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Abstract

Programming-Community Question Answer-
ing (PCQA) aims to address challenges by gen-
erating functional code and guiding descrip-
tions. It involves multiple candidates, each with
varying user preferences. Additionally, some
answers may contain outdated APIs, which
further complicates the task of generating re-
sponses that meet user expectations. Recently,
Reinforcement Learning from Human Feed-
back (RLHF) has proven effective in control-
ling the behavior of large language models
(LLMs) to produce human-like responses. How-
ever, its application to domain-specific PCQA
remains underexplored. To address this gap, we
propose Multi-perspective Preference Align-
ment for Programming-Community Question
Answering to generate user-centric responses,
called MupPCQA. It consists of three stages:
Preference Standardization to control content
quality, Preference Integration to account for
diverse user tendencies, and Preference Time-
liness Mitigation to address outdated answers.
Extensive experiments on a high-quality, real-
world PCQA dataset validate its accuracy and
preference. Compared to its base model, Mup-
PCQA shows an improvement of nearly 11%
in BLEU, with increases of 20% and 17.5% in
BERTScore and CodeBERTScore 1.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable success in the field of open-
domain Question Answering (QA) (OpenAI, 2023;
Anil et al., 2023; Chen et al., 2024). Addition-
ally, Reinforcement Learning from Human Feed-
back (RLHF) can precisely control the behavior
of LLMs, enabling alignment with human-like
responses. However, its application to domain-
specific QA(Rafailov et al., 2023; Huzaifah et al.,

*

1Our codes are at https://github.com/YHY0607/PETCoQA.

2024) remains underexplored. For instance, in real-
world Programming-Community Question Answer-
ing (PCQA), the misaligned LLM might produce
redundant responses al compared to the human-
answered a1 and a2, as shown in Figure 1.

PCQA seeks to yield user-preferred responses
containing functional code and guiding descrip-
tions and primarily focuses on the interactions
among users in code communities (e.g., Stack
Overflow2). Recently, it has gained increasing sig-
nificance in both academia (Liu and Wan, 2021;
Zhou et al., 2018; Chen et al., 2017) and industry
(Amancio et al., 2021; Ragkhitwetsagul et al., 2019;
Kasela et al., 2023). Unlike conventional QA(Chen
et al., 2024; Sun et al., 2024), PCQA exhibits three
distinct characteristics. First, a question typically
does not have just one answer, and as indicated in
Table 4, nearly 46% of questions receive more than
two answers, with some boasting ansers as large
as 30. Second, each answer encompasses not only
the textual content but also additional interactive
elements, such as votes from other users, which
reflect rich user preferences. Third, different users
exhibit varying preferences for different answers to
a given question. For example, in Figure 1, a ques-
tioner posed a question Q and accepted answer a2
from the pool of answers {a1, ..., a9}, while some
users favored answer a1 with the highest votes.

Regarding the above, Code Llama(Rozière et al.,
2023) have attempted to treat the accepted answer
(e.g., a2 in Figure 1) as the alignment target. How-
ever, it may not reflect the preferences of all users,
as the answer chosen by the questioner may not be
favored by other users. Some studies (Zhou et al.,
2018; Maia et al., 2021; Du et al., 2021) have begun
to focus on entire candidates and have introduced
content-based ranking methods, but none have yet
considered the inherent preferences of diverse users
in PCQA and the feedback from LLMs. Additionly,

2https://stackoverflow.com
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answered Jul 6, 2022 at 21:46

𝒂𝟗import requests
response = requests.get("https://www.example.com")

from urllib
response = urllib.urlopen("https://www.example.com")

𝒂𝟐
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answered Oct 9, 2016 at 10:29

from urllib.request import urlopen
response = urlopen("https://www.example.com")

𝒂𝟏745

answered Sep 29, 2023 at 15:41

Answers poolVotes Contents

How do I request a url in Python?

I want to the url "https://www.example.com".

9 Answers Peter Meyerasked Sep 15, 2022 at 23:37

Q
𝑸

Similar

To request a URL in Python, you can use the 
requests library…Here's a step-by-step guide 
on how to do it:
import requests
response = 
requests.get("https://www.example.com")
if response.status_code == 200:
    print(response.text)
else:
    print("Error:", response.status_code)

𝒂𝒍

Figure 1: An example of a Programming-Community Question Answering. It encompasses key elements: a question
Q, a pool of answers {a1, ..., a9}. Each ai contains its text of content, the votes, and a label indicating whether
it has been accepted by the questioner. Additionally, in the semantic vector space, there exists a certain distance
between the LLM-based answers al, the questioner-accepted answer a2, and the users-preferred answers a1.

user’s preferences change with API updates in these
communities, as they tend to prefer newer versions
of APIs. Consequently, the accepted answers may
become outdated. For example, in Figure 1, the
"urllib" API in answer a2 applies to Python 2 but
deprecated in Python 3.

To generate user-centric responses better, we pro-
pose Multi-perspective Preference Alignment for
Programming-Community Question Answering,
called MupPCQA. It consists of three stages: 1)
Preference Standardization to transfer domain
knowledge based on the questioner-accepted an-
swer. 2) Preference Integration to consider di-
verse user tendencies. 3) Preference Timeliness
Mitigation to alleviate outdated answers by retriev-
ing similar question-answer pairs from the PCQA
database as few-shots. Our contributions are:

• We are the first to propose applying LLMs’ align-
ment to programmimg-domain QA from the per-
spective of user diversity, called MupPCQA.

• Based on the questioner-perspective bias, user-
perspective vote score, and LLM-perspective con-
tent score, MupPCQA realizes multi-perspective
preference contrastive alignment through itera-
tively treating the answer with the highest score
as the positive and the remaining as negative.

• Extensive zero-shot and few-shots experiments
on a real-world and high-quality PCQA dataset
validate MupPCQA accuracy and preference.

2 Related Work

2.1 Programming-Community QA
PCQA involves numerous research topics, such
as predicting answerable questions (Asaduzzaman

et al., 2013), assessing answer quality (Ragkhitwet-
sagul et al., 2019; Gao et al., 2020), answer gen-
eration (Zhou et al., 2018), and answer ranking
(Amancio et al., 2021; Ginsca and Popescu, 2013;
Liu and Wan, 2021; Dalip et al., 2013). These an-
swer ranking methods typically employ classical
deep-learning models to utilize both the answer
text (Zhou et al., 2018) and the user’s fundamen-
tal characteristics (Ginsca and Popescu, 2013). For
instance, L2R (Dalip et al., 2013) followed a learn-
ing to rank approach based on different groups of
features like user-related features, stylistic or struc-
tural features. RCNN (Zhou et al., 2018) employed
Gated Recurrent Units (GRU) with thread-level
features to rank answers. Other research (Amancio
et al., 2021) utilized recency and quality as crite-
ria for ranking responses. However, few studies
has considered the inherent preferences of diverse
users and LLM feedback. Therefore, exploring how
LLMs rank answers based on user preferences for
alignment is a worthwhile endeavor.

3 Methodology

As shown in Figure 2, the MupPCQA encom-
passes three stages: (1) Preference Standardization,
which is designed to quickly acquire programming-
domain knowledge; (2) Preference Integration,
which considers diverse user preferences; and (3)
Preference Timeliness Mitigation, which addresses
the issue of outdated answers.

3.1 Task Formulation
Our overall target is to instruct a LLM (M ) to gen-
erate a user-centric response on a PCQA dataset
D =

{
(qi, Ai) | i ∈ {1, . . . , N}

}
. Here, qi repre-

sents the i-th question, and Ai = {ai1, ai2, . . . , aiNi
}
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Figure 2: Overall of the MupPCQA framework, including three stages: (1) Preference Standardization to rapidly
acquire the programming-domain knowledge, (2) Preference Integration to consider diverse preferences, and (3)
Preference Timeliness Mitigation to address the issue of outdated answers. In Preference Integration, (step2.a)
constructs three different perspective preference sets, (step2.b) performs preference contrastive alignment for each
set. (step2.c) narrows the gap between the questioner-perspective goal and the viewer-perspective goal.

represents the candidate responses for qi. We de-
note a = (c, v, ac), with c being the content; v be-
ing the votes; and ac ∈ {0, 1} representing whether
the answer a is accepted by the questioner. For-
mally, any question q or content c is a sequence
of tokens, denoted as t = {ti | ti ∈ C or ti ∈ T },
where ti denotes the i-th token in the set t, C and
T represents the set of code and text, respectively.

3.2 Preference Standardization
To adapt the foundational LLM M to the PCQA-
specific corpus efficiently and control the quality of
the response, we employ Supervised Fine-Tuning
(Ouyang et al., 2022) and treat the questioner-
accepted answer ai with ac = 1 as the alignment
target, denoted as aic. We optimize M as follows:

Lps = − 1

|aic|

|aic|∑
j=1

logPM (a(i,j)c |I, qi, a(i,<j)
c ) (1)

where a
(i,j)
c is the j-th token of aic, I is the QA

prompt, and PM denotes the token probability pre-
dicted by M , resulting in a model M1.

3.3 Preference Integration
After Preference Standardization ensures the con-
tent quality of the output, we proceed to align
multi-perspective preferences from different users
through Preference Integration. First, we propose
distinct metric scores to build three preference sets:
(1) a questioner-perspective bias score to assess the
discrepancy between the accepted answer and other
answers, (2) a user-perspective vote score to reflect
the collective preferences of other users, and (3) a

LLM-perspective content score to evaluate the se-
mantic quality of the answer content. These scores
then serve as the foundation for Preference Con-
trastive Alignment, which differentiates between
positive and negative. Finally, to bridge the gap
between the questioner-perspective goal and the
viewer-perspective goal, Preference Transfer ap-
plies SFT again.

3.3.1 Multi-perspective Preference Set
Construction

First, as the answer chosen by the questioner may
not be favored by other users (Kasela et al., 2023),
we introduced the questioner-perspective bias score
sq to assess the discrepancy between the accepted
answer and the answer most preferred by users.

sq(ai) =
(vi − va)− vm

vσ
(2)

Here, V = {v1, ..., vNi} represents the set of votes
vi for all answers ai in question q. The va denotes
the votes for the answer accepted by the questioner.
The vm and vσ represent the mean and standard
deviation of the vote set V , respectively.

Second, since high-quality text is usually ac-
companied by a high number of votes (Gkotsis
et al., 2014), interaction data from open commu-
nities reflect the preferences of users and act as a
dual filtering mechanism for answer content quality.
Therefore, to comprehensively consider the users’
collective preferences and engagement with the an-
swers, we introduce a user-perspective voting score,
denoted as su, expressed as follows:

su(ai) =
vi −min(V )

max(V )−min(V )
(3)
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Here, min(V ) and max(V ) represent the minimum
and maximum values within V , respectively. This
normalization ensures that the number of votes is
adjusted to a common scale, facilitating fair com-
parison across different answers.

Third, given that high semantic accuracy is cru-
cial for ensuring the quality of answers, we intro-
duce an LLM-perspective content score sl, calcu-
lated by general or code LLMs Mc. This score
leverages LLMs, which excel at handling nuanced
semantic relationships between text and code, to
evaluate the quality of text c in answer a. The sl is
represented as follows:

sl(ai) =
∏
t∈ai

σc (I1, q, t) (4)

Here, σc is the logistic function derived from the
product of probabilities assigned to each token by
Mc. I1 represents a QA prompt.

The sets of perspective scores Sq, Su, and Sl

can be derived by arranging the scores of candi-
dates {a1, . . . , aNi} from different perspectives in
descending order, and uniformly represented as:{

s(ai1), . . . , s(aiNi
) | s(ai1) ≥ · · · ≥ s(aiNi

)
}
(5)

where s(·) is the perspective score function, and the
indices {i1, . . . , iNi} indicate the descending po-
sitions of the candidates. Specifically, sq(·), su(·),
and sl(·) are the perspective score functions for
each perspective.

If si, the score for answer aj , is denoted as pi,
the preference response set can be represented as:

P = {pi | si ∈ S, i = 1, 2, . . . , Ni} (6)

Finally, the score sets Sq, Su, and Sl are directly
mapped to the preference sets Pq, Pu, and Pl.

3.3.2 Preference Contrastive Alignment
To comprehensively rank the preferences of each
candidate in the preference sets P , we apply iter-
ative contrastive learning over Ni rounds, utiliz-
ing the Plackett-Luce model (Luce, 1959; Plack-
ett, 1975) as implemented in DPO (Rafailov et al.,
2023). Details regarding RLHF and DPO are pro-
vided in Appendix 6.1.2. In each round, the candi-
date with the highest perspective score is treated
as positive, while the others are treated as nega-
tive. Each example pi is weighted based on its per-
spective score si. For a single preference set, the

objective for the i-th round is defined as follows:

O(i) =
exp(σM1(pi) · si)∑Ni

k=i exp(σM1(pk) · sk)
(7)

Therefore, for all preference sets Pq, Pu, and Pl,
the overall optimization objective for the i-th round
is represented as follows:

Ot(i) = OPq(i) +OPu(i) +OPl(i) (8)

As the i-th iteration progresses, the top i − 1
answers with the highest perspective scores are
sequentially removed. This iterative process contin-
ues until all potentials are exhausted, yielding the
final target probability expressed as follows:

Lpca = − log

Ni−1∏
i=1

Ot(i) (9)

3.3.3 Preference Transfer
At this stage, to narrow the gap between the
questioner-perspective goal ac in Preference Stan-
dardization and the viewer-perspective goal pu1 in
Pu, we further perform SFT by treating pu1 as the
alignment, similar to Eq. (1), as shown below.

Lpt = − 1

|pu1 |

|pu1 |∑
i=1

logPM (p
u(i)
1 |I, q, pu1 (<i)) (10)

Eventually, the overall optimization objective can
be summarized as follows:

Loss = Lpca + αLpt (11)

Here, α controls the extent to which the output
response deviates towards the preferred response,
ensuring its text fluency and code structure quality,
resulting in a model M2.

3.4 Preference Timeliness Mitigation
Accepted answers may become outdated due to
rapid API updates. For instance, in Figure 1, the
"urllib" API in answer a2 is applicable to Python
2 but deprecated in Python 3, we introduced Pref-
erence Timeliness Mitigation to address the issue
of outdated answers and to align with the user’s
preference for utilizing new API trends.

By retrieving analogous questions from the ques-
tion bank and employing them as few-shot exam-
ples, we enhance the efficacy of the generated re-
sponses. We employ a dense retriever (RD), de-
signed to effectively map natural language ques-
tions to relevant code-generation tasks, enhancing
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Table 1: The zero-shot experimental results on the PCQA dataset. Open-source code baselines are above MupPCQA
and closed-source baselines are below MupPCQA. The best result in each column is marked in bold. The second-best
result in each column is underlined.

Model Model size BLEU4 ROUGE2 CHRF BERTScore CodeBERTScore-PR CodeBERTScore-F
Godegen-mono 16B 6.72 9.24 32.94 77.53 54.42 50.20

GPT-NeoX 20B 8.40 11.26 33.46 78.06 53.79 49.87
StarCoder 15B 9.32 11.92 30.75 77.57 53.36 52.21

WizardCoder-python 13B 12.97 15.88 37.54 79.34 52.37 51.89
CodeT5+ - 3.86 5.16 25.58 75.96 53.48 46.19

Code Llama2 7B 11.86 16.32 35.08 70.10 46.46 47.05
Code Llama2 13B 13.56 18.32 38.68 78.13 51.79 52.91

MupPCQA(Ours) 7B 22.86 25.48 40.58 84.14 65.12 63.53
PaLM - 13.15 18.68 39.89 77.89 52.81 51.98

ChatGLM - 13.91 18.71 38.21 78.28 53.29 53.77
GPT-3.5 - 15.29 19.24 39.10 78.90 52.10 52.95
Claude2 - 14.69 19.12 38.78 78.45 51.58 52.63
GPT-4 - 13.04 17.74 35.43 78.23 57.84 46.82

Table 2: The one-shot experimental results on the PCQA dataset. The best result in each column is marked in bold.
The second-best result in each column is underlined.

Model Model size BLEU4 ROUGE2 CHRF BERTScore CodeBERTScore-PR CodeBERTScore-F

Godegen-mono 16B 8.06 11.01 33.32 78.28 54.67 50.20
GPT-NeoX 20B 8.95 11.30 26.84 76.68 52.64 51.93
StarCoder 15B 10.59 14.40 33.71 78.20 53.43 52.96

WizardCoder-python 13B 13.35 15.97 37.56 79.42 52.70 52.11
CodeT5+ - 4.40 5.60 25.96 75.91 52.23 47.52

MupPCQA (Ours) 7B 22.86 25.48 40.58 84.14 65.12 63.53

PaLM - 12.77 18.97 34.00 77.90 52.35 52.25
ChatGLM - 13.47 17.50 37.06 78.20 53.51 53.53
GPT-3.5 - 14.50 18.43 39.17 78.92 52.64 52.52
Claude2 - 14.10 18.24 38.25 78.46 51.38 52.36
GPT-4 - 14.73 18.87 36.68 78.78 52.44 52.56

the retrieval of analogous question-answer pairs.
The ordering of few-shot examples has a significant
impact on model predictions (Zhao et al., 2021).
Therefore, we select the most similar question-
answer pair (fq, fa) from the PCQA databases D to
serve as the few-shot example in the QA prompt I2.
The final inference objective is defined as follows:

P(At) =

T∏
i=1

σM2(A|I2, Q, (fq, fa), A<t) (12)

Here, Q is the question to be resolved.

4 Experiment

4.1 Baselines and Dataset
Baselines. Based on the unique characteristics of
PCQA, we selected two categories of baselines.
The first consists of general-purpose, closed-source
LLMs designed for text generation, including GPT-
3.5-turbo, GPT-4 (OpenAI, 2023), PaLM (Anil
et al., 2023), ChatGLM (Zeng et al., 2022), and

Claude2 (ant). The second comprises open-source
code LLMs that excel in program synthesis, such as
StarCoder (Li et al., 2023), WizardCoder-Python-
13B (Luo et al., 2023), GPT-NeoX (Black et al.,
2022), CodeGen-mono-16B (Nijkamp et al., 2022),
and Code Llama 2 (Rozière et al., 2023).
Dataset. We collected real-world PCQA data from
StackExchange 3 and performed a series of data
processing steps, as detailed in Appendix 6.2, re-
sulting in 270,716 instances.

4.2 Evaluation Metrics

To comprehensively evaluate the experimental re-
sults, we employed various evaluation metrics from
four perspectives: traditional text generation met-
rics (BLEU (Papineni et al., 2002), Rouge (Lin,
2004), and CHRF (Popović, 2015)), model-based
metrics (BERTScore (Zhang et al., 2019)), code-
related metrics (CodeBERTScore (Zhou et al.,
2023)), and Preference based on GPT-4. Addition-

3https://archive.org/details/stackexchange
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Table 3: The ablation study results. We evaluate per-
formances brought by different components. The full
names of these abbreviations are: PS (Preference Stan-
dardization); PI (Preference Integration); sp (bias score);
sl (content scores); su (vote scores); and PTM (Pefer-
ence Timeliness Mitigation ). The components in bold
have the most significant impact on performance.

Model BLEU ROUGE CHRF BS CB-PR CB-F

MupPCQA 22.86 25.48 40.58 84.14 65.12 63.53

-w/o PS 21.30 23.62 37.88 76.15 59.76 57.73

-w/o PI 14.62 20.50 39.18 80.41 55.72 53.85

-w/o sq 22.16 25.18 39.38 83.34 64.72 62.83

-w/o su 21.01 23.23 40.48 78.06 53.79 49.87

-w/o sl 21.56 24.58 38.78 82.54 64.22 62.13

-w/o PTM 21.66 23.16 39.18 81.82 61.22 62.53

ally, considering the similarity between Precision
and Recall in CodeBERTScore, we unified these
metrics into ’CodeBERTScore-PR’ (CB-PR). Sim-
ilarly, we merged the F1 and F-measure metrics
into ’CodeBERTScore-F’ (CB-F). The details of
the experimental implementation are provided in
the Appendix 6.3.

4.3 Analysis

4.3.1 Main Results

This experiment aims to explore whether MupC-
CQA can outperform all baselines in terms of text
and code generation accuracy within PCQA. Its
results are shown in Table 1 and Table 2, and the
key findings are summarized as follows:

MupPCQA excels. First, MupPCQA signifi-
cantly outperformed all other baselines in every
metric. Specifically, it surpassed the next-best base-
line in every metric, outperforming general LLMs
in text generation and code LLMs in code gener-
ation. For instance, compared to the second-best
GPT-3.5, it scored 5.2% higher on BERTScore,
nearly 7% higher on CB-PR, and about 10% higher
on CB-F than ChatGLM. Second, MupPCQA
achieved a BLEU score twice that of the bench-
mark model (22.86% vs. 11.86%). Other n-gram-
based metrics (ROUGE and CHRF) and semantic-
grammar-based metrics also showed substantial
improvements, indicating that MupPCQA is an ef-
fective framework for enhancing the grammar and
semantics of generated answers.

Significant benefit from retrieval-augmented
strategy. Due to the presence of similar QA pairs

Figure 3: Performance of Each Component: Text-Based
(Left) and Code-Based (Right). MP represents the over-
all performance of MupPCQA.

as few-shots in the Retrieval-Enhanced Preference
Timeliness Mitigation (REPTM) of MupPCQA, we
also applied few-shots to the remaining baselines
in a new experiment. The results are shown in Ta-
ble 2. This ensures a fair comparison of other zero-
shot baselines with MupPCQA. In Table 2, each
baseline shows improvement across various met-
rics compared to the zero-shot results in Table 1,
with GPT-4 exhibiting significant enhancement in
long-text performance, becoming the second-best
baseline. However, MupPCQA’s BLEU score re-
mains much higher than that of the second-best
GPT-4, and its BERTScore surpasses WizardCoder-
Python by nearly 4.7%. In terms of CB-PR and CB-
F, MupPCQA exceeds the second-best by nearly
10%. Although they still cannot match our Mup-
PCQA, REPTM has played a significant role in
performance improvement.

4.3.2 Ablation Study
To validate the impact of each component on Mup-
PCQA’s performance, we conducted ablation ex-
periments. The results are shown in Table 3.

Preference Standardization: A Prerequisite
for Domain Knowledge Transfer. Upon remov-
ing it, all metrics experienced a decline, with
BERTScore showing the most significant drop
(from 84.14% to 76.15%), underscoring the impor-
tance of this stage for understanding the semantics
of programming knowledge.

Preference integration affects mostly. Elim-
inating it resulted in notable decreases in perfor-
mance on BLEU focused on complex phrase match-
ing in Figure3 (Left) and code semantics in Figure3
(Right). Specifically, CodeBERTScore dropped by
8.8% and 9.4%, respectively. Additionally, the su
positive impact on CodeBERTScore is much higher
than on text-based metrics, and the effects of sq and
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(a) The percentage statistics of GPT-4 evaluation scores for
different baselines.
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(b) The consistency correlations between accuracy-based met-
rics (BLEU, ROUGE, CHRF, BERTScore, CB-PR, and CB-F)
and preference-based metrics (GPT-4 evaluation scores). A
positive correlation indicates that accuracy metrics improve
as preference scores increase.

Figure 4: Analysis of GPT-4 evaluations for different
baselines on the test set.

sl are much more moderated. This suggests that an
unadapted LLM fails to capture the diversity of
preferences within the programming community.

Similar few-shots promote semantics. If PTM
is excluded, the performance on BERTScore and
CodeBERTScore significantly declines, highlight-
ing the critical role of similar examples in under-
standing problem semantics.

4.3.3 GPT-4 Evaluation

Given that GPT-4 (OpenAI, 2023) has demon-
strated significant ability in effectively evaluating
question-and-answer pairs and aligning with hu-
man preferences (Wang et al., 2023a; Zheng et al.,
2023a), we utilize it to assess the preferences for
responses generated by the Code Llama, the GPT-
3.5, and our MupPCQA. To evaluate whether the re-
sponses align with human preferences, we designed
evaluation criteria encompassing four dimensions:
the usefulness, relevance, accuracy, and level of
detail of each answer, shown in Figure8b. Each
solution is rated on a scale from 1 to 10, with com-
prehensive explanations required for each score. As
shown in Figure 4a, MupPCQA achieves a signif-
icantly higher percentage of 10-point scores com-
pared to the other baselines.
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Figure 5: Multi-perspective Phenomenon Analysis.

To explore the consistency between accuracy-
based metrics and preference-based metrics, we em-
ployed three key statistical correlation coefficients:
Kendall’s Tau τ (Kendall, 1938), Spearman’s R γ
(Pranklin, 1974), and Pearson’s R ρ (Bravais, 1844),
as depicted in Figure 4b. It primarily illustrates
three points: First, the three correlation measures,τ ,
γ, and ρ, maintain a high degree of sign consistency.
Second, text-based BLEU and ROUGE, semantic-
based BERTScore, and code-based CB-P and CB-F
all exhibit a positive correlation with preference-
based metrics, whereas CHRF shows a negative
correlation in both τ and γ. Lastly, the correlation
between code-based metrics and preference is the
most pronounced, which aptly reflects the charac-
teristics of the PCQA. Overall, accuracy and pref-
erence are not contradictory, providing a valuable
reference for evaluating PCQA.

4.3.4 Multi-perspective Phenomenon Analysis

To validate the necessity of multi-perspective pref-
erence modeling, we randomly extracted 2,000 en-
tries from the PCQA dataset. We calculated the sq,
su and sl for each answer a. These scores were then
mapped onto a two-dimensional coordinate system.
Naturally, the vote score su shows a positive cor-
relation with the number of votes. For question
audience bias sq, if the votes v for a user-favored
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Question The response of Code Llama The response of MupCCQA

(1) Reloading 

submodules in IPython?
1.First, import the  autoreload module in your IPython session: import 

autoreload. 

2. Next, use the autoreload.enable() 

One solution: in your IPython console: %autoreload . This will enable 

autoreload for all modules, including submodules.Other solution: if you 

want to reload only the, you can use the following command: %autoreload 

main_mod.sub_mod.

(2) fatal error: Python.h: 

No such file or directory. 

1.python -c ïmport distutils.sysconfig; print(distutils.sysconfig.get_pyt-

hon_inc()). 2.export PYTHON_INCLUDE_DIR=/path/to/Python.h 

Replace /path/to/Python.h

you can use the following command to build the shared library:

 gcc -Wall -I/usr/include/python3.8 utilsmodule.c -o Utilc. 

(3) Can I force pip to re-

install the current 

version?

Yes, you can force pip to reinstall the current version of a package by using 

the `--force-reinstall` option. Here's an example:pip install –force reinstall 

<package-name>This will reinstall the package even if it is already up-to-

date. Alternatively, you can use the `--upgrade` option to upgrade the pack

age to the latest version available. 

pip install --upgrade <package-name>

Yes, you can force pip to reinstall the current version of a package by using the `--

upgrade` flag. pip install --upgrade package_name.pip install --upgrade-

strategy=latest package_name.Note that the `--upgrade` and `--upgrade-

strategy` flags  are only available in pip version 19.0 and later. If you are using an 

earlier version of pip, to force pip to reinstall the current version of a package.

(4) How do I get a 

Cron-like scheduler in 

Python?

The croniter library can be used with the sched module from the 

standard library to create a Cron-like scheduler.import 

sched…import time…from croniter import croniter.scheduler = 

sched.scheduler(time.time, time.sleep)

The APScheduler library is a more modern and feature-rich option for 

scheduling tasks. from apscheduler.schedulers.blocking import 

BlockingScheduler from apscheduler.triggers.cron import 

CronTrigger.scheduler = BlockingScheduler()

scheduler.add_job(scheduled_task, CronTrigger.from_crontab(''))

GPT-4 Score: 8

GPT-4 Score: 9

GPT-4 Score: 7

GPT-4 Score: 8

GPT-4 Score: 10

GPT-4 Score: 10

GPT-4 Score: 9

GPT-4 Score: 9

Figure 6: A case study about Code Llama and MupPCQA in PCQA. The black signifies natural language. The
blue represents code. The red indicates outdated content. The green indicates the preference score based on GPT-4
evaluation. The higher the score, the greater the alignment with user preferences. The scores ranges from [1,10].

answer are close to the votes for the answer chosen
by the questioner, then sq is near the X-axis. In Fig-
ure 5b, most sq values are distant from the X-axis,
highlighting a significant divergence between user
preferences and the questioner’s choices within the
coding community. Analyzing the distribution of
content scores sl in Figure 5a: if some answers to
question q are semantically similar, content scores
should cluster. The lack of clustering indicates that
no single answer comprehensively covers all se-
mantic aspects of the question.

In summary, the observed distinct distributions
of content scores, vote scores, and bias scores un-
derscore the existence of diverse preferences from
different perspectives. This finding validates the ne-
cessity of accurately capturing and presenting user
preferences in PCQA, necessitating the adoption
of multi-perspective modeling approaches.

4.3.5 Case Study
To validate the excellence of our MupPCQA, we
selected four random questions for comparison,
as shown in Figure 6, and we take randomly the
third question as an example. MupPCQA scored
10, while Code Llama scored 8. Although both
responses covered the core points and clearly ex-
plained how to use the "force–reinstall" flag, Mup-
PCQA excelled in the following aspects: First, in
detail: MupPCQA provided a more thorough ex-
planation, covering not only the "upgrade" flag but
also the "upgrade–strategy" flag. This additional
information helped users understand and manage
package upgrades better. Second, in accuracy and
relevance: MupPCQA accurately explained the us-
age of the "upgrade" and "upgrade–strategy" flags,
making the response more informative and help-

ful for managing package versions and upgrades.
Third, in user-friendliness: MupPCQA’s response
was well-structured and user-friendly, with clear
instructions and examples that made it easier for
users to follow and apply the information.

The fourth question in the Figure 6 aims to high-
light the presence of outdated APIs in some re-
sponses generated by LLMs. Specifically, Code
Llama employed the "sched" module, which is part
of the Python standard library, but is no longer
as commonly used. In contrast, the response of
MupPCQA utilized a more contemporary library
"APScheduler", a popular and feature-rich option
for scheduling tasks.

4.4 Success and failure analysis
To discuss under what conditions MupPCQA per-
forms optimally, we selected some successful cases
as shown in Figure 9a. Their characteristics are an-
alyzed and summarized as follows: (1) Clear prob-
lem statements: Successful cases usually have clear,
specific problem statements, making the user’s in-
tent and requirements evident. (2) Complete con-
text: They provide sufficient context for the model,
enabling better understanding of the problem and
generating responses for better alignment.

To explore the scenarios where MupPCQA’s per-
formance is limited, we also pick some failure cases
as shown in Figure 9a. These factors are outlined:
(1) Vague problem statements: Problem statements
in failure cases may be ambiguous, leading to dif-
ficulty in understanding. (2) Insufficient context:
Failure cases lack adequate context, causing the
LLMs to lack understanding of the problem’s back-
ground, resulting in impractical responses. (3) Ex-
cessively long and redundant context.
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5 Conclusion

In this paper, to explore the application of LLMs
in PCQA for generating user-centric responses
through RLHF, we propose MupPCQA. It mea-
sures and synthesizes responses’ preference lev-
els from different perspectives to accommodate di-
verse and evolving user preferences based on Multi-
perspective Preference Contrastive Alignment. Ex-
tensive experiments validate the superior accuracy
and preference of the MupPCQA’s responses. Over-
all, this work highlights considering the diversity of
user preferences to generate human-like responses
while aligning with human inclinations.
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Appendix

6.1 Preliminary
6.1.1 Reinforcement Learning from Human

Feedback
We introduce Reinforcement Learning from Hu-
man Feedback (RLHF) (Ouyang et al., 2022),
which primarily comprises three stages. The first
stage is supervised fine-tuning on a LLM, denoted
as M , which is also a component of our framework
and will be elaborated in Section 3.2. The second
stage involves using the SFT model M1 to gener-
ate pairs of responses for a given prompt I . These
pairs have a preference order, as illustrated by pi is
preferred over pj in Figure 7 (b). To predict these
pairs, current works typically employ the Bradley-
Terry (BT) model(Bradley and Terry, 1952), which
defines the preference probability as follows:

PBT =
exp(rϕ(I1, pi))

exp(rϕ(I1, pi)) + exp(rϕ(I1, pj))
(13)

Where rϕ is inherently a binary classification re-
ward model, and I1 is a QA prompt containing the
question q. The optimization objective of this stage
is defined as a binary classification problem to train
the reward model:

LBT = −logσ(rΦ(I1, pi)− rΦ(I1, pj))

In the third stage, RLHF leverages the acquired
rϕ to provide feedback to M1 and σ is the logistic
function. Specifically, the optimization problem of
RLHF is formulated the following :

max
M2

E(rΦ(I1, p)− ξlog
M2(p|I1)
M1(p|I1)

)

In this context, the role of ξ is to regulate the devi-
ation from the baseline reference policy M1, ensur-
ing diversity in the generated outputs and prevent-
ing the production of high-reward yet nonsensical
answers. It is worth noting that RLHF generates
pairs of responses, which is not enough to ques-
tions with more than two answers. Therefore, we
need to explore a new method to adapt.

6.1.2 the Plackett-Luce Model
The Plackett-Luce model (Plackett, 1975) is a gen-
eralization of the Bradley-Terry(Bradley and Terry,
1952) model to rankings (rather than just pairwise
comparisons). Similar to the Bradley-Terry model,
it stipulates that when faced with a set of pos-
sible choices, individuals prefer a choice with a
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(b) Two-meta RLHF
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Figure 7: In PCQA, we compared previous human
alignment methods with our approach. (a) SFT aligns
only the answer accepted by the questioner a2, while
(b) RLHF compares a2 with the highest-voted users-
preferred answer a1, sampling two-meta candidates
pi ≻ pj from the entire ranking to train a reward model,
and then relies on this reward model to fine-tune the
base LLM. (c) Ours contrasts pi with all members in
the preference set {p1, ..., pNi

}, based on the preference
score, which includes bias scores sq , vote scores su, and
content scores sl.

probability proportional to the value of some la-
tent reward function for that choice. In our con-
text, given a question q and a set of candidate re-
sponses a1, a2, . . . , aK , a user outputs a permuta-
tion τ : [K] → [K] that represents their ranking of
the answers. The Plackett-Luce model specifies as
follows:

p∗(τ | a1, . . . , aK , q) =
exp(r∗(q, aτ(k)))∑K
j=k exp(r

∗(q, aτ(j)))
(14)

Please note that when K = 2, Equation 14 simpli-
fies to the Bradley-Terry model. However, for the
general Plackett-Luce model, we can still utilize the
logistic probability to replace the reward function
similar with the DPO(Rafailov et al., 2023).

r(q, a) = β log
πref(a | q)
πr(a | q)

+ β logZ(q). (15)

This Equation 15 represents the reward function
in terms of its corresponding optimal policy πr,
reference policy πref, and the unknown partition
function Z(·). When the normalization constant
Z(x) cancels out and we’re left with:

p∗(τ | a1, . . . , aK , q) =

exp
(
β log

π∗(aτ(k)|q)
πref(aτ(k)|q)

)
∑K

j=k exp
(
β log

π∗(aτ(j)|q)
πref(aτ(j)|q)

) (16)

For the PCQA dataset D = {(qi, {a1, . . . , aNi})},
which contains prompts and user-specified rank-
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ings, we can use a parameterized model and opti-
mize this objective using maximum likelihood:

L(πθ, πref) =

− E log
exp

(
β log

πθ(aτ(k)|q)
πref(aτ(k)|q)

)
∑K

j=k exp
(
β log

πθ(aτ(j)|q)
πref(aτ(j)|q)

) (17)

6.2 Dataset

Due to the lack of publicly available high-quality
and authentic multi-answer PCQA preference
datasets, there is an urgent need to construct a new
dataset. To address this issue, we turned to StackEx-
change, a platform whose forums are accompanied
by rich question-and-answer metadata. A publicly
available dump of user-contributed content from
Stack Overflow, provided by StackExchange under
a cc-by-sa 4.0 license, has served as the foundation
for the creation of our dataset.

The initial dataset consists of 757,702 (qi, ai)
pairs, primarily featuring <python> tags, with
600,176 pairs containing code blocks. To obtain
the latest answers, we systematically collected all
answers for each question q on Stack Overflow up
until August 2023, resulting in a dataset totaling
596,613 pairs. Detailed statistics are presented in
Table 4. We then performed the following prepro-
cessing steps, and the resulting dataset D contains
270,716 (qi, {a1, . . . , aNi}) pairs.

• To ensure that submission messages are descrip-
tive, we removed pairs with titles that are shorter
than three tokens (including three tokens). This
decision follows CCT5 (Lin et al., 2023), which
stipulates that code comments should contain
more than three tokens.

• Pairs where answer does not contain <code> ...
</code> content were eliminated to ensure that
MupPCQA’s reference content includes both text
and code, due to the nature of PCQA.

• Pairs with an answer pool size smaller than 2
were discarded.

• All HTML tags were cleaned and replaced with
"[HTML]", particularly <a href...> and <img...>
tags, to ensure the model is not influenced by
such exceedingly complex and meaningless con-
tent. This decision follows existing research that
constructed datasets related to submissions (Hu-
sain et al., 2019; Lu et al., 2021).

6.3 Implementation Details

Code Llama has demonstrated state-of-the-art per-
formance across various code benchmarks. There-
fore, we utilized the MupPCQA framework based
on it for preference alignment in PCQA.

In Preference Standardization, we denote ai

with ac = 1 as aic and select pairs (qi, aic)
from the dataset D with votes vi exceeding
100 to form the training and validation dataset.
And we specified the following hyperparameters:
epoch, temperature, top_p, max_seq_len, and
max_batch_size, set to 4, 0.2, 0.95, 2048, and 28,
respectively. We retained the remaining hyperpa-
rameter settings of Llama, which can be found at
the following link4.

In Preference Integration, we selected an acces-
sible LLM5 as Mc. The hyperparameters were set:
learning_rate, gradient_accumulation_steps,
epochs, top_p, max_gen_len, temperature and
max_batch_size, set to 1e-4, 9, 4, 1.0, 0.95, 512,
and 4, respectively.

Given the excellent performance of this retrieval-
generation approach in understanding diverse texts
and code, during the Retrieval-augmented Prefer-
ence Timeliness Mitigation phase, we chose the
DocPrompting method based on SimCSE (Zhou
et al., 2022) as our retriever RD. This retriever RD

includes 35,763 functions from all Python libraries
on DevDocs6, encompassing the Python standard
library and widely-used packages such as NumPy
and Pandas, and was pre-trained on the re-split
CoNaLa (Yin et al., 2018) benchmark.

6.4 Related Work

6.4.1 Alignment of LLMs.
The language modeling objective of LLMs (e.g.,
predicting the next word) differs from the ultimate
goals in LLM applications, such as following in-
structions and being helpful, factual, and harmless
(Ouyang et al., 2022). Equivalently, the behavior of
pre-trained LLMs may not necessarily align with
the principles of their intended use cases. Therefore,
alignment of LLMs (Song et al., 2024; Agarwal
et al., 2024) aims to adjust the outputs of general
pre-trained language models to better align with
human preferences, significantly improving the per-
formance of LLMs in various downstream appli-
cations, such as summarization (Li et al., 2024),

4https://github.com/facebookresearch/llama
5OpenAssistant/reward-model-deberta-v3-large
6https://devdocs.io
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Table 4: Statistics on the size of the answers pool for each question about the PCQA dataset.

Count Interval [0,2) [2,5) [5,10) [10,15) [15,20) [20,25) [25,30] Total

Count 325,780 245,793 21,986 2,057 572 203 222 596,613
Percentage(%) 54.60 41.20 3.68 0.35 0.10 0.03 0.04 100

translation (Huzaifah et al., 2024), and question-
answering (Chen et al., 2024). Currently, the two
most common alignment techniques are instruction
tuning (Song et al., 2024; Agarwal et al., 2024) and
RLHF (Ouyang et al., 2022). Additionally, emerg-
ing alignment techniques such as Constitutional
AI (Bai et al., 2022) and self-alignment (Ren et al.,
2024) are also gaining attention. These primarily fo-
cus on embedding alignment rules into pre-trained
models to constrain harmful behavior during in-
ference. However, they have not explored how to
align in the presence of diverse user preferences.
Our study demonstrates that different users have
varying tendencies.

6.4.2 Preference Alignment for Question
Answering

In recent years, the LLMs (OpenAI, 2023; Anil
et al., 2023; Zeng et al., 2022; Touvron et al.,
2023a,b) have driven increasingly diverse applica-
tions, demonstrating notable expertise in question
answering. By fine-tuning on extensive datasets
across various programming domains, LLMs have
also attained proficiency in synthesizing programs
that are both syntactically correct and functionally
accurate (Nijkamp et al., 2022; Zheng et al., 2023b;
Li et al., 2023; Wang et al., 2023b; Rozière et al.,
2023). This capability enables them to adeptly nav-
igate the complexities of programming problems,
including conceptual understanding, code genera-
tion, API utilization, and debugging.

Recently, reinforcement learning from human
feedback (RLHF) (Stiennon et al., 2020; Ouyang
et al., 2022; Rozière et al., 2023) has emerged
as a milestone method for aligning with human
preferences. This approach typically employs the
Bradley-Terry model to optimize the neural net-
work’s reward function, followed by fine-tuning the
language model using reinforcement learning algo-
rithms, most commonly proximal policy optimiza-
tion (PPO) (Schulman et al., 2017), to maximize
the given reward. Moreover, due to the sensitiv-
ity of RL parameters and the complex three-stage
process of RLHF, numerous preference alignment
methods have been proposed. For instance, RRHF

(Yuan et al., 2023) introduced a boundary ranking
loss function to optimize LLMs without requiring
an additional reward model. DPO (Rafailov et al.,
2023) introduced a direct preference optimization
method, treating LLMs themselves as the reward
model. PRO (Song et al., 2023) optimizes complex
preference data through a listwise ranking loss func-
tion. Crucially, LLMs exhibit their unique stylistic
preferences in content generation, adeptly leverag-
ing retrieved knowledge from prompts. Inspired
by these insights, we propose aligning with human
preferences through multi-perspective preference
scoring by iteratively ranking the preference scores
of all answers to a given question, rather than align-
ing preferences via a reward model.

The zero-shot promt for baseline LLMs
Please play the role of a senior programmer. 

The following is the title and question of a post in a programming community. 

Please help me answer the question.

Title: {title}

Problem Description:{query}

(a) The QA prompt of the closed general-purpose LLMs

Preference-Based GPT-4 Evaluation Prompt

[Question] {Q}

[The Start Answer1] {R1} [The End of Assistant 1's Answer]

[The Start of Assistant 2's Answer] {R2} [The End of Assistant 2's Answer]

[System]  We would like to request your feedback on the performance of two AI assistants in 

response to the user question displayed above. Please rate the helpfulness, relevance, 

accuracy, level of details of their responses. Each assistant receives an overall score on a 

scale of 1 to 10, where a higher score indicates better overall performance. Please first output a 

single line containing only two values indicating the scores for Assistant 1 and 

2.respectively.The two scores are separated by a space. In the subsequent line, please provide a 

comprehensive explanation of your evaluation, avoiding any potential bias and ensuring that 

the order in which the responses were presented does not affect your judgment.

(b) The prompt of GPT-4 Evaluation

Retrieval-augmented In-context Learning Prompt
Instruction=[

{  "role": "user",

"content": "### Q1:" {The title of the most similar query sq } "

},

{

"role": "assistant",

"content": "### A1: {The answer of the most similar query sa } "

},

{

"role": "user",

"content": f""" # Based on the above similar questions, write a 

response that appropriately completes the request

### Instruction: {question} """ }]

(c) The QA prompt of Preference Timeliness Mitigation

Figure 8: The prompt sets
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Successful case

(1) Reloading submodules in IPython?
 Currently I am working on a python project that contains sub modules and uses numpy/scipy. Ipython is used as interactive 

console. Unfortunately I am not very happy with workflow that I am using right now, I would appreciate some advice.In IPython, 

the framework is loaded by a simple <code> import </code> command. However, it is often necessary to change code in one of the 

submodules of the framework. At this point a model is already loaded and I use IPython to interact with it. Now, the framework 

contains many modules that depend on each other, i.e. when the framework is initially loaded the main module is importing and 

configuring the submodules.  The changes to the code are only executed if the module is reloaded using <code>reload(main\_m

od.sub\_mod) </code>. This is cumbersome as I need to reload all changed modules individually using the full path. It would be 

very convenient if <code>reload(main\_module)</code> would also reload all sub modules, but without reloading numpy/scipy.

(2) Is there a portable way to get the current username in Python?
 What is a portable way (e.g. for Linux and Windows) to get the current user's username? Something similar to <code> os.getuid() 

</code> would be nice:<code> \&gt;\&gt;\&gt; os.getuid()42# Does not currently exist in Python\&gt;\&gt;\&gt; 

os.getusername()'slartibartfast' </code>The <code> pwd </code> module works for Unix only. Some people suggest that getting 

the username under Windows can be complicated in certain circumstances (e.g., running as a Windows service).

(3) How do I get a Cron like scheduler in Python?
I'm looking for a library in Python which will provide <code> at </code> and <code> cron </code> like functionality.I'd quite like 

have a pure Python solution, rather than relying on tools installed on the box; this way I run on machines with no cron.For those 

unfamiliar with <code> cron </code>: you can schedule tasks based upon an expression like: <code> 0 2 * * 7 /usr/bin/run-backup 

# run the backups at 0200 on Every Sunday 0 9-17/2 * * 1-5 /usr/bin/purge-temps # run the purge temps command, every 2 hours 

between 9am and 5pm on Mondays to Fridays.</code>The cron time expression syntax is less important, but I would like to have 

something with this sort of flexibility. If there isn't something that does this for me out-the-box, any suggestions for the building 

blocks to make something like this would be gratefully received. Edit I'm not interested in launching processes, just \"jobs\" also 

written in Python - python functions. By necessity I think this would be a different thread, but not in a different process.To this end, 

I'm looking for the expressivity of the cron time expression, but in Python. Cron has been around for years, but I'm trying to be as 

portable as possible. I cannot rely on its presence.

(4) Can I force pip to reinstall the current version?
I've come across situations where a current version of a package seems not to be working and requires reinstallation. But <code> 

pip install -U </code> won't touch a package that is already up-to-date. I see how to force a reinstallation by first uninstalling (with 

<code> pip uninstall </code>) and then installing, but is there a way to simply force an \"update\" to a nominally current version in 

a single step?

(5) How can I write a `try`/`except` block that catches all exceptions?
How can I write a <code>try</code> <code>except</code> block that catches all exceptions?

(a) Examples where MupPCQA performs well.

Failure cases

(1) Checking whether a string starts with XXXX?
 I would like to know how to check whether a string starts with \"hello\" in Python. In Bash I usually do:<code>if [[ \"\$string\" =~ 

\^hello ]]; then do something herefi </code> How do I achieve the same in Python?

(2) Find which version of package is installed with pip?
 Using pip, is it possible to figure out which version of a package is currently installed?I know about <code>pip install XYZ --

upgrade</code> but I am wondering if there is anything like <code>pip info XYZ</code>. If not what would be the best way to 

tell what version I am currently using.

(3) Python datetime to string without microsecond component?
I'm adding UTC time strings to Bitbucket API responses that currently only contain Amsterdam (!) time strings. For consistency 

with the UTC time strings returned elsewhere, the desired format is <code>2011-11-03 11:07:04</code> (followed by 

<code>+00:00</code>, but that's not germane).What's the best way to create such a string (without a microsecond component) 

from a <code>datetime</code> instance with a microsecond component?<code> \&gt;\&gt;\&gt; import datetime\&gt;\&gt;\&gt; 

print unicode(datetime.datetime.now())2011-11-03 11:13:39.278026 </code>I'll add the best option that's occurred to me as a 

possible answer, but there may well be a more elegant solution.Edit: I should mention that I'm not actually printing the current time 

\\u2013 I used <code> datetime.now </code> to provide a quick example. So the solution should not assume that any <code> 

datetime </code> instances it receives will include microsecond components.

(b) Examples where MupPCQA performs poorly.

Figure 9: The Successful and failure cases of the MupPCQA
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Suppress InsecureRequestWarning: Unverified HTTPS request is being made in Python2.6

Description: I am writing scripts in Python2.6 with use of pyVmomi and while using one of the connection methods:

service_instance = connect.SmartConnect(host=args.ip,user=args.user,pwd=args.password)

I get the following warning:

usr/lib/python2.6/site-packages/requests/packages/urllib3/connectionpool.py:734: InsecureRequestWarning: Unverified HTTPS request is being made. Adding 

certificate verification is strongly advised. See: https://urllib3.readthedocs.org/en/latest/security.html  InsecureRequestWarning

What's interesting is that I do not have urllib3 installed with pip (but it's there in /usr/lib/python2.6/site-packages/requests/packa

ges/urllib3/).I have tried as suggested here<code>import urllib3...urllib3.disable_warnings()</code>but that didn't change anything.

Q

Accepted Solution: I'm using Angular2 routing and I need to subscribe to an event when route is changed. (i.e. user clicked on one of the route links). The 

important thing is that the event should be when the new view HTML is inserted to DOM.Are there any events like onNavigating and onNavigated, so I can 

subscribe to?

I've found a couple of examples on stackoverflow and tried to use them (see constructor below), but that didn't work. Any ideas?/// <reference 

path="../../typings/tsd.d.ts" />import {Component, View} from 'angular2/angular2’;import {RouteConfig, Router, RouterOutlet, RouterLink} from 'angular2/r

outer’;@RouteConfig([...])@Component({selector: 'app')@View({directives: [RouterOutlet, RouterLink],

template: `<div class="mdl-layout mdl-js-layout mdl-layout--fixed-header"><header class="mdl-layout__header"><div class="mdl-layout__header-row">

    <span class="mdl-layout-title">Test</span><div class="mdl-layout-spacer"></div><nav class="mdl-navigation mdl-layout--large-screen-only">

      <a class="mdl-navigation__link" [router-link]="['/routelink1']">routelink1</a></nav></div></header><main class="mdl-layout__content“

style="padding: 20px;"><router-outlet></router-outlet></main></div>`})

export class App {constructor(private router: Router){router.subscribe((val) => function(){...}); //here is I need to process HTML}}

MupPCQA+Preference Timeliness Mitigation:The warning you're seeing is caused by the `urllib3` library being used by the `requests` library, which is a 

dependency of `pyVmomi`. The warning is telling you that the HTTPS connection you're making is not verified, which means that the SSL certificate presented by 

the server is not trusted.

To suppress the warning, you can try the following:

1. Install `urllib3` using `pip`: `pip install urllib3`

2. Disable the warning by adding the following line at the beginning of your script: `import urllib3; urllib3.disable_warnings()`

3. Use the `verify` parameter of the `connect.SmartConnect` method to specify a path to a CA certificate bundle that you trust. For example: 

`service_instance = connect.SmartConnect(host=args.ip, user=args.user, pwd=args.password, verify='/path/to/ca_certs.pem')`

By using one of these methods, you should be able to suppress the warning and make your HTTPS connection secure

MupPCQA: The warning you're seeing is caused by the `urllib3` library, which is used by the `requests` library that `pyVmomi` uses under the hood. The warning is 

telling you that the connection you're making is not using SSL/TLS, which is not secure. The reason you're not seeing the warning when you run the script with 

`python3` is because `python3` uses a different version of `urllib3` that doesn't have this warning.

To fix the warning, you can disable the warning by adding the following line at the beginning of your script:

import urllib3\nurllib3.disable_warnings()

This will disable the warning for all connections made by `pyVmomi`. Alternatively, you can also add the following line to your script to disable the warning for a 

specific connection:

import urllib3\nurllib3.disable_warnings(urllib3.InsecureRequestWarning)

This will disable the warning for the specific connection you're making. Note that disabling the warning is not a solution to the problem, it's just a way to hide the 

warning. You should make sure that your connection is secure by using a valid SSL/TLS certificate.

ChatGPT: It seems like you are facing an issue with a warning that occurs while executing Python2.6 scripts with pyVmomi. It warns you of an unverified 

HTTPS request being made. To suppress the warning, you can disable the requests warnings by adding the following code to your script:

import requests

from requests.packages.urllib3.exceptions import InsecureRequestWarning

requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

This will disable the warnings caused by an unverified HTTPS request.

GPT-4: The warning message you are seeing is related to making insecure HTTPS connections without verifying the server's certificate. This could potentially lead to 

security issues, as this is how man-in-the-middle attacks often start. Therefore, the best solution would be to use a verified, secure connection.

If you insist on silencing the warnings though, you need to disable the warnings for urllib3 that's built into `requests`, not a separate urllib3 you might have installed.

Here is how you could do it:

import requests

requests.packages.urllib3.disable_warnings()

Be aware that this will disable all warnings about insecure HTTPS connections, which might not be what you want if you're working with different hosts, some of 

which might actually have improperly configured HTTPS servers.

ChatGLM: As a senior programmer, I would recommend the following solution to suppress the InsecureRequestWarning: First, ensure that you have the latest version 

of the requests library installed. You can upgrade the requests library using pip by running:  

```pip install --upgrade requests ```.

 If the warning still persists, you can use the following code to suppress the warning: 

 ```python  import requests.packages.urllib3  requests.packages.urllib3.disable_warnings()  ```  

Make sure to add this code before making the HTTPS request.However, it's important to note that disabling SSL verification is not a recommended practice, as it can 

expose your application to security risks. Instead, you should verify the SSL certificate and ensure that you are using a secure connection. If you are using a custom 

CA certificate or self-signed certificate, you can use the `verify` parameter in your HTTPS request to specify the certificate file:

import requests 

url = 'https://your_host'  \ncert_file = '/path/to/your/certificate.crt'

response = requests.get(url, verify=cert_file) 

If you still face issues, please provide more information about your environment, such as the exact version of Python, pyVmomi, and requests libraries, as well as any 

other relevant information that could help diagnose the problem.

Figure 10: one real-world post on the programming community and their answers of LLMs.
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