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Abstract

The meanings and relationships of words shift
over time. This phenomenon is referred to as se-
mantic shift. Research focused on understand-
ing how semantic shifts occur over multiple
time periods is essential for gaining a detailed
understanding of semantic shifts. However, de-
tecting change points only between adjacent
time periods is insufficient for analyzing de-
tailed semantic shifts, and using BERT-based
methods to examine word sense proportions in-
curs a high computational cost. To address
those issues, we propose a simple yet intu-
itive framework for how semantic shifts oc-
cur over multiple time periods by leveraging a
similarity matrix between the embeddings of
the same word through time. We compute a
diachronic word similarity matrix using fast
and lightweight word embeddings across arbi-
trary time periods, making it deeper to analyze
continuous semantic shifts. Additionally, by
clustering the similarity matrices for different
words, we can categorize words that exhibit
similar behavior of semantic shift in an unsu-
pervised manner.1

1 Introduction

The word embedding captures the meaning of
words based on the distributional hypothesis (Har-
ris, 1954; Firth, 1957), so changes in context are
reflected as shifts of the word embedding. The phe-
nomenon where the meanings and relationships of
words shift over time is referred to as semantic shift
(Kutuzov et al., 2018; Periti and Montanelli, 2024;
de Sá et al., 2024). For example, the word horn
initially meant “animal horn”, but over time, it has
acquired the meaning of “brass instrument” (Stern,
1931). Many studies in natural language process-
ing have computationally detected such semantic
shifts.

1The source code is available at https://github.com/
kiyama-hajime/acss-simmat

There are two major questions in the research
of semantic shift: what words have their meaning
shifted between two periods and how the mean-
ings of words have shifted over multiple time pe-
riods (Periti and Tahmasebi, 2024b). For the
first question, measuring the degree of seman-
tic shift between two time periods are commonly
used (Laicher et al., 2021; Rosin et al., 2022; Rosin
and Radinsky, 2022; Cassotti et al., 2023; Periti
and Tahmasebi, 2024a; Aida and Bollegala, 2024;
Periti et al., 2024). Although there are manually
annotated datasets (Schlechtweg et al., 2020), it
remains challenging to analyze how these semantic
shifts have occurred. For the second question, there
are research of change point detection (Kulkarni
et al., 2015) and analysis of proportions of word
sense in BERT-based approach (Hu et al., 2019;
Giulianelli et al., 2020). However, even though
change points between adjacent time periods can
be identified, it remains unclear whether the sense
reverts to the original or transitions to a new one.
While it is possible to cluster multiple word em-
beddings using BERT-based embeddings, compu-
tational limitations restrict the number of target
words.

In contrast, we propose a simple yet intuitive
framework to address the second question by di-
achronic word similarity matrices. Figure 1 pro-
vides an overview. The framework involves the
following steps: As input, we prepare word embed-
dings aligned across different time periods.

(i) Calculation of diachronic word similarity ma-
trices. The diachronic word similarity ma-
trices provide insights into the dynamics of
semantic shifts for individual words.

(ii) Clustering of the similarity matrices for all
words. The clustering results summarize the
semantic shift dynamics across words in an
unsupervised manner.

The contributions of this study are as follows: (i)

https://github.com/kiyama-hajime/acss-simmat
https://github.com/kiyama-hajime/acss-simmat
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Input: The word embeddings
aligned for each period

1. Calculate the word similarity matrices
using word embeddings for each period.

2. Cluster the similarity
matrices of all words.

Dataset : Time 1-5

ww� Learning

Word embeddings for each periods

Input : Similarity matrices of all words

ww� Clustering

Figure 1: A framework for analysing diachronic semantic shifts using similarity matrices: 1. Calculate the word
similarity matrix for a target word using word embeddings trained for each period. 2. Perform analyses such as
clustering on the similarity matrices for all words.

we analyzed semantic shifts across arbitrary time
periods using diachronic word similarity matrices.
By identifying high similarity regions within the
similarity matrix and calculating the differences in
Positive Pointwise Mutual Information (PPMI) for
each relevant period, we enabled detailed analysis
of semantic shifts. (ii) clustering the word similar-
ity matrices allowed us to group words with similar
behavior such as high-similarity regions split into
two distinct groups in an unsupervised setting. This
study used fast and lightweight word embeddings
to increase the number of target words for analysis.
In addition, we conducted a shift schema classifica-
tion task using pseudo data to quantitatively verify
the validity of the proposed framework.

2 Related Work

We will discuss research on semantic shifts across
multiple time periods in § 2.1 and research on ap-
plying a generalized similarity matrix, or Gram
matrix, to time-series data in § 2.2.

2.1 Semantic Shift over Multiple Periods

Research on semantic shift analysis over multiple
periods follows two approaches: one that assumes
specific types of semantic shifts and one without
such assumptions.

First, we show researches of one that reveal and

classify specific types of semantic shifts. Hamil-
ton et al. (2016) explore the statistical laws of se-
mantic shift, focusing on frequency and polysemy.
Quentin et al. (2017) computationally reveal the
S-curve frequency pattern in semantic shifts. Shoe-
mark et al. (2019) define seven shift schemas as
part of a framework for evaluating semantic shift
detection. Cassotti et al. (2024) define a task for
classifying these types and propose a method for
categorizing types of semantic shifts. Baes et al.
(2024) have analyzed semantic shifts by defining
the factors or dimensions that drive these shifts.

Next, we show researches of unsupervised types
analyses of semantic shifts. Kulkarni et al. (2015)
propose a method to detect the period during which
a semantic shift occurred by calculating the dis-
tance between the embeddings of two adjacent time
periods. Yao et al. (2018) analyze trends in mean-
ing driven by social factors by incrementally train-
ing word embeddings for each period. Hu et al.
(2019) analyze the process of semantic shift from
an ecological perspective. Inoue et al. (2022) pro-
pose a Bayesian method using topic models to esti-
mate the number of senses across multiple periods
and track their shifts.

The methods discussed in § 2.1 face certain lim-
itations: (i) They assume certain types of semantic
shifts in their analysis, (ii) They are analyzing se-
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mantic shifts between adjacent time periods, and
(iii) They limit the target words and calculate word
senses for analysis. To address those issues, we
propose a semantic shift analysis framework using
diachronic word similarity matrices. This frame-
work does not assume any specific type of semantic
shift and allows for analysis across arbitrary time
periods. By using fast and lightweight word em-
beddings, it enables the selection of a large number
of target words.

2.2 Gram Matrix for Time-Series Data
Calculating similarity matrices is equivalent to
computing a Gram matrix where similarity is
treated as an inner product in kernel methods. 2

There are numerous studies that transform time-
series data into Gram matrices for classification
purposes. These studies use various data sources
such as 3D human movements (Zhang et al., 2016;
Kacem et al., 2020), eye movements (Qiu et al.,
2023), and sound events (Neto et al., 2021). The re-
sulting Gram matrices are often used as features for
classification with supervised methods like SVM
or CNN.

In natural language processing, Gram matrices
have been utilized to investigate the tendencies of
language models fine-tuned for specific time pe-
riods. Nylund et al. (2024) have proposed time
vectors, where model weight vectors correspond-
ing to different periods are used to track how model
features change over time. In this research, we cal-
culate diachronic word similarity matrices using
word embeddings from different time periods and
cluster the similarity matrices. Instead of using
time vectors, word vectors from each period are
utilized.

3 Diachronic Word Similarity Matrices
for Semantic Shift

We explain a simple yet intuitive framework for
semantic shifts analysis by similarity matrices (Fig-
ure 1). First, we calculate diachronic word similar-
ity matrices using the word embeddings from each
time period (§ 3.1). Then, we perform clustering
based on the similarity matrices calculated for all
words (§ 3.2). From the clustering results, we can
group words that exhibit similar behaviors in their
similarity matrices.

2While it is possible to calculate similarity using various
kernel methods, this study investigates only simple similarity
measures such as cosine similarity and Euclidean distance,
motivated by the need for lightweight computation.

Input: Word Embeddings The input to the
framework consists of word embeddings from each
period. These embeddings must either be obtained
from the same model to ensure consistency or have
their dimensions aligned across different periods
to facilitate comparison. The constraint on input
exists because we aim to cluster words that exhibit
similar trajectories by mapping the temporal tran-
sitions of word embeddings onto the same space.
In this study, we use PPMI-SVD joint (Aida et al.,
2021) to efficiently compute and prepare a large
number of target words. Positive Pointwise Mutual
Information (PPMI) is an indicator that measures
the degree of association between two words. Here,
let the target word be w, the context word be c, and
their (co-occurrence) probabilities be p(w), p(c),
and p(w, c) respectively. The PPMI matrix for pe-
riod t, M t ∈ RW×C , is defined as

M (t)
wc = max

(
log

p(w, c)

p(w)p(c)
, 0

)
.

The PPMI matrices obtained here, when com-
pressed through singular value decomposition
(SVD) as M (t) = UΣV T , become equivalent
to word embeddings of skip-gram with negative
sampling (SGNS) (Levy and Goldberg, 2014)3 as
W = UΣ1/2 where U and V are orthogonal ma-
trices, and Σ is a diagonal matrix consisting of
singular values of M . PPMI-SVD joint allows
for obtaining embeddings with aligned dimensions
across all time periods by performing the SVD-
based compression simultaneously for all periods.

3.1 Calculation of Diachronic Word
Similarity Matrices

To compute similarities across multiple time peri-
ods (Figure 1(i)), we first obtain D-dimensional
word embeddings et(w) ∈ RD for a given word w
at each period t ∈ {1, 2, ..., T}. Let the function
sim(·, ·) return a similarity score. The similarity
matrix S(w) ∈ RT×T for word w is defined as

Sij(w) = sim(ei(w), ej(w)).

In this study, we adopt cosine similarity. One ad-
vantage of using similarity matrices across arbitrary
time periods is that it facilitates the analysis of how
semantic shifts have occurred. This method makes

3Following Aida et al. (2021), we also employ the original
PPMI. Although SGNS has been shown to correspond to a
shifted form of PMI, Levy et al. (2015) demonstrated that
incorporating this shift does not improve performance when
applied to PMI matrix factorization.
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(a) Cosine similarity matrix of “record” vectors in COHA. (b) Cosine similarity matrix of “president” vectors in COCA.

Figure 2: The visualization of the diachronic word cosine similarity matrix for the word “record” and “president” by
PPMI-SVD joint. It is evident that clusters and spikes across time, indicating two types of semantic shifts (linguistic
and social), have been successfully represented.

semantic shift easier to interpret compared to tra-
ditional change point detection methods that focus
only on adjacent periods (§ 4.2).

3.2 Clustering of Diachronic Word Similarity
Matrices

When clustering the obtained similarity matrix (Fig-
ure 1(ii)), the upper triangular part of the similarity
matrix is extracted and normalized to obtain a se-
rialized vector. This preprocessing step is taken
because the similarity matrix is symmetric and our
focus is on analyzing the shifts in the similarity ma-
trix. Analyzing the similarity matrices within each
cluster allows for a clearer understanding of the se-
mantic shifts within the cluster, thereby enhancing
the interpretability of the clustering outcome. In
this study, we use hierarchical clustering.4

4 Experiment: Real Data

We demonstrate that diachronic word similarity ma-
trices are beneficial for analyzing semantic shifts.
First, we describe experimental setup of English
corpora in § 4.1. Next, we visualize the actual simi-
larity matrices, demonstrating that it allows deeper
analysis even across different time slices than using
only adjacent time periods in § 4.2. Additionally,
we show that the similarity matrix itself can be an-
alyzed using PPMI in § 4.2. Finally, we present
the clustering results for the similarity matrices in
English corpora in § 4.3. 5

4To determine the method with the highest classification
performance, similarity methods, elements of similarity ma-
trices, clustering methods and the presence or absence of
standardization are investigated in § 5.2.

5The analysis was also conducted in Japanese, and the re-
sults are presented in Appendix B. It was found that, similar to
the English experiments, the analysis using similarity matrices
is also beneficial in the Japanese experiments.

4.1 Experimental Setup

We use COHA (Davies, 2012; Alatrash et al., 2020)
and COCA (Davies, 2009) as datasets.6 COHA
is an English historical corpus, segmented into
10-year periods from 1830 to 2010, resulting in
subcorpora for 19 time periods. We did not use
the data of 1820s because the data size was too
small. COCA is an English contemporary corpus,
segmented into 1-year periods from 1990 to 2019,
resulting in subcorpora for 30 time periods. For
all datasets, the target words are those that appear
more than 100 times in each period. The numbers
of target words in COHA and COCA are 3,231 and
2,805, respectively. We used a 100-dimensional
PPMI-SVD joint for word embeddings and cosine
similarity for measuring similarity.

In the clustering step, we use the combination of
feature, preprocessing and clustering methods that
produced the best results in the pseudo-data experi-
ments (cosine similarity + upper triangular matrix
+ hierarchical clustering + standardization) in § 5.
We set the threshold for hierarchical clustering to 8
in COHA and 30 in COCA.7

4.2 Analysis of Diachronic Word Similarity
Matrices

We present qualitative results of similarity matrix
visualizations (§ 4.2.1) and quantitative analysis
based on the differences in PPMI (§ 4.2.2).

6Details of the experimental setup, including corpus statis-
tics, are provided in § A.1.

7Setting the optimal threshold in clustering is challenging.
In this study, the threshold for clustering was manually de-
termined. This decision was made because the calculation
of the silhouette score indicated that the optimal number of
clusters was 2, after which the score tended to decrease mono-
tonically. The figures showing the silhouette scores calculated
for hierarchical clustering and K-means are provided in § A.2.
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t1 (target year) t2 co-occurring words sense interpretation

1840 1940 miracle, inspiration, tradition, pen, chapter,
contemporary, interpret, preserve, translate, journal record in memorizing things

1940 1840 attendance, concert, sale, speed, employment,
consistent, error, moderate, arrest, tune record in medium for playing sound

Table 1: Top 10 words and their meanings sorted by the differences in PPMI (N (t2→t1)
10 ) for the word “record”

between 1840 and 1940 learned from COHA.

t1 (target year) t2 co-occurring words sense interpretation or event

1991 2017 dan, republic, marketing, resolution, initiative,
peace, proposal, coalition, founder, approve president in normal uses

1998 1991 fox, rice, video, conservative, democracy,
texas, mexican, supreme, walker, andrew

documentary of U.S. President
Andrew Jackson (event)

2012 1991 ohio, convention, debate, joe, criticism,
tax, immigration, fiscal, voter, lincoln presidential election in 2012 (event)

2017 1991 joe, investigation, border, moon, defend,
mike, korea, lawyer, counsel, investigate president in Trump administration (event)

Table 2: Top 10 words and their meanings sorted by the differences in PPMI (N (t2→t1)
10 ) for the word “president”

across four time periods: 1991, 1998, 2012 and 2017 learned from the COCA.

4.2.1 Visualization of Diachronic Word
Similarity Matrix

We visualize the diachronic word similarity ma-
trices for COHA and COCA. By visualizing the
similarity matrix, we demonstrate that semantic
shift analysis can be conducted even with different
time slices, and that tracking semantic shifts across
arbitrary time periods allows for more detailed in-
sights than focusing only on adjacent periods.

Figure 2a shows the similarity matrix of word
embeddings for the word “record” learned from
COHA. The word “record” was selected because
it is known to have undergone semantic shift.
The similarity matrix indicates that, around pe-
riod 9 (1930), high-similarity regions split into
two distinct groups, suggesting that the meaning of
“record” shifted around 1930.

Figure 2b presents the similarity matrix for the
word “president” learned from COCA. The word
“president” was selected because it was hypothe-
sized that its meaning might have shifted due to
social factors, particularly in the context of U.S.
presidential elections. Analysis of the similarity
matrix reveals that the data generally splits into
two regions: one spanning from period 0 (1991)
to period 26 (2016), and the other from period 27
(2017) to period 29 (2019). Additionally, spikes are
observed in period 8 (1998) and period 22 (2012),
suggesting significant shifts likely related to the
documentary of the seventh U.S. president Andrew
Jackson (1998) and presidential elections (2012)8,

8Barack Hussein Obama II vs Willard Mitt Romney

which are reflected in the language of the texts.
This analysis provides information that cannot

be obtained by looking at only adjacent periods.
When focusing solely on adjacent periods, we can
observe a shift occurring at period 8 and another at
period 27. However, in cases where the meaning re-
verts to its original state (as in the spike observed in
period 8) or shifts to a completely different mean-
ing (as seen in period 27), semantic shift analysis
based only on adjacent periods can not distinguish
these shifts. This ability to differentiate such cases
is considered one of the advantages of analyzing
semantic shifts across arbitrary time periods.

4.2.2 Analysis of Diachronic Word Similarity
Matrix by PPMI

Having identified the approximate change points
for each word in § 4.2.1, we conduct further inves-
tigation on driving factors of these shifts in each
period. From the diachronic word similarity matrix,
we can manually interpret which periods exhibit
high or low similarity by identifying regions of
high similarity. By selecting appropriate periods
from these regions and calculating the PPMI dif-
ferences between them, we can conduct a deeper
analysis of when semantic shifts occurred and how
the co-occurring words changed over time.

To investigate whether the obtained similarity
matrix reflects actual semantic shifts, we analyze
it using the difference in PPMI between time peri-
ods. For the given target word w, we calculate the
magnitude of the difference between the PPMI val-
ues between t1 and t2. This difference ∆M t2→t1
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Figure 3: Visualizing the similarity matrix of all words in COHA using t-SNE in two dimensions shows that words
close to each other in the compressed dimensions exhibit similar similarity patterns.

measures the degree to which a context word c co-
occurs with w in period t1 but not in period t2, and
is used to extract the top-k context words with the
largest positive changes, defined as:

∆M (t2→t1) = M
(t1)
w∗ −M

(t2)
w∗ ,

N (t2→t1)
k = {c | c ∈ argsort(∆M (t2→t1))[:k]}.

Therefore, by calculating the difference and exam-
ining the top-ranked words N (t2→t1)

k for the target
word, it is possible to identify words that co-occur
specifically in period t1 and characterize the seman-
tic shift intuitively.9

We check whether differences in similarity actu-
ally explain semantic shifts by examining the dif-
ferences in PPMI (N (t2→t1)

k ). Table ?? shows the
top 10 words with the greatest differences in PPMI
for the word “record” between 1840 and 1940 in
COHA. The PPMI difference between 1840 and
1940 reveals co-occurring words specific to 1840,
while subtracting the PPMI from 1940 from that of
1840 shows co-occurring words specific to 1940. In

9Note that negative values in the PPMI differences between
periods are not meaningful because of definition of PPMI.

1840, the word “record” pertains to preserving and
documenting events, with co-occurring words like
“chapter” and “journal” reflecting this usage. In
1940, the word “record” is used with meanings re-
lated to media for capturing sound, as evidenced by
co-occurring words such as “concert” and “sale”.

Table ?? shows the top 10 words with the great-
est differences in PPMI for the word “president”
between 1991, 1998, 2012 and 2019 in COCA.
In 1991, words such as “republic”, “marketing”,
and “peace” were commonly associated with the
term “president”, reflecting its use in relation to
general policies and actions typically undertaken
by a president. In 1998, words like “video”, “mexi-
can”, and “andrew” appear. These terms suggest a
connection to the documentary Presidential Train,
which may be related to former U.S. President An-
drew Jackson. In 2012, terms like “ohio”, “tax”,
and “immigration” were identified, which can be
seen as reflecting key issues in the 2012 presiden-
tial election. In 2017, words such as “border” and
“moon” emerged, likely linked to the priorities of
the Trump administration, which began that year.
These observations suggest that the term “president”
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(a) The results of the hierarchical clustering for words that are
included in the same cluster as the word “record” in COHA.

(b) The results of the hierarchical clustering for words that
are included in the same cluster as the word “president” in
COCA.

Figure 4: Visualization of clusters containing target words for each dataset was performed using hierarchical
clustering for all words. This method allows us to observe how clusters that share a similar time-series pattern
merge, providing insights into the clustering process and the relationships between words within the dataset.

has shifted in meaning in response to the political
and social context, particularly during presidential
elections and significant political events.

4.3 Clustering of Diachronic Word Similarity
Matrices

We attempt to further analyze the detail of seman-
tic shifts. By visualizing the similarity matrices of
all words using t-SNE, we confirmed that locally
similar patterns can be identified. By analyzing the
similarity matrices through clustering, it is possible
to identify words that exhibit similar behavior such
as the periods in which similarity shifts, the mag-
nitude of the shift, and the periods where spikes
occur. Our method allows for semantic shift analy-
sis regardless of the period being studied. Among
clusters, there are some that have shifted due to
sociological factors, making it a technique that can
be applied to trend analysis.

We present the results of visualizing the similar-
ity matrix of all words using t-SNE, showing the
obtained patterns and their distribution. In the visu-
alization of the overall similarity matrix, t-SNE10

was employed to reduce the dimensionality to two
dimensions. Figure 3 displays the two-dimensional
visualization of the similarity matrix for all words

10We used TSNE from scikit-learn.

in COHA using t-SNE.11 In the similarity matrix
compressed by t-SNE, words located at nearby co-
ordinates exhibit similar patterns in their similarity
matrices. In Figure 3, we observed patterns such as
the word “record”, which shows separate regions
of high similarity during intermediate periods, and
the word “liquid”, which exhibits a spike in sim-
ilarity during specific periods, forming localized
clusters. Our study primarily aims to identify and
group locally similar patterns of semantic shifts
in an unsupervised manner. However, the t-SNE
visualization reveals the potential to explore global
patterns as well, which could provide valuable in-
sights. This intriguing direction will be explored
further as part of future work.

We present the results of clustering all the word
similarity matrices using COHA and COCA. In
Figure 4a, the results of the hierarchical clustering
for words that are included in the same cluster as
the word “record” in COHA are presented. It is
observed that “record” is clustered with words like
“government” and “wrong”. The words included
in this cluster exhibit similarity matrices similar to
that of “record”, indicating the potential occurrence
of a semantic shift. While it is necessary to analyze
the PPMI differences to confirm whether a seman-
tic shift has indeed occurred, Figure 4a shows that

11The result of COCA is provided in § A.3
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Figure 5: Illustration of seven schemas for inserting pseudowords into the synthetic dataset (Shoemark et al., 2019).
The orange line represents sense1, the black dotted line represents sense2, and the other lines correspond to the
remaining senses.

this type of analysis is valuable for identifying can-
didate words that may have undergone semantic
shifts.

In Figure 4b, the results of the hierarchical clus-
tering for words included in the same cluster as the
word “president” in COCA are shown. It is found
that “president” is clustered with words like “lie”
and “independent”. The words in this cluster share
a similar similarity matrix with “president”, sug-
gesting that they may have experienced a semantic
shift due to the same factors. A notable common-
ality among these clusters is the spike observed in
period 8 (1998), which may be attributed to the
release of a documentary related to former U.S.
President Andrew Jackson. Figure 4b shows that
this highlights the ability of the analysis to detect
clusters potentially influenced by social factors, en-
abling further exploration of semantic shifts driven
by external events.

5 Experiment: Pseudo Data

To quantitatively demonstrate the validity of the
proposed framework, we evaluate the classification
performance of the seven pseudo-shift schemas
proposed by Shoemark et al. (2019).12 First, we de-
scribe the experimental setup and the seven pseudo-
shift schemas in § 5.1.13 Next, we present the re-
sults of the classification task for the seven schemas,
demonstrating that using the similarity data across
all time periods leads to better classification perfor-
mance in § 5.2.

5.1 Experimental Setup
We classify the seven pseudo-shift schemas pro-
posed by (Shoemark et al., 2019) in Figure 5. They
define three semantic shift schemas (C1-C3) and

12The experiments with pseudo data are conducted to find
the optimal experimental settings for clustering in real data.
We chose the classification task with seven shift schemas
because it defines types of shifts in semantic shift research.

13Following by an analysis of the similarity matrices for
each of the seven schemas in § C.2.

four non-semantic shift schemas (D1-D4). For each
schema’s pseudoword, two words extracted from
the corpus, word1 and word2, are considered the
primary senses of the pseudoword (each represent-
ing sense1 and sense2), while seven randomly
extracted words words ∈ {word3, ..., word9} are
considered miscellaneous senses (senses). These
words are then replaced with the pseudoword to
reproduce the seven schemas.14

C1: sense1 remains constant while sense2 in-
creases over time (acquisition of a new sense)

C2: sense1 decreases over time while sense2
increases (sense transition)

C3: sense1 increases over time, with seven
senses randomly selected each period (acqui-
sition of noisy senses)

D1: sense1 increases over time (increase of a
sense)

D2: sense1 remains constant while sense2 spikes
once (sensitive to a specific period)

D3: sense1 remains constant while sense2 spikes
periodically (periodically sensitive shifts)

D4: Seven senses are randomly selected each
period (pure noise)

We create pseudo-data using the year of 2010 in
Mainichi Shimbun dataset.15 The dataset is sam-
pled at 70%, and 20 periods are created. Japanese
texts are tokenized by MeCab16 with UniDic17.
Words that appear 50 times or more are used as
target words. The frequency set is divided into
four quantiles, with five pseudowords prepared for
each frequency set. For each schema, 20 pseu-
dowords are prepared, resulting in a total of 140
pseudowords. We used a 100-dimensional PPMI-
SVD joint (Aida et al., 2021) for word embeddings.

14Detailed experimental settings are provided in § C.1.
15https://mainichi.jp/contents/edu/03.html
16https://taku910.github.io/mecab/
17https://clrd.ninjal.ac.jp/unidic/

https://mainichi.jp/contents/edu/03.html
https://taku910.github.io/mecab/
https://clrd.ninjal.ac.jp/unidic/
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similarity feature cluster accuracy
raw + stand

Cosine
similarity

Adjacent Agglo 53.6 70.7
K-means 54.3 68.6

Period 0 Agglo 50.0 63.6
K-means 49.3 62.9

Upper Tri Agglo 55.7 72.1
K-means 57.9 71.4

Euclidean
distance

Adjacent Agglo 32.8 56.4
K-means 34.2 55.7

Period 0 Agglo 48.5 64.9
K-means 47.8 66.4

Upper Tri Agglo 47.8 71.4
K-means 45.7 68.5

Table 3: Classification performance for shift schemas in
pseudo-data. The "Agglo" means hierarchical clustering.
The "+ stand" indicates the accuracy achieved when the
features were standardized.

The classification performance is evaluated by
varying the similarity methods, feature extraction
methods, clustering techniques and whether to ap-
ply normalization. The input for clustering is
the similarity matrices of the 140 pseudowords.
The classification is performed with seven clusters,
and the optimal label-cluster correspondence is ob-
tained using the linear sum assignment algorithm18

to calculate accuracy.
We investigated the method for calculating simi-

larity, feature extraction methods, clustering meth-
ods, and whether to apply normalization. Cosine
similarity and Euclidean distance are used as simi-
larity measures. Three feature extraction methods
of the similarity matrix are examined: Adjacent
periods using Si(i+1)(w) elements of the similar-
ity matrix S(w) of the similarity matrix, Similar-
ity with period 0 using S0∗(w) elements of the
similarity matrix S(w), Upper triangular com-
ponents using Sij(w) elements of the similarity
matrix S(w), where i < j. We investigate hierar-
chical clustering and K-means++.19 The impact of
normalization is also investigated.

5.2 Classification of Shift Schemas
We discuss the results of classifying shift schemas
under various experimental settings. Table ??
presents the classification performance results for
each method.

Similarity. Regarding the similarity calculation
methods, cosine similarity generally performs bet-

18The calculation was performed using the lin-
ear_sum_assignment function from SciPy.

19We used AgglomerativeClustering and kmeans from
scikit-learn. DBSCAN was not used because it cannot specify
the number of clusters for classifying into seven clusters.

ter. It is evident that normalization of norms is
important for classifying shifts.

Features. The number of features is highest for
the upper triangular elements, indicating that sim-
ilarity between distant time periods is useful for
classifying shift schemas.

Clustering methods. Concerning clustering
methods, before standardization, K-means++ per-
forms slightly better, but after standardization, hier-
archical clustering shows a slight improvement in
performance. When using cosine similarity, there
is no significant difference in performance between
K-means++ and hierarchical clustering.

Standardization. Additionally, comparing cases
with and without standardization, it was found that
performance improves with standardization. Since
the task involves classifying shift schemas, cap-
turing the movement of similarity rather than the
similarity itself is beneficial.

We conducted experiments on real data in § 4
using the combination (cosine similarity + upper
triangular matrix + hierarchical clustering + stan-
dardization) that achieved the highest classification
performance in the above experiments.20

6 Conclusion

We proposed a framework that enables analyzing
and clustering semantic shifts across arbitrary peri-
ods shifts using diachronic word similarity matri-
ces. The experiments with real data showed that
the similarity matrices enables semantic shifts anal-
ysis across arbitrary time periods, and their clus-
tering allows for unsupervised grouping of words
with similar behaviors. Additionally, the experi-
ments with pseudo-data demonstrated that the pro-
posed framework is well-suited for classifying shift
schemas.

We hope that this study will advance research
on semantic shift across multiple time periods. By
tracking how the meanings of words shift, it will
become possible to conduct more detailed analyses
of semantic shift phenomena, such as classifying
patterns of semantic shifts using embeddings.

20An error analysis is conducted on the best-performing
results and confusion matrices of various cases in § C.3. The
results of the t-SNE visualization for the pseudo-data are pre-
sented in § C.4
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7 Limitations

Dataset Limitation We analyzed corpora that
contain data from multiple time periods within the
same domain. However, when dealing with multi-
ple time periods but across different domains, the
domain differences may be reflected in the similar-
ity matrix, making it difficult to analyze semantic
shifts. Therefore, developing robust methods that
can be applied even in cases where the domains dif-
fer will be essential for future research on semantic
shifts. Additionally, for time period segmentation,
we used a 10-year interval for COHA and a 1-year
interval for COCA. Analyzing data in smaller time
units, such as 1-month interval analysis with the
NOW corpus21, is a potential future direction. As
the time units become smaller, the focus shifts from
large-scale shifts to more subtle ones. Therefore, it
will be important to investigate whether the analy-
sis remains effective when adjusting the time unit.
However, it is important to note that the optimal
time slices may vary depending on the analysis
target, making evaluation challenging.

Embedding methods Limitation Only the
PPMI-SVD joint embedding method was tested,
which may cause a limitation of the embedding
method itself. If BERT-based embeddings (Cas-
sotti et al., 2023; Aida and Bollegala, 2024; Periti
et al., 2024) were used for analysis, it would be
possible to obtain word embeddings regardless of
the dataset size. In this study, we interpret the simi-
larity matrices using differences in PPMI. However,
in the case of dynamic embeddings, where word
embeddings for each period are available, it is be-
lieved that interpretations can also be drawn from
clustering results across different periods. How-
ever, BERT-based approach would require narrow-
ing down the target words due to the computational
demands of generating word embeddings. In this
study, thanks to computationally efficient PPMI-
SVD, we were able to analyze a large set of target
words. When it comes to classifying similarity ma-
trices, it is challenging to draw a clear line between
which words to include and which to exclude.

Pseudo schemas Limitation We evaluated a clas-
sification task using pseudo data based on the seven
shift schemas proposed by Shoemark et al. (2019).
However, these seven schemas do not necessarily
cover all types of semantic shifts. In our analysis
of similarity matrices for real data, such as for the

21https://www.english-corpora.org/now/

words “record” and “president”, we observe shifts
that do not fit into any of the defined schemas. Ad-
ditionally, none of the schemas account for informa-
tion across arbitrary time periods, which may lead
to an underestimation of the proposed method’s po-
tential. As a future direction, it is worth expanding
the definition of shift schemas that more closely re-
flect real data, specifically by formalizing the task
of semantic shift across multiple periods.

Application Limitation An application in lin-
guistics is the automatic identification of words that
have undergone semantic shifts (Cook and Steven-
son, 2010). By leveraging computational meth-
ods to identify such words, linguists can prioritize
them for analysis, enabling efficient exploration
of newly shifted meanings. Using this framework
not only makes it possible to detect semantic shifts
but also allows for multi-period analysis of how
the shifts occurred. However, two issues warrant
discussion: (i) how to select the target words for
analysis and (ii) the fact that changes in similarity
do not always correspond to semantic shifts. Some
words exhibit behaviors that do not align with tra-
ditionally shifted words, making it necessary—
but challenging—to define the degree of semantic
shifts over multiple periods. Additionally, even
when similarity changes, as shown in Figure 2(b),
there are cases where the word’s meaning has not
shifted. Addressing these challenges will not only
improve the precision of automatic methods but
also enhance their applicability to broader linguis-
tic studies, paving the way for deeper insights into
semantic shifts.

Ethical Consideration

While this study does not involve creating or pub-
lishing new data or models, and thus no direct ethi-
cal concerns are anticipated, it is important to ac-
knowledge that the publicly available corpora used
for training word vectors may contain inherent bi-
ases. Additionally, the proposed method does not
specify particular word vectors for constructing the
input similarity matrices. However, when using pre-
trained word vectors or masked language models
like BERT, it is crucial to be aware of the potential
biases these models might contain, which could
influence the results (Anantaprayoon et al., 2024).
Addressing these biases is necessary to maintain
the integrity and fairness of the research outcomes.

https://www.english-corpora.org/now/
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Time Period #token Time Period #token
1830 2,269,396 1930 3,977,506
1840 2,636,944 1940 3,892,645
1850 2,743,776 1950 4,059,038
1860 2,776,254 1960 3,805,188
1870 3,021,121 1970 3,758,512
1880 3,227,468 1980 3,959,571
1890 3,322,748 1990 4,627,047
1900 3,377,908 2000 5,067,374
1910 3,490,015 2010 5,386,789
1920 4,059,039 - -

Table 4: Statistics of COHA.

Time Period #token Time Period #token
1990 1,912,238 2005 1,991,792
1991 1,934,292 2006 1,994,816
1992 1,895,978 2007 1,942,283
1993 1,902,687 2008 1,922,213
1994 1,947,562 2009 1,876,034
1995 1,949,698 2010 1,798,676
1996 1,917,884 2011 2,008,111
1997 1,942,688 2012 2,042,931
1998 1,951,724 2013 1,928,037
1999 1,941,432 2014 1,918,909
2000 1,993,549 2015 1,942,229
2001 1,916,218 2016 1,927,982
2002 1,974,183 2017 1,998,353
2003 1,995,176 2018 2,019,840
2004 1,993,568 2019 2,030,788

Table 5: Statistics of COCA.

ensure that target words with a frequency of 100 or
more occurrences were not removed. The statistics
for COHA and COCA are shown in Table ??, and
Table ??.

A.2 Silhouette Score

In the clustering process, the optimal number
of clusters was determined using the silhouette
score. The progression of silhouette scores for
both COHA and COCA datasets, using K-means
and hierarchical clustering, is shown in Figure 6.
The results consistently indicate that the optimal
number of clusters is 2 across all cases.

A.3 t-SNE Visualization in COCA

Figure 7 shows the result of visualizing the similar-
ity matrix of all words in COCA in two dimensions
using t-SNE. As with COHA, the similarity matrix
compressed by t-SNE reveals that words located
at nearby coordinates exhibit similar similarity ma-
trix patterns. In Figure 7, many localized clusters
were observed, such as the word “persident”, which
shows spikes during specific periods.

Time Period #token Time Period #token
2003 5,590,218 2012 5,300,054
2004 5,159,294 2013 5,055,583
2005 4,953,488 2014 5,400,230
2006 4,659,049 2015 5,302,944
2007 4,538,968 2016 5,202,454
2008 4,314,940 2017 5,161,849
2009 4,294,827 2018 4,827,454
2010 4,288,985 2019 4,302,899
2011 4,553,186 2020 3,786,987

Table 6: Statistics of Mainichi Shimbun dataset.

B Real Data in Japanese

The Mainichi Shimbun is a Japanese newspaper
corpus, segmented into 1-year periods from 2003
to 2020, resulting in embeddings for 18 time peri-
ods. Japanese texts are tokenized by MeCab with
UniDic. The numbers of target words in Mainichi
Shimbun is 7,228. The statistics for Mainichi Shim-
bun is shown in Table ??. We used a subsampling
threshold of 1e−4.

Figure 8 presents the similarity matrix for the
word “復興” (revival) learned from the Mainichi
Shimbun. The word “復興” has not shifted in
meaning but is believed to have experienced sig-
nificant contextual shifts following the 2011 Great
East Japan Earthquake, which is why it was se-
lected. It is evident that there are three clusters of
high similarity, and the similarity between period
8 (2011) and other periods is low. This suggests
that there are four distinct usages of the word “復
興”. Compared to COHA and COCA, where the
analysis is conducted in English, it is evident that
similarity matrix analysis is also feasible in the case
of Japanese.

Table ?? presents the top 10 words with the
greatest differences in PPMI for the word “復興”
(revival) in the Mainichi Shimbun dataset for the
years 2003, 2007, 2011, and 2015. In 2003, the
word “復興” is associated with diplomatic contexts,
as evidenced by co-occurring words such as “主
権” (sovereignty), “統治” (governance), and “仏”
(France). In 2007, “復興” pertains to domestic nat-
ural disasters, with co-occurring words like “噴火”
(eruption), “地震” (earthquake), and “瓦礫” (rub-
ble), reflecting its use in the context of recovery
from such events in Japan. In 2011, following the
Great East Japan Earthquake, “復興” is associated
with political discussions, with co-occurring words
such as “ビジョン” (vision), “増税” (tax increase),
and “構想” (plan). In 2015, “復興” is used in re-
lation to the results of post-disaster policies, with
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(a) K-means+COHA (b) K-means+COCA

(c) Agglo+COHA (d) Agglo+COCA

Figure 6: Silhouette score of each clustering method in each dataset. Agglo means hierarchical clustering.

co-occurring words like “退去” (evacuation), “資
材” (materials), and “開通” (opening), reflecting
the ongoing recovery efforts and their outcomes.

In Figure 9, the results of the hierarchical clus-
tering for words included in the same cluster as
the word “流行” (fashion/trend) are shown. It is
observed that “流行” is clustered with words like
“感染” (infection) , “確認” (check), “ウイルス”
(virus) and “従事” (engage). These words are rel-
evant to “流行”, indicating that the clustering ef-
fectively categorizes trends in semantic shifts. This
cluster can be interpreted as one where the context
of usage has shifted due to the impact of COVID-
19.

From the experimental results mentioned above,
it is evident that this framework is also useful for
analyzing semantic shifts in the Japanese language.

C Pseudo Data

C.1 Detail Setup

The probability for each sense is calculated as de-
scribed below. In C1, sense1 remains constant at
0.7, while sense2 increases from 0.1 to 1 on a log-
arithmic scale. In C2, sense1 decreases from 1 to
0.1 on a logarithmic scale, and sense2 increases
from 0.1 to 1 on a logarithmic scale. In C3, sense1

increases from 0.1 to 1 on a logarithmic scale, and
the senses are sampled from a Dirichlet distribu-
tion for each of the seven meanings. In D1, sense1
decreases from 1 to 0.1 on a logarithmic scale. In
D2, sense1 remains constant at 0.7, and sense2
shows spikes at 0.55 during periods 4 and 6, with
a value of 0.1 otherwise. In D3, sense1 remains
constant at 0.7, and sense2 exhibits periodic spikes
during periods 1 and 3, 7 and 9, and 13 and 15, with
a value of 0.1 otherwise. In D4, each of the senses
is sampled from a Dirichlet distribution.The imple-
mentation of the logarithmic scale and Dirichlet
distribution was carried out using Numpy.

C.2 Analysis of Similarity Matrices

We visualize and analyze the similarity matrices
for each shift schema using pseudo data. Fig-
ure 10 shows the similarity matrices of word em-
beddings for pseudo-words corresponding to each
shift schema. While some shifts are difficult to
detect, such as in C1 and D3, others, like C2 and
D1, reveal patterns where similarity increases or
decreases, or where spikes occur at specific periods,
as in D2. Shifts involving random noise, as seen in
C3 and D4, can also be detected. This demonstrates
the high interpretability of the similarity matrices.

However, it is important to note that frequency
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Figure 7: Visualizing the similarity matrix of all words in COCA using t-SNE in two dimensions shows that words
close to each other in the compressed dimensions exhibit similar similarity patterns.

Figure 8: The similarity matrix of the word embeddings
for the word “復興” (revival),learned from Mainichi
Shimbun by PPMI-SVD joint.

bias cannot be completely eliminated. For example,
when comparing C2 and D1, if the time axis of C2
is reversed, its similarity matrix closely resembles
that of D1. This indicates a tendency for periods
with higher frequencies to exhibit greater similarity
in embeddings.

C.3 Confusion Matrices in Shift Schema

From the experimental results mentioned above, it
was quantitatively demonstrated that the validity
of the proposed method in classifying pseudo-shift
schemas can be established by using and standard-
izing a large number of components in the similar-
ity matrix. We visualize the confusion matrix of

Figure 9: The results of the hierarchical clustering for
words that are included in the same cluster as the word
“流行”(trend) in Mainichi Shimbun.

the classification results and analyze which shift
schemas can and cannot be identified. Figure 11
show the confusion matrices obtained by perform-
ing hierarchical clustering using the upper triangu-
lar matrices with standardization. From Figure 11,
the schemas C2, C3, D1 and D4 tend to be well
classified. On the other hand, schemas such as C1,
D2, and D3 could not be detected. The C1 schema
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t1(target year) t1 co-occurrence word sense meaning

2003 2005

戦後 (postwar),統治 (governance),
主権 (sovereignty),暫定 (provisional),
協調 (cooperation),主導 (leadership),
仏 (France),要員 (personnel),
樹立 (establishment),対外 (external/foreign)

Revival in Diplomatic Contexts

2007 2003

瓦礫 (rubble),鐘 (bell),
花火 (fireworks),噴火 (eruption),
津波 (tsunami),地震 (earthquake),
家屋 (house/building),入居 (move-in),
程遠い (far from),古里 (hometown)

Revival in Response to Earthquakes and
Eruptions in Japan

2011 2007

ビジョン (vision),増税 (tax increase),
提言 (proposal),一元 (integration),
歳出 (expenditure),税 (tax),
与野党 (ruling and opposition parties),
県連 (prefectural federation),
構想 (concept/plan),税制 (tax system)

Revival in Policy Discussions During
the Great East Japan Earthquake

2015 2011

退去 (evacuation/departure),資材 (materials),
入居 (move-in),全額 (full amount),
開通 (opening to traffic),井戸 (well),
人道 (humanitarian),帰還 (return),
高騰 (surge/rise),仮設 (temporary)

Revival Related to Policies Implemented
After the Great East Japan Earthquake

Table 7: A table showing the top 10 words and their meanings sorted by the differences in PPMI(N (t2→t1)
10 ) for the

word “復興” (revival) across four time periods: 2003, 2007, 2011, and 2015, learned from the Mainichi Shimbun
dataset.

involves the model of polysemous words acquiring
new meanings. Because the proportion of word1
remains constant, similarities increase, which may
make detection difficult through similaritybased
analysis or indicate limitations of the embedding
methods． Schemas D2 and D3 involve spikes, and
since the timing of these spikes is random, the shifts
in similarity might not have clustered effectively.

We include the confusion matrices obtained from
various methods in the analysis in Figure 12. We
investigate the use of cosine similarity (cos) and
Euclidean distance (eu) as methods for calculat-
ing similarity. The first two columns in the figure
correspond to the use of cosine similarity, while
the right two columns correspond to the use of
Euclidean distance. Additionally, we examine the
use of hierarchical clustering (agglo) and K-means
(kmeans) as clustering methods. The top three
rows in the figure correspond to hierarchical clus-
tering, while the bottom three rows correspond to
K-means clustering. Furthermore, we investigate
the features input into the clustering process: the
similarity between adjacent time periods (adj), the
similarity to time period 0 (time0), and the upper
triangular components (tri). From top to bottom,
the rows represent the use of adjacent time periods,
similarity to time period 0, and the upper triangu-
lar components in succession. We also examine
the impact of standardization (z). Odd-numbered

columns represent cases without standardization,
while even-numbered columns represent cases with
standardization. The performance differences ob-
served can be attributed to the presence or absence
of standardization.

C.4 t-SNE Visualization in Pseudo Data
To examine how pseudo-words are distributed, we
analyzed their visualization in two dimensions us-
ing t-SNE. Figure 13 shows the result of visual-
izing the similarity matrices of pseudo-words in
two dimensions using t-SNE. Some shifts patterns
(C2, C3, D1, D4) are clearly separated into distinct
clusters on t-SNE. Compared to clustering on real
data, the clusters in t-SNE are more distinctly sepa-
rated, likely because the number of target words is
smaller, with 20 pseudo-words prepared for each
shifts pattern.

D Other Limitation

One application in natural language processing is
additional training for words that have undergone
semantic shifts. Pretrained large language mod-
els often rely on training data that becomes out-
dated over time, leading to a decline in performance
when handling inputs reflecting the latest knowl-
edge (Lazaridou et al., 2021). By tracking semantic
shifts words, it becomes possible to identify and
prioritize additional training for words that have
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(a) pseudoword "C1-0-4" (b) pseudoword "C2-1-3" (c) pseudoword "C3-1-0"

(d) pseudoword "D1-2-4" (e) pseudoword "D2-1-1" (f) pseudoword "D3-2-0" (g) pseudoword "D4-2-0"

Figure 10: The similarity matrices were visualized for each shift schema. The similarity matrices generally captured
the characteristics of the schemas and could be interpreted manually.

Figure 11: The confusion matrix resulting from hierar-
chical clustering using the standardized upper triangular
matrix.

shifted in meaning, mitigating performance degra-
dation caused by the passage of time (Su et al.,
2022; Ishihara et al., 2022). Our method could be
used to efficiently fine-tune pre-trained language
models by prioritizing fine-tuning based on the
identified patterns of semantic shifts. Addition-
ally, varying the importance of words according to
their semantic shifts patterns could further improve
model adaptability. While our study focuses on
the identification and analysis of patterns of seman-
tic shifts, these promising applications highlight
the broader potential of our approach and will be
explored as part of future work.
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(a) cos+agglo+adj (b) cos+agglo+adj+z (c) eu+agglo+adj (d) eu+agglo+adj+z

(e) cos+agglo+time0 (f) cos+agglo+time0+z (g) eu+agglo+time0 (h) eu+agglo+time0+z

(i) cos+agglo+tri (j) cos+agglo+tri+z (k) eu+agglo+tri (l) eu+agglo+tri+z

(m) cos+kmeans+adj (n) cos+kmeans+adj+z (o) eu+adj+kmeans (p) eu+kmeans+adj+z

(q) cos+kmeans+time0 (r) cos+kmeans+time0+z (s) eu+kmeans+time0 (t) eu+kmeans+time0+z

(u) cos+kmeans+tri (v) cos+kmeans+tri+z (w) eu+kmeans+tri (x) eu+kmeans+tri+z

Figure 12: Confusion Matrices in classification of pseudo-shift schemas.
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Figure 13: The result of visualizing the similarity matrices of pseudo-words in the pseudo-data using t-SNE in
two dimensions. The input consists of the standardized upper triangular components of the similarity matrices,
calculated using cosine similarity.
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