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Abstract

Instruction tuning significantly enhances the
performance of large language models in tasks
such as sentiment classification. Previous stud-
ies have leveraged labeled instances from sen-
timent benchmark datasets to instruction-tune
LLMs, improving zero-shot sentiment classi-
fication performance. In this work, we pro-
pose a simple-yet-efficient instruction augmen-
tation method which does not rely on any ac-
tual labeled sentiment instances. With just
240 pseudo instruction instances, the proposed
method significantly improve the classifica-
tion performance across several LLMs on 12
benchmark datasets, increasing scores by 30
points and outperforming LLMs that utilize
more complex instruction tuning methods by
5.1 points. Surprisingly, the models tuned with
240 pseudo-instructions even outperform those
tuned with actual domain-specific instruction
instances. Despite method’s simplicity, our fur-
ther analysis suggests that the probability shift
toward the positive and negative classes and its
generalization ability may be the primary driver
of the improvement. Our instruction data and
code is released1 for reproduction and future
research.

1 Introduction

Sentiment analysis has long been an established
area of research in Natural Language Processing
(NLP). With recent advancements in Large Lan-
guage Models (LLMs), impressive zero-shot per-
formance in sentiment analysis was achieved by
instruction-tuned LLMs (Deng et al., 2023; Wang
et al., 2023a; Scaria et al., 2023). A typical sen-
timent Instruction Instance is a tuple with three
components (T, I, O):

• Instruction Text (T): Classify the following
sentence into either positive, neutral or nega-
tive sentiment.

1https://github.com/code4coling/code

• Input (I): A movie journey worth taking.
• Output (O): The sentiment is positive.

where the instruction text (T) refers to the user in-
struction. It usually specifies desired outputs; the
input (I) refers to the input sentence or document
for the sentiment task; the output (O) refers to the
ground-truth answer corresponding to the instruc-
tion text.

Previously, many sentiment analysis studies
have utilized actual training instances in sentiment
benchmark datasets as Input (I) and corresponding
labels as Output (O) for instruction tuning. For
example, Wei et al. (2021) instruction-tuned LLMs
across various NLP tasks, including four senti-
ment datasets, while Chung et al. (2022) further ex-
panded this approach to over 1,800 NLP tasks. Con-
sidering sentiment classification spans diverse do-
mains such as finance, restaurants, movies, and pol-
itics, obtaining a large number of domain-specific
labeled instances for instruction tuning is labor-
intensive and inefficient.

To enhance this aspect, we propose a simple-yet-
efficient instruction augmentation method to con-
struct sentimental adjective-based pseudo instruc-
tions which do not rely on any training instances
in sentiment benchmark datasets. Subsequently,
we instruction-tune Llama2-7b,13b,70b base mod-
els (Touvron et al., 2023) and the Falcon base
model (Almazrouei et al., 2023) and evaluate their
zero-shot performance on 12 sentiment benchmark
datasets (7 general sentiment analysis datasets and
5 aspect-based sentiment analysis datasets). The
results show that this method significantly outper-
forms the base models by 30 points and surpasses
other instruction-tuned models by an average of
5.1 points. Surprisingly, models tuned with 240
pseudo instructions even outperform those tuned
with actual domain instruction instances. Despite
the method’s simplicity, further analysis suggests
that the improvement is primarily driven by a prob-
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ability shift of the sentiment polarity classes. Our
contribution are three-fold:

• We proposed a simple-yet-efficient sentiment
instruction augmentation method significantly
boosting the zero-shot performance across 12
sentiment benchmark datasets.

• We conducted ablation study, domain analysis,
and offered a perspective of probability shift
to demonstrate effectiveness and advantage of
the proposed method.

• We released constructed instruction instances
and experimental code publicly for future re-
search.

2 Sentimental Adjective Instruction
Construction

We herein describe the steps to construct pseudo
instances using sentimental adjectives. Section 2.1
outlines the process for collecting diverse sentiment
instruction text (T) from various corpora. Section
2.2 details the steps to construct instruction using
sentimental adjectives for Input (I) and Output (O).

2.1 Instruction Text (T) Collection

User instructions exhibit a wide variety of para-
phrasing. For instance, Please classify the sentence
into either positive, negative, or neutral can be also
expressed like Please determine whether the sen-
tence is positive, negative, or neutral. To increase
the diversity, we collect sentiment instruction text
(T) from five widely-used instruction datasets writ-
ten by either human annotators or LLMs, as fol-
lows: (1) SuperNI (Wang et al., 2022), which con-
tains 96k instructions written by humans cover-
ing 1600+ NLP tasks. (2) Alpaca2 (Taori et al.,
2023), which contains 52k instructions generated
by GPT-3 (davinci-003). (3) Self-instruct (Wang
et al., 2023b), which contains 82k instructions gen-
erated by GPT-3 (vanilla). (4) Unnatural Instruc-
tions (Honovich et al., 2023), which contains 68k
instructions generated by GPT-3 (davinci-002). (5)
Baize (Xu et al., 2023), which contains 210k in-
struction instances created by prompting ChatGPT
and letting it converse with itself.

We extracted all the instruction text (T) from
these datasets and designed several heuristics to
filter out only sentiment classification-related in-
struction. Please see Appendix A for details on

2https://github.com/gururise/AlpacaDataCleaned/

instruction filtering. As this work focuses on sen-
timent classification, we retained instruction texts
only if they contain the terms ‘sentiment’, ‘posi-
tive’, ‘negative’, and ‘neutral’. Finally, 110 diverse
sentiment instruction text (T) are yielded, and we
empirically determine to use 80 for training and
303 for testing during instruction tuning. For the
aspect-based sentiment classification task, we add
with respect to the TARGET to the instruction text
and replace TARGET with the specific aspect. Ta-
ble 10 in Appendix shows 10 samples out of 110
instruction texts.

2.2 Sentimental Adjective based (I, O) Pair
Inspired by the concept of evaluative adjectives in
linguistics, we describe the four steps to automati-
cally collect pairs of instruction input (I) and output
(O). Evaluative adjectives often express value judg-
ments and convey opinions, emotions, or subjective
interpretations. For instance, adjectives like beauti-
ful imply a positive sentiment, while awful suggests
a negative one. We refer to our collected adjectives
as sentimental adjectives.

Step 1. Collect sentimental adjective candidates.
We start by collecting adjectives from SentiWord-
Net 3.04 (Baccianella et al., 2010) where each sense
of an adjective word w is assigned two scores: a
positive score (Spos) and a negative score (Sneg)
where 0 ≤ Sk ≤ 1 and k ∈ {pos, neg}. The
selection criteria is:

1. Choose all words where at least one of its
senses meets the criteria: Spos ≥ r and
Sneg = 0.0 to compile positive word list L1

pos

2. Choose all words where at least one of its
senses meets the criteria:: Sneg ≥ r and
Spos = 0.0 to compile negative word list L1

neg

3. Choose all words where at least one of its
senses meets the criteria: Spos = 0.0 and
Sneg = 0.0 to compile neutral word list L1

neu

We empirically determine the threshold r to trade
off between the number and quality of adjectives.
Please see Table 11 in Appendix for L1.

Step 2. Align with sentiment word sense.
This step aims to refine the adjective lists in Step 1.

3A larger test set usually leads to more solid results. By
increasing the test set to 30, e.g., 70b model would need to
infer 54,630 instances. Considering experimental cost, we
stopped increasing the test set size and set it to 30.

4https://github.com/aesuli/SentiWordNet. It is under CC
BY-SA 4.0 license.
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For instance, one sense of the word ‘fresh’ meets
the criteria Sneg ≥ 0.75 and Spos = 0.0, this word
is therefore included in the negative list L1

neg. How-
ever, ‘fresh’ often conveys a non-negative meaning,
typically referring to something new or unused. in-
cluding this word in the negative list may confuse
the model during instruction tuning. To address
this, we utilize pre-defined positive (Vpos) and neg-
ative (Vneg) vocabularies in Hu and Liu (2004).
Words in lists L1

pos and L1
neg are excluded if they

do not appear in Vpos and Vneg, respectively. Words
in L1

neu are removed if they appear in either Vpos

or Vneg. This process results in three refined lists:
L2
pos, L

2
neg, and L2

neu. Please see Table 12 in Ap-
pendix for L2.

Step 3. Rank word by frequency.
This step focuses on selecting more domain-
agnostic words by leveraging frequency informa-
tion. We use English Wikipedia5 to obtain word
frequency for ranking adjectives in each list in de-
scending order based on their frequency. If an
adjective in L2

pos, L2
neg, and L2

neu is not in the wiki
frequency list, its frequency would be set to zero.
After ranking, frequent words such as best, great,
and important appear at the top of the positive list,
whereas the original words in the list are legendary,
solid, and gallant. We note the ranked lists as L3

pos,
L3
neg, and L3

neu. Please see Table 13 in Appendix
for L3.

Step 4. Add negation words.
This step helps LLMs to better handle sentences
containing negation words, which is common in
sentiment classification. We add the negation
word not directly before adjectives (e.g., not
beautiful) for X% of instances in only L3

pos and
L3
neg. Subsequently, adjectives with negation from

the positive list are transferred to the negative list
and vice versa. This process yields the final lists:
L4
pos, L4

neg, and L4
neu (where L4

neu = L3
neu). Please

see Table 14 in Appendix for L4.

After completing steps 1 to 4, we take the first in-
struction text T from 80 instruction texts in Section
2.1, the first adjective from L4

pos and positive to
form the first tuple (T, I, O); Continue this process
until the 80th instruction text is taken. Then, we
obtained 80 tuples for the positive class, 80 tuples
for the negative class, 80 tuples for the neural class

5https://jwsmythe.com/tools/wordlist/wikipedia-word-
frequency-master/results/enwiki-2023-04-13.txt

respectively. Please refer to Table 9 in Appendix
for examples of constructed tuple for each class.

3 Experiment

3.1 Experimental Setup

The constructed 240 tuples are split into 80% for
the training set and 20% for the development set.
We set the threshold r in SentiWordNet 3.0 in Step
1 to 0.75, and negation word percentage X to 10%,
according to performance on the development set.
For training, we follow Touvron et al. (2023) by uti-
lizing an auto-regressive objective and zeroing out
the loss on tokens from the user prompt, including
instruction text and input, while backpropagating
only on instruction output. Of the 110 instruction
texts, we use 80 for model training and develop-
ment, and remaining 30 for testing. This approach
better replicates real-world scenarios and ensures
the instruction texts are unseen, as users’ instruc-
tions are inherently unpredictable.

During training, we employ the efficient parame-
ter tuning technique, LoRA (Hu et al., 2021), with
a LoRA rank of 8 and LoRA alpha of 32. We
set learning rate to 2e-4 and batch size to 2. Dur-
ing inference, we follow Dettmers et al. (2022) to
load models in the 8-bit mode which significantly
speeds up the inference and has negligible impact
on the final performance. We set the maximum
number of generated tokens to 20. All the exper-
iments are conducted using one A100 GPU. For
the largest model, Llama2-70B, only 0.024% of
the parameters are trainable, and training took ap-
proximately 2 GPU hours. For testing, evaluating
the 70B model across 12 datasets requires approxi-
mately 8 GPU hours. Other smaller models require
less time.

3.2 Evaluation Metric

Since all the instruction texts we collected explic-
itly specify the output space as positive, negative,
or neutral label, we adopt the following metric for
calculating instance-wise accuracy: 1) Score 1 if
the output string contains the ground-truth label and
does not contain other classes’ ground-truth labels
(case insensitive); 2) Score 0, otherwise. To verify
the reliability of this metric, we asked a human
annotator to rate two hundred Llama2-7b’s outputs
from the SST-2 dataset. The annotator observed
that the output was either a single label like posi-
tive or a sentence like The sentiment is positive.; in
minor cases, the output was nonsensical. The anno-
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tator then assigned a score of 1 if the model output
expressed the same sentiment as the ground-truth
label, and 0 otherwise. We calculated the Pearson
correlation coefficient between the two sequences
of zero-one labels (one from the human annotator
and one from the automatic metric), which yielded
a value of 1.0. Observing such a high correlation
score between the human annotator and our auto-
matic metric, we decided to use this metric for all
datasets.

3.3 Dataset

We experiment with 7 general sentiment classifi-
cation datasets, i.e., SST-2 (Socher et al., 2013),
IMDB, Yelp, Amazon datasets from (Kotzias et al.,
2015), Airline6, Debate7, financial phrasebank
(Malo et al., 2014a) as well as 5 aspect-based sen-
timent classification datasets8 from the Workshop
on Semantic Evaluation (SemEval) in 2014, 2015,
and 2016. Please refer to related work for detailed
description of datasets.

Dataset Domain Size # Class Aspect
SST-2 Movie 1,821 2 no
Yelp Restaurant 1,000 2 no
Amazon (Amaz) Product 1,000 2 no
IMDB Movie 1,000 2 no
Airline Operation 1,000 3 no
Debate (Deba) Politics 1,000 3 no
PhraseBank (PB) Finance 970 3 no
SemEval-14lap Laptop 543 3 yes
SemEval-14res Restaurant 994 3 yes
SemEval-15res Restaurant 485 3 yes
SemEval-15hot Hotel 215 3 yes
SemEval-16res Restaurant 514 3 yes

Table 1: Statistics of sentiment classification datasets.

Table 1 shows the statistics of each dataset. We
paired each sentence from the sentiment benchmark
datasets with 30 instruction texts for testing. For
instance, in the case of SST-2, this resulted in 1,821
× 30 = 54,630 instances used for testing instruction-
tuned models. The same procedure was applied to
the other datasets.

6https://www.kaggle.com/datasets/crowdflower/twitter-
airline-sentiment. We only use 1k instances given the dataset
is relatively large.

7https://www.kaggle.com/datasets/crowdflower/first-gop-
debate-twitter-sentiment. We only use 1k instances.

8https://github.com/kevinscaria/InstructABSA/tree/main/Dataset

3.4 Models

We instruction-tuned Llama2 base model9 (Tou-
vron et al., 2023), and falcon-40b base model (Al-
mazrouei et al., 2023) using our constructed 240
instruction tuples (T, I, O), noted as base+ours.
In addition, we consider the following comparison
methods:

base+ours w/o adjective Previous works, such
as Kung and Peng (2023), have pointed out that
some instruction-tuned models do not fully utilize
instructions, and that the impressive performance
gains from instruction tuning may stem from mod-
els learning superficial patterns, such as the output
space and format. To verify this, we replaced the
sentimental adjectives with empty strings to ablate
the input, while keeping the instruction text and
output format unchanged.

lexicon-match baseline We add a sentiment lexi-
con match-based model (Gilbert, 2014), which di-
rectly utilizes the presence of positive (e.g., great,
good, and nice) and negative words (e.g., sad, bad,
and worse) to determine the sentiment polarities.
This aims to determine if good performance can be
achieved through simple sentimental word match-
ing, without injecting these sentimental adjectives
via instruction tuning.

llama2 chat model The Llama2 chat model began
supervised fine-tuning with converted instructions
from 1.8K NLP tasks (Chung et al., 2024). The
model was further fine-tuned on 27,540 annotated
instructions and millions of human preference data
via reinforcement learning. We believe this pro-
vides a powerful baseline, even for our sentiment
classification task.

falcon chat model It is also known as the Falcon-
40B-Instruct model10, which is fine-tuned on hun-
dreds of thousands of QA and dialog instances from
Quora, Stack Overflow, and MedQuAD questions.

4 Result and Analysis

4.1 Overall performance

Table 2 shows comparison results and our observa-
tions are as follows:

9we chose Llama 2 and Falcon base because they provide
a gradual size increase from 7B and 13B to 40B (Falcon) and
70B. This allows us to investigate how model size affects our
data augmentation method and the latest versions like Llama
3 do not include a 13B size for this purpose.

10https://huggingface.co/tiiuae/falcon-40b-instruct
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Dataset SST-2 Yelp Amaz IMDB Deba Airline PB 14hap 14res 15res 15hot 16res Ave.
△ Lexicon-match baseline 59.2 64.7 69.6 69.0 55.4 63.6 56.0 68.9 81.5 74.4 74.9 78.4 67.9
#1 llama2-7b-base 49.4 51.2 40.8 46.7 34.7 37.4 27.3 40.0 61.5 53.8 61.5 61.6 47.2
#2 llama2-7b-chat 78.8 88.8 83.5 86.2 61.6 69.9 60.5 75.5 83.6 78.9 71.5 75.7 76.2
#3 base+ours w/o adjective 38.9 35.5 32.3 37.9 35.2 35.6 29.9 18.3 13.8 24.9 16.4 13.4 27.7
#4 base+ours 89.5 96.1 94.1 94.4 62.0 67.6 53.5 82.1 88.4 86.3 84.4 89.4 82.3
$1 llama2-13b-base 47.0 52.5 43.4 49.3 36.1 40.8 41.7 46.1 61.2 56.7 58.0 57.9 49.2
$2 llama2-13b-chat 71.2 79.0 75.0 77.9 62.9 69.5 59.1 68.9 76.9 71.4 63.1 65.4 70.0
$3 base+ours w/o adjective 49.6 50.4 44.4 50.7 38.7 43.1 26.3 28.0 35.1 41.9 33.9 24.9 38.9
$4 base+ours 80.5 88.4 75.9 86.1 63.1 69.8 62.0 62.9 81.6 78.1 73.0 77.2 74.9
&1 llama2-70b-base 55.8 42.7 43.7 48.1 34.5 39.1 31.6 44.9 45.1 47.0 44.3 54.8 44.3
&2 llama2-70b-chat 81.9 90.0 87.6 88.6 64.8 72.6 68.8 74.5 80.9 77.1 72.3 67.8 77.2
&3 base+ours w/o adjective 72.4 80.5 75.8 77.4 43.6 51.1 29.4 64.3 77.1 72.3 71.1 67.0 65.2
&4 base+ours 92.5 97.9 95.8 96.3 63.0 71.1 55.3 80.4 89.0 85.6 88.3 85.0 83.4
♢1 falcon-40b-base 69.9 72.1 61.8 63.1 36.6 42.5 27.5 50.1 65.8 66.3 60.7 67.2 57.0
♢2 falcon-40b-instr. 78.9 89.2 80.0 83.2 51.5 55.2 40.3 74.7 86.3 81.3 83.3 85.3 74.1
♢3 base+ours w/o adjective 63.6 58.7 46.4 53.4 36.0 38.9 23.8 35.7 56.5 51.7 51.0 53.2 47.4
♢4 base+ours 92.0 91.2 87.8 88.1 55.0 62.0 43.2 77.8 84.1 80.6 80.3 85.3 77.3

Table 2: Accuracy of zero-shot sentiment classification on 12 benchmark datasets. Best results associated with the
same base model are in bold.

(1) Our instruction-tuned models (base+ours) out-
perform all base models by 30 points and even
all chat models by 5.1 points on average, validat-
ing the effectiveness and efficiency of our method
given that our models used only 240 instruction in-
stances for tuning. Moreover, our instruction-tuned
Llama2-70B model achieves the best average per-
formance, while our instruction-tuned Llama2-7B
model is also highly competitive. This suggests
that model size remains an important factor in the
effectiveness of instruction tuning.

(2) The results of base+ours w/o adjective show
significant performance degradation for Llama2-
7B (#3), Llama2-13B ($3), and Falcon-40B (♢).
While the "empty-input" instruction tuning boosts
Llama2-70B’s performance to some extent (&3),
combining it with our sentimental adjectives
achieves the best performance (&4). Comparison
between base+ours and base+ours w/o adjective
verifies that the performance improvements are
largely not attributed to learning the output space
formats, such as positive and negative labels.

(3) To investigate whether our base+ours mod-
els simply memorize sentimental adjectives for
making predictions, we added a sentiment lexi-
con match-based model for comparison. The re-
sults show that our models significantly outper-
form this baseline (△), indicating that incorporat-
ing sentimental adjectives into LLMs through in-

struction tuning equips the models to handle not
only straightforward sentiment lexicon-based cases
but also more challenging cases without explicit
sentiment lexicons.

(4) All models, whether instruction-tuned or not,
struggle with the finance dataset (PB) compared to
other domains. We investigated vocabulary over-
lap between domains, as shown in Figure 2, which
shows that the finance domain is significantly dif-
ferent from other domains. This suggests a high
necessity for LLMs to undergo domain adaptation
to further enhance domain-specific zero-shot per-
formance.

Furthermore, we also investigated how the num-
ber of instruction tuples affects the performance
of the proposed method. We experimented with
50, 100, 150, and 200 instruction tuples, balanc-
ing each class, using the llama2-7b model. The
results in Table 8 in Appendix show that 240 tu-
ples provide a good trade-off between performance
enhancement and computational efficiency.

4.2 How each step contributes to
performance?

To investigate how each step in the word selec-
tion process in Section 2.2 impacts the model’s
instruction-tuning performance, we conducted ab-
lation studies and have the following finding on
results in Figure 1: (1) Overall, regarding the aver-
age performance, each step contributes to perfor-
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Figure 1: An ablation study was conducted for each step. The llama2-7b+step1 refers to the fine-tuning of the
llama2-7b model using data selected by step1. The llama2-7b+step2 involves fine-tuning the llama2-7b model with
data selected from step1 to step2. The llama2-7b+step3 pertains to fine-tuning the llama2-7b model using data from
step1 to step3. The llama2-7b+step4 describes the fine-tuning of the llama2-7b model with data spanning from
step1 to step4.

top-500 frequent 
word overlap (%)

SST-2 
movie

Yelp 
resto

 Amazon 
product

  IMDB   
movie

 Debate 
politics

 Airline 
oper.

PB      
finance

14lap 
laptop

 14res 
resto

15res 
resto

15hot   
hotel

16res 
resto average 

SST-2 (movie) 100 25 27 51 25 20 9 21 20 21 17 18 29
Yelp (resto) 25 100 36 33 24 31 12 23 45 45 32 43 38
Amazon (product) 27 36 100 33 25 29 16 36 25 25 26 23 33
IMDB (movie) 51 33 33 100 29 24 10 25 23 26 22 23 33
Debate (politics) 25 24 25 29 100 29 12 18 15 18 16 14 27
Airline (oper.) 20 31 29 24 29 100 16 21 17 20 25 18 29
PB (finance) 9 12 16 10 12 16 100 14 8 8 13 8 19
14lap (laptop) 21 23 36 25 18 21 14 100 18 19 19 17 28
14res (resto) 20 45 25 23 15 17 8 18 100 38 25 39 31
15res (resto) 21 45 25 26 18 20 8 19 38 100 22 37 32
15hot (hotel) 17 32 26 22 16 25 13 19 25 22 100 25 28
16res (resto) 18 43 23 23 14 18 8 17 39 37 25 100 30

Figure 2: Vocabulary overlap (%) of 12 sentiment datasets. resto stands for restaurant and oper. stands for operation.
Vocabularies for each domain are created by considering the top 500 most frequent words (excluding stopwords) in
each dataset. Red color indicates a high degree of vocabulary overlap, while blue color indicates a low degree of
vocabulary overlap.
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Dataset
SST-2 Yelp Amaz IMDB Deba Airline PB 14hap 14res 15res 15hot 16res

Ave.
movie resto product movie politics oper. finance laptop resto resto hotel resto

Model+SST-2 97.2 87.0 79.0 78.4 52.2 52.5 40.1 66.5 76.6 71.9 72.9 71.3 70.5
Model+Yelp 87.1 92.3 88.0 91.2 62.0 58.6 48.1 80.1 90.1 84.6 85.2 87.7 79.6
Model+Amaz 91.4 89.5 98.0 75.7 48.9 54.4 30.3 75.8 84.5 77.1 80.3 78.2 73.7
Model+IMDB 79.1 88.2 82.1 96.2 52.4 53.6 39.3 68.8 76.0 71.8 72.4 72.5 71.0
Model+Debate 43.2 56.8 44.1 51.2 58.7 59.4 62.4 31.1 35.6 41.0 25.7 23.8 44.4
Model+Airline 61.7 78.9 62.6 64.6 59.0 73.6 65.5 49.2 70.9 68.3 58.5 62.6 64.6
Model+PB 54.0 60.4 44.7 51.1 59.9 59.1 83.7 33.8 32.4 41.4 35.3 26.1 48.5
Model+14lap 79.1 90.4 80.7 81.7 61.5 69.4 68.7 82.9 82.8 79.1 70.3 80.8 77.3
Model+14res 69.5 84.6 76.9 78.3 60.7 71.0 65.3 70.9 81.2 75.8 63.1 75.2 72.7
Model+15res 77.8 91.7 86.4 82.2 55.3 59.0 45.0 74.3 79.3 81.7 72.9 78.6 73.7
Model+15hot 91.2 78.6 68.1 70.7 49.6 52.2 40.7 59.5 69.0 64.2 87.1 63.9 66.2
Model+16res 88.5 93.8 89.3 89.9 62.4 61.4 49.7 76.6 85.0 82.5 77.7 90.0 78.9
ours 89.5 96.1 94.1 94.4 62.0 67.6 53.5 82.1 88.4 86.3 84.4 89.4 82.3

Table 3: Performance of 12 instruction-tuned llama2-7b models on domain-specific ground-truth tuple. We used one
dataset for training and all datasets for testing. All other experimental and hyperparameter settings were kept the
same as in the proposed method. resto stands for restaurant and oper. stands for operation. Best results are in bold.

mance improvement, confirming the necessity of
implementing all four steps; (2) Steps contribute
differently to the average performance. In small
models like Llama2-7B, each step consistently im-
proves performance. In contrast, for larger models
like Llama2-70B, Step 1 leads to significant im-
provements, indicating that larger models are more
effective at learning from the unrefined sentimental
adjective list (L1 data). Nevertheless, smaller gains
(2.7 points) were also observed after implementing
Steps 2, 3, and 4.

4.3 Our domain-agnostic v.s. domain-specific
ground-truth instruction instance

One question is what the performance would be
when using real instruction instances in the senti-
ment benchmarks. To answer this, we compared
our domain-agnostic adjective-based instruction
instances with domain-specific ground-truth in-
stances by replacing instruction input I and output
O with ground-truth sentences and their sentiment
labels, forming a new tuple (T, I’, O’). For example,
when using sentences from the Financial Phrase-
bank data, we refer to this model as a financial
domain-specific instruction tuple.

For a fair comparison across each of the 12
benchmark datasets, we extracted 240 domain-
specific instances, with 80 instances per sentiment
class to construct new tuples (T, I’, O’). For two-
class sentiment classification, we selected 120 in-
stances per class11. Additionally, since the llama2-

11Since SemEval-15hot has only 215 instances, we leverage
all the 215 instances for training.

7b model achieves nearly the best result (only 0.9
points behind the llama2-70b) but has significantly
lower latency, we conducted our experiments using
the llama2-7b model. Consequently, we trained 12
domain-specific instruction-tuned models. Table 3
shows the experimental result of instruction-tuning
using domain-specific tuples. We have following
observations:

(1) For 8 out of 12 sentiment datasets, domain-
specific instruction-tuned models achieve the best
performance within its own domain. If domains
are similar, the improvement is also significant.
For example, both the Yelp and SemEval-14res
datasets pertain to the restaurant scenario. The best
performance on the SemEval-14res dataset was
observed when the model was instruction-tuned
using the Yelp dataset. Interestingly, our model
achieved the best average performance across 12
datasets, compared to each domain-specific model.
This highlights a distinct advantage of our method:
our domain-agnostic pseudo instruction tuning
avoids overfitting too much to specific domains,
leading to better generalization across other do-
mains.

(2) Instruction tuning with the Yelp dataset resulted
in the best average performance (79.6) across all
datasets, while fine-tuning with the PB (finance)
and Debate (politics) dataset resulted in low aver-
age performances. To investigate the underlying
reasons, we examine domain overlap among the
datasets, following the approach of Gururangan
et al. (2020): We identified the 500 most frequent
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P_neg_ave SST-2 Yelp Amaz IMDB Deba Airline PB 14hap 14res 15res 15hot 16res
llama2-7b-base 0.014 0.040 0.035 0.030 0.014 0.024 0.008 0.025 0.032 0.036 0.026 0.031
llama2-7b-base+ours 0.016 0.045 0.042 0.032 0.016 0.027 0.012 0.028 0.034 0.039 0.032 0.034

Table 4: Probability shift of negative adjectives of using llama2-7b-base and llama2-7b-base+ours.

P_pos_ave SST-2 Yelp Amaz IMDB Deba Airline PB 14hap 14res 15res 15hot 16res
llama2-7b-base 0.013 0.027 0.026 0.025 0.012 0.020 0.009 0.020 0.021 0.023 0.017 0.021
llama2-7b-base+ours 0.015 0.031 0.031 0.026 0.014 0.025 0.011 0.023 0.023 0.025 0.020 0.024

Table 5: Probability shift of positive adjectives of using llama2-7b-base and llama2-7b-base+ours.

non-stopwords12 in each dataset as a representa-
tion of its domain. As illustrated in Figure 2, the
last column shows the average vocabulary overlap
with all other datasets which indicates how close a
dataset is to all other datasets. We found that the
finance domain is the furthest from other domains,
the politics domain is the second furthest, while
Yelp is the closest. This may explain why, in Ta-
ble 3, instruction-tuning using Yelp achieves the
best average performance, while instruction-tuning
using the PhraseBank finance dataset achieves the
lowest one.

Given the promising results using Yelp domain-
specific instances, we increased the number of in-
stances from 240 to 1,000. However, this resulted
in performance drop across all datasets except Yelp.
Please see Appendix C for details.

4.4 Why simple adjective-based tuning
improves performance of LLMs?

To investigate why LLMs significantly improved
zero-shot classification performance after instruc-
tion tuning with just 240 sentimental adjectives,
we hypothesize that this is primarily due to the
probability shift of sentimental words after our in-
struction tuning. More specifically, after instruction
tuning, a LLM is more likely to associate, for exam-
ple, negative sentences with many other negative
words, leading to better prediction performance,
even though those negative words never appear
during instruction tuning.

To verify this, we take all negative sentences
from 12 datasets respectively and append The sen-
timent is X13 to each negative sentence, such as
The decor of the restaurant is terrible. The senti-
ment is X. Then, we replace X with 1,000 negative
adjectives collected in Step 2 of Section 2.2, such

12We follow Gururangan et al. (2020) to consider word
form.

13For aspect-based sentiment classification, we use The sen-
timent of TARGET is <mask> where TARGET is the aspect.

as “disappointing”14, and sum the probabilities of
1,000 negative adjectives from the model’s softmax
layer for each sentence to get P_neg_sum. We
average P_neg_sum over all negative sentences
in each dataset to finally get P_neg_ave. For ex-
ample, in the SST-2 dataset, there are 912 negative
sentences and we replace X in each sentence with
1,000 negative adjectives, generating 912,000 test
cases. Our assumption is that if the model is “good,”
the probabilities of these negative words in the X
position should be higher than those of a “bad”
model, because we know these sentences are nega-
tive. The result in Table 4 verifies our assumption:
there are obvious increases in probabilities across
all 12 datasets. We observe the same probability
shift tendency of positive words and please refer to
Table 5 in Appendix for details.

4.5 Performance on Hard Sentiment Cases
Hard sentiment cases refer to documents which
do not contain explicitly sentimental words such
as terrible or excellent; For example, This is a
must-to-watch movie. This sentence conveys quite
positive sentiment despite it does include any ex-
plicitly sentimental words. These cases are much
harder for models to make judgment and we are
thus interested in the following question: how does
our data augmentation method perform on these
hard sentiment cases?

To verify this, we utilize a pre-defined positive
list (Vpos) and negative list (Vneg) in Step 2 of Sec-
tion 2.2 to filter each dataset. More specifically,
we remove sentences from each dataset if any pos-
itive or negative sentiment words in Vpos or Vneg

appear in the sentences. Table 6 shows the num-
ber of hard cases in each dataset. We observe that
even in hard cases, our instruction-tuned models
achieve significant improvements, further validat-

14For subwords, we multiply the probability of each
subword, such that p(“disappointing”) = p(“dis”) ×
p(“appointing”), to obtain the probability of the entire word.
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SST-2 Yelp Amaz IMDB Deba Airline PB 14hap 14res 15res 15hot 16res Ave.
# of cases 62 74 65 66 150 119 111 46 105 63 21 23 −
llama2-7b-base 35.5 43.4 36.5 37.6 18.0 19.5 22.7 23.0 35.4 32.9 34.8 34.1 31.1
llama2-7b-base+ours 84.5 92.2 92.7 90.6 36.0 39.8 43.0 47.2 48.3 45.2 38.4 42.3 58.4

Table 6: Accuracy performance comparison between llama2-7b-base and llama2-7b-base+ours for implicit (hard)
cases across each dataset.

ing the generalization capability of the proposed
method, especially when only explicit sentiment
words are used as input for instruction tuning.

5 Related Work

Sentiment analysis has been a long established area
of NLP research. Over the years, various domain-
specific sentiment benchmarks have been proposed.
In 2013, Socher et al. (2013) introduced the Stan-
ford Sentiment Treebank benchmark, training a Re-
cursive Neural Tensor Network for movie review
classification. In 2014, Malo et al. (2014b) anno-
tated news articles and created a financial bench-
mark for sentiment classification. In 2015, Kotzias
et al. (2015) extracted sentences from three real-
world customer review data sources: Amazon (ama-
zon.com), IMDB (imdb.com), and Yelp15. They
manually labeled 1,000 sentences from each source,
with 500 positive and 500 negative sentences. On
the other hand, Aspect-Based Sentiment Analy-
sis (ABSA) has become increasingly important in
practice. Between 2014 and 2016, the SemEval
workshop introduced several ABSA tasks, result-
ing in SemEval-14, SemEval-15, and SemEval-16,
which encompassed domains such as restaurants,
hotels, and laptop PCs. On the other hand, sen-
timent adjectives have been studied in a separate
line of research. Wiebe et al. (2000); Glass (2024)
explore subjective adjectives, while Wiegand et al.
(2013) focus on predictive adjectives. Much of the
early research in sentiment focused on adjectives
(Taboada et al., 2011). Incorporating these adjec-
tives into the instruction tuning data is one of the
key differences between our work and theirs.

With recent advancement of LLMs, many LLM-
based models have been proposed for sentiment
analysis and aspect-based sentiment analysis. Deng
et al. (2023) leverage LLMs to generate financial
sentiment labels to train a smaller model for senti-
ment analysis on social media content. Wang et al.
(2023c) demonstrate that ChatGPT exhibits impres-
sive zero-shot capabilities in sentiment classifica-

15https://www.yelp.com/dataset

tion, although it still lags behind domain-specific
fully-supervised SOTA models. Recently, Zhao
et al. (2023) utilized generic responses in dialogue
corpora to debias LLMs for zero-shot sentiment
classification. Scaria et al. (2023) proposed an
instruction learning paradigm for ABSA, intro-
ducing positive, negative, and neutral examples
to each training sample and fine-tuning the model
for ABSA subtasks. Kanayama et al. (2024) fur-
ther incorporated multilingual lexicon knowledge
in LLMs to enhance sentiment classification perfor-
mance. Our work differs from these approaches by
not utilizing any actual training instances from sen-
timent benchmarks in the instruction construction.

6 Conclusion

In this work, we construct a small number of
pseudo instructions to instruction-tune LLMs. The
experimental result demonstrates significant perfor-
mance gains over the base models on a wide range
of sentiment benchmarks. Despite its simplicity,
our method is supported by extensive analysis and
ablation studies that highlight its effectiveness and
advantages. Notably, it does not rely on ground-
truth training instances from sentiment benchmarks
and demonstrates superior generalization across di-
verse domains compared to domain-specific sen-
timent models. In future, we would extend our
method to more fine-grained emotion classifica-
tion.

7 Limitations

As we are focusing on classification task, the output
space in this study is discrete, comprising positive,
negative, neutral categories, rather than continu-
ous. This approach is not suitable for scenarios
that require continuous scoring, such as sentiment
regression tasks. Also, while our method effec-
tively handles general and aspect-based sentiment
classification tasks, its ability to enhance more fine-
grained sentiment classifications, such as 5-class
classification, remains unclear. Further investiga-
tion and adaptation are required.
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A Instruction Text Collection Details

We herein describe filtering steps as follows and
please refer to the code in supplementary material
for the implementation:

• Filter 1: we extract all the instruction text (T)
from five instruction datasets for all NLP tasks
and yield 509,901 in total.

• Filter 2: as this work focuses on sentiment
classification with a discrete output space, we
designed several heuristics to remove irrele-
vant instruction text. Specifically, we kept in-
struction text only if it contained ‘sentiment’,
‘positive’, ‘negative’, or ‘neutral’. Please re-
fer to the code for the implementation. This
process resulted in 974 instruction texts.

• Filter 3: we removed any repeated, word-level,
or multi-sentence sentiment instruction texts.
Additionally, to exclude sentiment regression-
related instructions, we removed any instruc-
tion text containing strings such as ‘sentiment
score,’ ‘rating,’ ‘1 for,’ ‘0 for,’ ‘-1 for,’ etc.
This process finally left us with 110 instruc-
tion texts.

B How the number of constructed
instruction tuple affects performance?

We experimented with 50, 100, 150, and 200 in-
stances to observe the performance change (we
balance each class) using llama2-7b model. Ta-
ble 8 shows the results: we observed that as the
number of tuples increased, there was a consistent
performance improvement. However, the growth
rate of improvement slowed when the number of
instances exceeded 200. Considering that further
increases in instances yielded only marginal im-
provements (less than 1 point, from 200 to 240
tuples), we determined that 240 tuples provided a
good trade-off between performance enhancement
and computational efficiency.

C Additional experimental result with
Yelp domain specific instances

Considering the promising results from domain-
specific real instances of the Yelp dataset, we won-
dered if leveraging more instances would enhance
performance. To test this, we instruction-tuned
the llama2-7b model using the entire Yelp dataset,
which contains 1,000 instances. Table 7 shows that
the model trained on the full Yelp dataset performs

perfectly on its own domain. However, the model
shows significant performance drops compared to
the models trained with fewer Yelp instances. We
speculate that this is due to overfitting to the spe-
cific domain (i.e., Yelp); For domains closer to Yelp
(i.e., restaurant), the performance drop is smaller
(SemEval-14res, 15res, 16res); for those further
from the Yelp domain, such as debate (Deba) and
finance (PB), the drop is larger. We believe this
highlights a distinct advantage of our method: our
domain-agnostic, adjective-based instructions
avoid overfitting too much to specific domains,
leading to better generalization across other do-
mains.
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Dataset SST-2 Yelp Amaz IMDB Deba Airline PB 14hap 14res 15res 15hot 16res Ave.
movie resto product movie politics oper. finance laptop resto resto hotel resto Ave.

Yelp (240) 87.1 92.3 88.0 91.2 62.0 58.6 48.1 80.1 90.1 84.6 85.2 87.7 79.6
Yelp (1,000) 84.4 100.0 85.1 85.2 48.9 56.0 40.8 76.5 89.9 81.0 80.5 86.2 75.8

Table 7: Performance of instruction-tuned llama2-7b using different amount of Yelp data. Best results are in bold.

Dataset SST-2 Yelp Amaz IMDB Deba Airline PB 14hap 14res 15res 15hot 16res Ave.
base model 49.4 51.2 40.8 46.7 34.7 37.4 27.3 40.0 61.5 53.8 61.5 61.6 47.2
base + 50 tuples 68.1 72.6 63.7 69.0 54.1 59.1 62.2 53.4 58.5 60.5 49.2 52.2 60.2
base + 100 tuples 71.0 78.8 70.3 72.9 51.7 58.5 55.0 59.1 68.4 66 57.1 59.9 64.1
base + 150 tuples 78.6 87.4 80.7 80.8 58.2 67.9 66.2 75.2 79.8 76.1 65.6 73.6 74.2
base + 200 tuples 87.5 96.2 94.8 90.7 58.5 63.6 49.5 84.8 90.8 85.6 84.1 87.9 81.2
base + 240 tuples 89.5 96.1 94.1 94.4 62.0 67.6 53.5 82.1 88.4 86.3 84.4 89.4 82.3

Table 8: Performance of instruction-tuned llama2-7b using different number of constructed instruction tuples. Best
results are in bold.

mode source: instruction text (T) + input (I) target: output (O)

Training
Classify the given text into positive, negative or neutral sentiment.
\n beautiful. \n Answer:

positive

Training
Classify the given text into positive, negative or neutral sentiment.
\n dangerous. \n Answer:

negative

Training
Classify the given text into positive, negative or neutral sentiment.
\n general. \n Answer:

neutral

Evaluation
Categorize the following sentence into either positive, neutral, or
negative sentiment.\n A movie journey worth taking. \n Answer:

[LLM’s prediction]

Table 9: Constructed sentimental adjective-based tuple for training and testing. Note that there is no overlap between
training instruction texts and testing instruction texts to make the evaluation out-of-the-box.
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# Instruction text sample
1 Analyze the content of the following text to determine whether it has a positive, negative or

neutral sentiment [with respect to the TARGET].
2 Categorize the following sentence into either positive, neutral, or negative sentiment [with

respect to the TARGET].
3 Classify the given text into positive, negative or neutral sentiment [with respect to the

TARGET].
4 Detect if the given text is positive, negative, or neutral in sentiment [with respect to the

TARGET]. output one of these three labels for each input.
5 Find out the sentiment of the given sentence [with respect to the TARGET]. positive, negative,

neutral.
6 Given a sentence, detect its sentiment [with respect to the TARGET]. possible outputs include:

positive, negative, neutral.
7 In this task, you are given a sentence. Your task is to determine whether the sentiment in the

sentence conveys either positive, negative or neutral emotion [with respect to the TARGET].
8 Perform sentiment analysis and produce a label indicating whether the sentiment of given

sentence is positive, negative, or neutral [with respect to the TARGET].
9 What is the sentiment of the given statement [with respect to the TARGET]? (you should

respond with one of these: "positive", "negative", "neutral").
10 You are given a sentence. Your task is to identify if the statement is positive, negative, or

neutral [with respect to the TARGET].

Table 10: 10 samples out of 110 from our collection of sentiment classification-related instruction text (T). Please
note that when it comes to aspect-based sentiment classification task, we add [with respect to the TARGET] and
replace TARGET with the specific aspect in the sentence.
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positive words negative words neutral words
sophisticated contemptible last-ditch

magna-cum-laude bogus alate
gorgeous salt floored

boss unfree quadrilateral
heaven-sent hidden forty
exhaustive inhumane french-speaking

superb humble combined
healthy false client-server

... ... ...
Table 11: Step 1. Collect sentimental adjectives candidates.

positive words negative words neutral words
sophisticated contemptible alate

gorgeous bogus quadrilateral
superb inhumane forty
healthy false french-speaking

meticulous precarious combined
perfect upset client-server
sweet numb trojan

coherent indelicate diagonal
... ... ...

Table 12: Step 2. Align with sentiment word sense.

positive words negative words neutral words
best dead new
great poor more

important difficult national
good unable most
better bad many

supreme wild american
golden cold early
greatest offensive high

... ... ...
Table 13: Step 3. Rank word by frequency.

positive words negative words neutral words
best dead new
great poor more

important difficult national
good unable most
better bad many

supreme wild american
golden cold early

not offensive not greatest high
... ... ...

Table 14: Step 4. Add negation words.
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