@inproceedings{hashimoto-etal-2025-career,
title = "A Career Interview Dialogue System using Large Language Model-based Dynamic Slot Generation",
author = "Hashimoto, Ekai and
Nakano, Mikio and
Sakurai, Takayoshi and
Shiramatsu, Shun and
Komazaki, Toshitake and
Tsuchiya, Shiho",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.106/",
pages = "1562--1584",
abstract = "This study aims to improve the efficiency and quality of career interviews conducted by nursing managers. To this end, we have been developing a slot-filling dialogue system that engages in pre-interview to collect information on staff careers as a preparatory step before the actual interviews. Conventional slot-filling-based interview dialogue systems have limitations in the flexibility of information collection because the dialogue progresses based on predefined slot sets. We therefore propose a method that leverages large language models (LLMs) to dynamically generate new slots according to the flow of the dialogue, achieving more natural conversations. Furthermore, we incorporate abduction into the slot generation process to enable more appropriate and effective slot generation. To validate the effectiveness of the proposed method, we conducted experiments using a user simulator. The results suggest that the proposed method using abduction is effective in enhancing both information-collecting capabilities and the naturalness of the dialogue."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hashimoto-etal-2025-career">
<titleInfo>
<title>A Career Interview Dialogue System using Large Language Model-based Dynamic Slot Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ekai</namePart>
<namePart type="family">Hashimoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikio</namePart>
<namePart type="family">Nakano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takayoshi</namePart>
<namePart type="family">Sakurai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shun</namePart>
<namePart type="family">Shiramatsu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Toshitake</namePart>
<namePart type="family">Komazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shiho</namePart>
<namePart type="family">Tsuchiya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This study aims to improve the efficiency and quality of career interviews conducted by nursing managers. To this end, we have been developing a slot-filling dialogue system that engages in pre-interview to collect information on staff careers as a preparatory step before the actual interviews. Conventional slot-filling-based interview dialogue systems have limitations in the flexibility of information collection because the dialogue progresses based on predefined slot sets. We therefore propose a method that leverages large language models (LLMs) to dynamically generate new slots according to the flow of the dialogue, achieving more natural conversations. Furthermore, we incorporate abduction into the slot generation process to enable more appropriate and effective slot generation. To validate the effectiveness of the proposed method, we conducted experiments using a user simulator. The results suggest that the proposed method using abduction is effective in enhancing both information-collecting capabilities and the naturalness of the dialogue.</abstract>
<identifier type="citekey">hashimoto-etal-2025-career</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.106/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>1562</start>
<end>1584</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Career Interview Dialogue System using Large Language Model-based Dynamic Slot Generation
%A Hashimoto, Ekai
%A Nakano, Mikio
%A Sakurai, Takayoshi
%A Shiramatsu, Shun
%A Komazaki, Toshitake
%A Tsuchiya, Shiho
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F hashimoto-etal-2025-career
%X This study aims to improve the efficiency and quality of career interviews conducted by nursing managers. To this end, we have been developing a slot-filling dialogue system that engages in pre-interview to collect information on staff careers as a preparatory step before the actual interviews. Conventional slot-filling-based interview dialogue systems have limitations in the flexibility of information collection because the dialogue progresses based on predefined slot sets. We therefore propose a method that leverages large language models (LLMs) to dynamically generate new slots according to the flow of the dialogue, achieving more natural conversations. Furthermore, we incorporate abduction into the slot generation process to enable more appropriate and effective slot generation. To validate the effectiveness of the proposed method, we conducted experiments using a user simulator. The results suggest that the proposed method using abduction is effective in enhancing both information-collecting capabilities and the naturalness of the dialogue.
%U https://aclanthology.org/2025.coling-main.106/
%P 1562-1584
Markdown (Informal)
[A Career Interview Dialogue System using Large Language Model-based Dynamic Slot Generation](https://aclanthology.org/2025.coling-main.106/) (Hashimoto et al., COLING 2025)
ACL