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Abstract

Substantial research on deep learning-based
emergent communication uses the referential
game framework, specifically the Lewis sig-
naling game, however we argue that success-
ful communication in this game typically only
need one or two symbols for target image clas-
sification because of a sampling pitfall in the
training data. To address this issue, we pro-
vide a theoretical analysis and introduce a com-
binatorial algorithm SolveMinSym (SMS) to
solve the symbolic complexity for classifica-
tion, which is the minimum number of symbols
in the message for successful communication.
We use the SMS algorithm to create datasets
with different symbolic complexity to empiri-
cally show that data with higher symbolic com-
plexity increases the number of effective sym-
bols in the emergent language.

1 Introduction

In a multi-agent environment, communication often
naturally evolves as a strategic behavior (Russell
and Norvig, 2010). Emergent communication is in
such setting typically, in which the communication
channel between agents gets optimized for solv-
ing a cooperative task, e.g. Lewis signaling games
(Lewis, 1969). However, we argue that the lan-
guages emerged from these games are in a simple
form of language (e.g. one or two words), differs
from the human language, underlying complexity
from compositionality. Therefore, in this paper, we
investigate the theoretical effective symbols for the
emerged language in Lewis signaling games.

2 Related Work

The Partially Observable Markov Decision Process
(POMDP) extends the Markov Decision Process
(MDP) framework in which the agent is not able to
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access the complete state information of the envi-
ronment (Lovejoy, 1991) and communication po-
tentially leads to coordination of agents for higher
rewards. Also, some scholars in linguistics, psy-
chology and biology posit that language evolved
from primate communication (Tomasello and Call,
1997; Tomasello, 2013; Pika and Mitani, 2006).

Many works in emergent communication and
language emergence use the referential game frame-
work which is the Lewis signaling game, provid-
ing a setting for learning communication protocol,
as well as the analysis of the emergent language
(Lewis, 1969; Lazaridou et al., 2016; Havrylov and
Titov, 2017; Evtimova et al., 2018; Bouchacourt
and Baroni, 2018, 2019; Kharitonov et al., 2019;
Michel et al., 2023). There are also works explored
other games (Mordatch and Abbeel, 2018; Das
et al., 2019; Mu and Goodman, 2021), intrinsic
motivations and extrinsic environmental pressures
for language emergence (Chentanez et al., 2004;
Cornudella et al., 2015; Gaya et al., 2016; Hazra
et al., 2020, 2021; Li and Bowling, 2019; Cogswell
et al., 2019). More recent works explore the role of
emergent language for embodied AI and robotics
(Liu et al., 2023; Mu et al., 2023). We refer to
Appendix A.1 for more related works.

The work most related to this paper is Kottur
et al. (2017). Their game is a Task & Talk refer-
ence game which has multiple rounds of dialog.
A-BOT is given an object unseen by Q-BOT and Q-
BOT is assigned a task consisting of two attributes.
The goal is to find these two attributes of the hid-
den object for Q-BOT through dialog with A-BOT.
They found that overcomplete vocabularies result
in no dialog, instead having a codebook that maps
symbols to objects. Our paper, differs from this
work, instead of using a multi-round dialog game,
we use the classical Lewis signaling game. Addi-
tionally, we mainly investigate the emergence of
longer compositional language.
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3 Symbolic Complexity for Classification

For this paper, we consider the classification-based
Lewis signaling game or referential game intro-
duced by Lazaridou et al. (2016); Havrylov and
Titov (2017):

1. A target image It, along with K distracting im-
ages {Idk}Kk=1 are sampled at random from a
set of images.

2. Two agents, a sender Sθ1 and a receiver Rθ2 .
3. The sender sends a message M to the receiver

after observing the target image.
4. The receiver’s objective is to select the target

image from {It, Id1 , Id2 , . . . , IdK} given M .

The communication is successful if the receiver
correctly selects the target image from distracting
images. We denote |M | as the length of the mes-
sage M and L as the maximum message length
for communication. The motivation of our work
comes from observation in varying |M | (Havrylov
and Titov, 2017). We find that there’s no significant
improvement on communication success when in-
creasing L from 2 to 3 and subsequent increments.
Therefore, M requires only 2 tokens for success-
ful communication. This means the number of
effective symbols in M is 2. In order to study
how to emerge longer effective language, we use
attribute-value vocabulary, similar to Kottur et al.
(2017) and create synthetic datasets for theoretical
analysis and more controlled experiments. Specif-
ically, we define |A| attributes a1, a2, a3, ..., a|A|,
and |Vai | values for each attribute ai.

We argue that the bottleneck of producing longer
effective M lies on the inherent limitations of
the dataset being used to train the agents. For
example, suppose we sample 10 images, denote
as I{1,2,3,...,10} and each Ii represents a distinct
object category (e.g. ball, bottle, person). In this
case, we only need one symbol for classification of
any target image, if each class is represented by 1
symbol. We have the following assumption.

Assumption 1. Any Lewis signaling game has a
symbolic complexity (i.e. minimum number of
symbols), min(|M |), for successful communica-
tion, i.e. correct classification of the target image.

Figure 1 shows an example for identifying
min(|M |) for successful classification of the target
image in a synthetic setting. In this synthetic ex-
ample, we consider 2 attributes, color and shape.
Target images in both the top row and the bottom

Color: 

Shape: 

✘

“Red Triangle” ✔

“Triangle” ✔

“Red” ✔

“Triangle”

“Red” ✘

Figure 1: Example of minimum symbols for successful
classification.

row are those with red boundaries and rest are dis-
tracting images. For the top row, we only need 1
symbol "Triangle" or "Red" to correctly discern
the target images from distracting images. For
the bottom row, 1 symbol is not enough because
only "Triangle" matches to the second image which
is a distracting image and only "Red" matches to
the third image which is also a distracting image.
Therefore we need at least 2 symbols "Red Trian-
gle" for the successful classification. Therefore,
min(|M |) = 1 for the top row and min(|M |) = 2
for the bottom row, despite that both rows have the
same target image and same number of distracting
images.

3.1 The Pitfalls in the Lewis Signaling Game
Using the example above, if min(|M |) > 1, it re-
quires sampled images to have the same object cate-
gory (e.g. ball) and the target image belongs to that
object category. This setting forces the model to
use another symbol to further distinguish the target
image from distracting images (e.g. red ball, blue
ball). If we have an attribute a1 to represent "object
category", and |Va1 | represents number of object
categories, we randomly sample n images where
n = K + 1 under the assumption that the dataset
is uniformly distributed (i.e. P (ai) = P (aj) for
any i and j) and we sample with replacement for
simpler analysis, the probability of the sampled
images to have at least m images of the same class
for any class X is:

P (X ≥ m) =
n∑

k=m

(
n

k

)
(

1

|Va1 |
)k(1− 1

|Va1 |
)n−k (1)

Since we are interested in any class achieving this
count, the probability of at least one class has at
least m images of the same class is:

P (∃X ≥ m) = 1− (1− P (X ≥ m))|Va1 | (2)
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From Eqn.1 and Eqn.2, as n increases, P (∃X ≥
m) increases. One could infer that if we increase
the number of distracting images, it is likely need-
ing more symbols for successful communication.
However, this is rarely the case because as |Va1 |
increases, P (∃X ≥ m) decreases. The Microsoft
COCO dataset, MSCOCO (Chen et al., 2015) used
in Havrylov and Titov (2017) contains 80 anno-
tated object categories. In fact, since MSCOCO
are real images, rather than synthetically generated
images, the total number of object categories is
(much) larger than 80. Therefore, even if n be-
comes large, P (∃X ≥ m) can still be small be-
cause |Va1 | is too large. Havrylov and Titov (2017)
uses 127 distracting images so n = 128. However,
for example, if |Va1 | = 10000 and m = 2 mini-
mally, P (∃X ≥ m) ≈ 55% before sampling the
target image. In this case, for most of the train-
ing data, min(|M |) = 1. This theoretical analysis
is supported by the experimental findings in their
work, which show that |M | = 1 results in a 60%
communication success rate. Additionally, even if
images are in the same class, further distinguish-
ing the target image mostly likely requires only 1
additional symbol.

3.2 Combinatorial Algorithm for Solving
Symbolic Complexity

In the previous section, we analyzed that it would
only require 1 to 2 symbols for successful classi-
fication in most real images (e.g. MSCOCO) for
Lewis signaling game. Our hypothesis is that in-
creasing min(|M |) for the data itself leading
to emerge longer effective language, as an alter-
native to designing new learning algorithms for
agents.

Dataset Generation In order to solve min(|M |),
we synthetically generate a dataset for controlling
attributes and values for each attributes, which is
not available for real images. Previously, we de-
fined |A| attributes and |Vai | values for each at-
tribute ai. Here, for simpler analysis and more
controlled experiments, we consider a special case
where |Vai | = |Vaj | for any i and j. That is, num-
ber of values is the same for all attributes. There-
fore, we can simplify the notation to |A| attributes
and |V | values. Similar to Li and Bowling (2019)
and Kottur et al. (2017), each image I’s representa-
tion is a vector VIi concatenating one-hot vectors
of attributes, that is, VIi ∈ R|A|×|V |. In this paper,
we use |A| = 20 and |V | = 4.

SolveMinSym (SMS) Algorithm We now have
access to the ground-truth attribute values of the im-
age, then we use a combinatorial approach to solve
the minimum number of symbols given the target
image and all images. Generally, we generate all
possible non-empty combinations with respect to
the target image from least number of symbols (i.e.
1) to maximum number of symbols (i.e. |A|). Then,
we iterate through these combinations for checking
whether the iterated combination uniquely identi-
fies the target image and return the length of the
combination once it returns true. Unique identifica-
tion determines whether the combination matches
to any distracting image (i.e. making target image
not unique which fails the communication). The-
oretically, since the length of the combination in-
creases from minimum to maximum, the min(|M |)
equals to the length of the combination returned.
We refer to Appendix A.2 for the implementation
details.

min(|M |) Controlled Sampling for Lewis Sig-
naling Game To approach our hypothesis on in-
creasing symbolic complexity for the training data
itself leading to emerge longer effective language.
We implemented the min(|M |) Controlled Sam-
pling algorithm as below:

Algorithm 2 min(|M |) Controlled Sampling

1: Input: Dataset D, size of generated data Ng,
number of min(|M |) Nmin, number of dis-
tracting images Nd

2: DL = {}
3: while |DL[0...Nmin]| < Ng do
4: I ∼ Uniform(D,Nd + 1)
5: It ∼ Uniform(I, 1)
6: Nms = SMS(It, I)
7: Add It, I to DL[Nms]
8: end while
9: Return DL

By applying the controlled sampling algorithm
to our synthetically generated data, we are able to
generate data with different min(|M |). In this pa-
per, we use Ng = 10000 (8000 used for training
and 2000 used for evaluating), Nd = 63 (sam-
ple 64 images each time). By Eqn.1 and Eqn.2,
we find theoretically and also empirically that
the min(|M |) data is a highly narrow distribution
which the majority of data are on two different
min(|M |)s for a certain configuration of |A| and
|S|. Therefore, in order to collect 10000 datapoints
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within a reasonable time. We only have two sets of
data with min(|M |) = 2, 3.

4 Experiments

We parameterize the sender Sθ1 and the receiver
Rθ2 with GRU (Cho et al., 2014). The hidden di-
mension of the GRU is 512 and the embedding size
is 32. We use Schedule-Free AdamW for optimiza-
tion (Defazio et al., 2024). The vocabulary size is
set to be |A| × |V | = 20 × 4 = 80. We do not
use an arbitrary large vocabulary size (e.g. 10000)
because it is disadvantageous to compositionality
as it encourages one symbol to represent composed
phrase (e.g. Both "Red" and "Red Triangle" can
be represented by only 1 symbol). We also do not
use a minimal vocabulary size |V | because it forces
the model to learn the ordering of attributes and it
is not realistic to human languages (e.g. we use
"Red" and "Triangle" as two different words. It’s
hard to interpret a phrase like "Red Red" with the
first word corresponds to the color and the second
word corresponds to the shape). The computation
graph of Sθ1 contains sampling (i.e. generation)
so it becomes nondifferentiable, therefore we use
Gumbel-Softmax Relexation, as detailed in Ap-
pendix A.3.

Results and Discussions. In order to examine
the effect of the min(|M |) data, we run the exper-
iments multiple times with L = 1, 2, 3, 4, 5 under
the same setting for both data with min(|M |) = 2
and data with min(|M |) = 3 over 30 epochs. We
present the results in Figure 2 and 3. We see that for
data with min(|M |) = 2, the difference between
the accuracy of L = 2 and the maximum accu-
racy at epoch 30 is around 25%. However, for data
with min(|M |) = 3, the difference between the
accuracy of L = 2 and the maximum accuracy at
epoch 30 is around 50% which is 2 times than the
data with min(|M |) = 2. This demonstrates that
increasing min(|M |) = 2 for the data increases the
effective message length. Additionally, increasing
L to be higher than min(|M |) is usually effective
because the model tends to provide information
more than minimal requirements (i.e. min(|M |)).
Moreover, in some cases, the accuracy of lower
maximum |M | is higher than the accuracy of higher
maximum |M |. This is because it is easier for the
model to manipulate less symbols under certain
constraints. Finally, we observe that L = 1 can
achieve to an accuracy around 35% for data with
min(|M |) = 2 and L = 1, 2 can also achieve to
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Figure 2: Validation accuracy over epochs with dif-
ferent maximum message lengths (L) on data where
min(|M |) = 2.
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Figure 3: Validation accuracy over epochs with dif-
ferent maximum message lengths (L) on data where
min(|M |) = 3.

around 35% for data with min(|M |) = 3. We hy-
pothesize this is because we use the vocabulary size
|A| × |V | and the model can learn to use 1 symbol
to represent a composed phrase like "Red Trian-
gle", by avoiding using some preset vocabularies
(i.e. some of the symbols represent one word and
some of the symbols represent multiple words).

5 Conclusions

In this paper, we theoretically analyzed the sam-
pling pitfall in the training data that leads to inef-
fective message length of the emerged language
in the Lewis signaling game. We propose the
SolveMinSym SMS algorithm to solve the symbolic
complexity for classification of the target image,
and show that data with higher symbolic complex-
ity emerge longer effective language.
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6 Limitations

The data distribution of min(|M |) is highly narrow
so it is difficult to collect data with high min(|M |)
(e.g. > 3). Therefore, our experiments only com-
pare min(|M |) = 2 with min(|M |) = 3. Future
works should explore how to synthetically generate
data with arbitrary min(|M |) directly.
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A Appendix

A.1 Extended Related Works
Earliest research on language and communica-
tion in multi-agent setting predominantly focuses
on contexts wherein agents operate with a pre-
established, fixed communication language (Claus
and Boutilier, 1998; Goldman and Zilberstein,
2003). Nevertheless, this line of works do not di-
rectly address the phenomenon of language emer-
gence, as it relies on predefined communication
protocols to facilitate multi-agent cooperation.

In the pioneer research on learning the communi-
cation languages for agents, a noteworthy contribu-
tion is the model proposed by Gmytrasiewicz et al.
(2002). This model conceptualizes negotiation as a
mechanism to evolve an agent communication lan-
guage from a knowledge representation language
using a rule-based approach. MOCL extends clas-
sical online concept learning from single-agent to
multi-agent settings for vocabulary convergence
using the Perceptron algorithm (Wang and Gasser,
2002). However, these works either assumes some
rules pre-existing in the system or the form of lan-
guage is too simple. Additionally, there’s a disjoint
of learning language and controlling actions.

Reinforced Inter-Agent Learning (RIAL) and
Differentiable Inter-Agent Learning (DIAL) ex-
plore centralized learning coupled with decentral-
ized execution. RIAL integrates deep Q-learning
within a recurrent network framework. On the other
hand, DIAL facilitates the transmission of continu-
ous messages among agents during the centralized
learning phase and transitions to discretizing these
real-valued messages in the decentralized execution
stage. Similarly, CommNet introduces an efficient
controller designed for a variety of multi-agent rein-
forcement learning tasks, which enables the learn-
ing of continuous communication between agents
(Sukhbaatar et al., 2016). Both studies highlight
that models equipped with learnable communica-
tion protocols demonstrate superior performance
compared to those lacking such communication ca-
pabilities, but without interpretability of the emer-
gent language.

A.2 SolveMinSym (SMS) Implementation
Details

Please refer to Algorithm 1 for the Python code.
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def SolveMinSym(target_image , all_images):
"""
Solves the minimum number of symbols required to uniquely identify the target
image
"""
distracting_images = [img for img in all_images if img != target_image] #
Exclude target
for combination in attribute_combinations(target_image):

if is_unique_combination(combination , distracting_images):
return len(combination)

return None

def attribute_combinations(image):
"""
Generates all possible non -empty combinations of the image from short to long
"""
attrs = list(image.items())
return chain.from_iterable(combinations(attrs , r) for r in range(1, len(attrs)
+1))

def is_unique_combination(combination , distracting_images):
"""
Tests if a given combination of attributes uniquely identifies the target image
by checking if the combination of attributes in the target image can match to
any distracting image
"""
for image in distracting_images:

match = all(image.get(key) == value for key , value in combination)
if match:

return False # Found a match in distracting images (i.e. not unique)
return True

Algorithm 1: Python code of SolveMinSym for solving min(|M |)

A.3 Preliminaries of Gumbel-Softmax
Relaxation

We follow Havrylov and Titov (2017) in using
Gumbel-Softmax Relaxation for optimization. It
points out that REINFORCE (Williams, 1992)
underuses available information about the envi-
ronment. Gumbel-Softmax estimator is an ef-
ficient gradient estimator that replaces the non-
differentiable sample from a categorical distribu-
tion with a differentiable sample from a Gumbel-
Softmax distribution (Jang et al., 2016). Gumbel-
Softmax Trick generates n-dimensional sample
vectors:

vi =
exp((log πi + gi)/τ)∑N
j=1 exp((log πj + gj)/τ)

for i = 1, ..., N

where πi are class probabilities from a categorical
distribution and τ is the temperature. However,
real-value communication is not realistic compared
to natural language communication. To avoid this,
straight-through (GT) Gumbel-Softmax estimator
discretizes v using argmax in the forward pass but
uses continuous relaxation in the backward pass
by assuming the gradient of discrete v is similar to
continuous v.
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