgement,
could offer a more thorough assessment of the
model’s capabilities of interpreting polysemy in
human language.

Supplementary Materials

All data and models are available in this reposi-
tory. All contributions in this proceeding are li-
censed under the Creative Commons Attribution-
Non-Commercial 4.0 International License (CC-
BY-NC 4.0).
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