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Abstract

Pre-trained language models (PLMs) are engi-
neered to be robust in contextual understanding
and exhibit outstanding performance in various
natural language processing tasks. However,
their considerable size incurs significant com-
putational and storage costs. Modern pruning
strategies employ retraining-free one-shot tech-
niques to compress PLMs; however, these ap-
proaches often lead to an indispensable reduc-
tion in performance. In this paper, we propose
SDS, a Sparse-Dense-Sparse pruning frame-
work to enhance the performance of the pruned
PLMs from a weight distribution optimization
perspective. We outline the pruning process in
three steps. Initially, we prune less critical con-
nections in the model using conventional one-
shot pruning methods. Next, we reconstruct
a dense model featuring a pruning-friendly
weight distribution by reactivating pruned con-
nections with sparse regularization. Finally,
we perform a second pruning round, yielding a
superior pruned model compared to the initial
pruning. Experiments demonstrate that SDS
outperforms the state-of-the-art pruning tech-
niques SparseGPT and Wanda under an identi-
cal sparsity configuration. For instance, SDS re-
duces perplexity by 5.16 on Raw-Wikitext2 and
improves average accuracy by 3.86% across
multiple zero-shot benchmarks for LLaMA-3-
8B compared to Wanda with 2:4 sparsity.

1 Introduction

Pre-trained language models (PLMs) (Vaswani
et al., 2017) have revolutionized various applica-
tions in natural language processing. However, the
considerable size of PLMs results in notable draw-
backs, such as increased latency and energy con-
sumption. Compression methods for vision mod-
els, which perform pre-training, compression, and
fine-tuning workflow with quantization or pruning
(Liang et al., 2021), may entail substantial time and

*Equal contribution.

PLM Dense 2:4 Sparse Re-dense
OPT-125M 27.66 60.43 27.94
OPT-350M 22.01 51.11 22.25

Table 1: Pruning PLMs Incurs Resumable Knowl-
edge Loss. We apply 2:4 sparsity to OPTs with
SparseGPT, and their performance decreases on Raw-
WikiText2. However, upon layer-wise reactivating the
sparse weights with only 128 samples from C4 (Sub-
section 2.2 provides re-dense details; note here is no
sparse regularization present), a substantial performance
improvement is observed.

energy costs for PLMs due to their massive training
requirements.

Recent pruning research, such as SparseGPT
(Frantar and Alistarh, 2023) and Wanda (Sun et al.,
2023), has introduced effective one-shot compres-
sion techniques for PLMs. These methods can
compress up to 50% of the parameters in the fully
connected layers of over-parameterized PLMs like
OPT-175B without an obvious performance drop.
However, their effectiveness diminishes when ap-
plied to compact ones, which show a less pro-
nounced redundancy. For instance, SparseGPT, the
state-of-the-art pruning method, yields a perplexity
of 31.58 when applied to prune 50% of the weights
in OPT-350M. This score is worse than the 27.66
perplexity observed in OPT-125M, a dense model
with roughly half the parameters of OPT-350M.
Furthermore, when stricter sparsity constraints are
employed, such as higher sparsity (60% - 80%)
or semi-structured n:m sparsity (2:4, 4:8) (Mishra
et al., 2021) for computational acceleration, the
performance deteriorates even further. Therefore,
it is essential to optimize the poorly pruned PLMs.

Macroscopically, PLMs are not designed to
be aware of subsequent pruning since they lack
pruning-related regularization during pre-training.
As a result, pruning PLMs while maintaining their
performance proves challenging.
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Neurons in the human brain show sparse-
to-dense-to-sparse connectivity as they grow
(Herculano-Houzel et al., 2010). This observa-
tion inspired us to perform a similar process to
achieve a better pruning scheme that benefits from
pruning friendliness. We preliminarily explored
layer-wise dense reconstruction to find a perfor-
mance upper bound. Intriguingly, we discovered
that sparse models could bounce back to perfor-
mance levels equivalent to their dense counterparts
using only a few samples (cf., Table 1). It reveals
two key insights: first, pruned PLMs can be opti-
mized with limited resources; second, the amount
of knowledge lost during the pruning process is
restorable. These insights lay the foundation for
the work presented in this paper.

We propose a three-step Sparse-Dense-Sparse
(SDS) pruning framework to enhance the perfor-
mance of pruned pre-trained language models. In
the first step, we employ conventional one-shot
pruning methods on a PLM to remove irrelevant
connections. In the second step, we perform a
dense reconstruction of the sparse model to reac-
tivate the pruned connections, aiming to identify
a dense model with enhanced pruning awareness.
This process is aided by a multidimensional sparse
regularization strategy, which optimally guides
the weight distribution, rendering it more pruning-
friendly for the subsequent step. In the third step,
we further prune and adjust the weights of the
second-pruned model. Importantly, SDS requires
only a limited number of samples for calibration,
identical to conventional one-shot methods. Exper-
imental results demonstrate that SDS outperforms
SparseGPT and Wanda under the same sparsity
configuration. For example, SDS reduces perplex-
ity by 5.16 on Raw-Wikitext2 and increases accu-
racy by an average of 3.86% across multiple zero-
shot downstream tasks for LLaMA-3-8B with 2:4
sparsity compared to Wanda. The pruned PLMs
achieve up to 1.87x acceleration on an AMD R7
Pro CPU. The main contributions of the paper are
summarized as follows:

• We introduce SDS, a three-step Sparse-Dense-
Sparse framework. It involves weight redistribu-
tion and pruning, enhancing the performance of
the one-shot pruned pre-trained language models.

• We design sparse regularization strategies that
improve the effectiveness of re-dense weight re-
construction and find a more pruning-friendly
weight distribution.

• Experimental results demonstrate that SDS out-
performs existing pruning methods in both lan-
guage modeling and downstream tasks.

2 Sparse-Dense-Sparse Framework

This section presents the Sparse-Dense-Sparse
(SDS) framework to perform optimization for
pruned pre-trained language models (PLMs).
Firstly, we provide a brief overview of the core
Transformer architecture, which is fundamental to
most PLMs. A standard Transformer block con-
sists of two main modules: a multi-head attention
(MHA) layer and a feed-forward network (FFN).
Let Xℓ−1 ∈ Rd×n represent the input of the ℓ-th
Transformer block, where n is the sequence length,
and d is the size of the hidden state. The block
output Xℓ can be formulated as:

X = MHA( LayerNorm (Xℓ−1)) +Xℓ−1,

Xℓ = FFN( LayerNorm (X)) +X.
(1)

MHA consists of h heads, represented as WO ·
concat(head1, head2, . . . , headh), with WO re-
sponsible for the output projection. Specifically,
the i-th head can be expressed as:

headi = Attn([WQX]i, [W
KX]i, [W

VX]i,M),

Attn(Q,K,V,M) = softmax
(
M⊙ QK⊤

√
dK

)
V,

(2)
where Q, K, and V represent the query, key, and

value sequences, respectively, and their correspond-
ing projection weights are WQ, WK, and WV. dK
is the dimension of the key vectors, and M is the
mask matrix to selectively ignore or give weight to
specific tokens in the input sequence. FFN expands
and contracts input dimensions through hidden lay-
ers, introducing non-linearities to enhance repre-
sentation learning, which consists of several fully
connected layers, with their weights represented as
WUp, WDown, and WGate (optional) respectively.

The SDS framework consists of three steps: ini-
tial pruning (Subsection 2.1), re-dense weight re-
construction (Subsection 2.2), and a second round
of pruning (Subsection 2.3). By optimizing weight
distribution through these steps, the SDS frame-
work enhances the performance of pruned PLMs.
Figure 1 provides an overview of SDS.
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Figure 1: An Overview of the Steps of the SDS Framework, divided into initial pruning, re-dense weight
reconstruction, and a second round of pruning. The upper figure shows the weight distribution variation within
the SDS framework, and the lower figure demonstrates the variation in weight connections. The weights are
extracted from the FFN in the 12-th transformer block of OPT-125M, with 50% sparsity configuration. Initially,
the dense weights follow a Gaussian distribution. After being pruned by SparseGPT, a concentrated, bimodal
distribution emerges (zero values are omitted in sparse weight distributions for better clarity). Followed by
connection reconstruction with sparse regularization, a three-peaked distribution materializes. Finally, the second
pruning round attenuates the sharp peaks, resulting in a softer bimodal distribution. Perplexity (PPL) is evaluated on
Raw-WikiText2. The second pruned model achieves a lower perplexity than the initially pruned one.

2.1 Initial Pruning

The SDS framework initiates by eliminating the
less critical connections in PLMs using conven-
tional one-shot pruning methods. SparseGPT
(Frantar and Alistarh, 2023) leverages second-order
information to perform a weight update dependent
pruning. Concretely, during column-wise pruning,
SparseGPT compensates for the pruning error of
the pruned columns (prior to column c) by updating
the unpruned columns (subsequent to column c) of
the weight matrix (W:,c: = W:,c: −∆). Wanda
(Sun et al., 2023) switches the perspective to prun-
ing mask selection and realizes weight update-free
pruning by considering both weight and activation
magnitude. The salience metrics and weight up-
date rules for the two preferred pruning methods
are shown in Table 2.

Method Salience Metric Weight Update ∆

SparseGPT Wdense
:,c

2

[H−1]2c,c

Wdense
:,c −W

sparse
:,c

[H−1]c,c
· [H−1]c,c:

Wanda |Wdense| ⊙ ∥X∥2 - Update Free -

Table 2: Saliency Metrics and Weight Update Rules for
Conventional Pruning Method.

SparseGPT and Wanda demonstrate robust per-
formance on high-redundancy models at 100B+
scale, achieving negligible performance drop

with 50% sparsity. However, its efficacy di-
minishes when applied to compact, lower over-
parameterized ones. In macro terms, the weight
distribution of the pre-trained models is inappro-
priate for direct pruning due to the lack of sparse
regularization. Thus, we take SparseGPT / Wanda
as the initial step and identify a superior sparse
model from the perspective of weight distribution
optimization in the subsequent steps.

2.2 Re-dense Weight Reconstruction

Table 1 demonstrates that only a small number
of calibration samples are needed to restore the
performance of pruned PLMs. Thus the weights
of dense models with similar performance are not
unique, and we aim to find a pruning-friendly
solution in the solution space of the dense model.

Concretely, we implement layer-wise knowledge
distillation with the same samples as the initial
pruning step to reactivate the pruned connections.
By aligning layer outputs in a knowledge distilla-
tion manner without applying task-specific losses,
this approach is not only parameter efficient (load-
ing only the under-optimized layer), but also re-
duces biases that may arise from overfitting. We
introduce three sparse regularization strategies for
pruning friendliness. a) Residual sparse charac-
teristics: the initial pruning cannot be omitted; it
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provides prior information about which weights are
relatively important for re-dense weight reconstruc-
tion. b) Data-based regularization: higher-loss
sparse-model activations are used as the inputs of
re-dense weight reconstruction. Not only does such
activations already contain a priori filtering of the
importance of the neurons, it also avoids overfitting.
c) Weight-based regularization: typical weight
regularization is employed to endow the re-dense
weights with sparse features and increase pruning
friendliness. We choose the L1 and L2 regular-
ization (Tibshirani, 1996; Loshchilov and Hutter,
2019) to meet the requirement.

According to the above considerations, the re-
dense weight reconstruction process is specified
in the following. Given the original dense weight
Wdense

ℓ in layer ℓ, the sparse weight Wsparse
ℓ from

the initial pruning step, and Xℓ−1 collected dur-
ing the forward propagation of the sparse model
for data-based regularization, the re-dense weight
Ŵre-dense

ℓ is obtained by:

Lbase(W
sparse
ℓ ) =

∥∥Wdense
ℓ Xℓ−1 −W

sparse
ℓ Xℓ−1

∥∥2
2
,

Lreg(W
sparse
ℓ ) = λ1∥Wsparse

ℓ ∥1 + λ2∥Wsparse
ℓ ∥2,

Ltotal(W
sparse
ℓ ) = Lbase(W

sparse
ℓ ) + Lreg(W

sparse
ℓ ),

Ŵre-dense
ℓ = argminWsparse

ℓ

(
(Ltotal(W

sparse
ℓ )

)
,

(3)
where λ1 and λ2 are used to control the ratio

of weight-based regularization. The distribution
of Ŵre-dense

ℓ are shown in Figure 1. Firstly, the
parameters obtained through re-dense weight re-
construction show a clear three-peaked distribu-
tion. This distribution displays a higher sharpness
around zero than the original dense model, which
is a terrific phenomenon. It indicates that the in-
creased concentration of values around zero makes
irrelevant weights easier to identify, a trait referred
to as pruning-friendliness (Han et al., 2017). Sec-
ondly, the re-dense weight reconstruction yields a
model with performance slightly below that of the
original dense model but significantly better than
the initial sparse model, aligning with our expec-
tations: under the constraints of regularization, it
is straightforward that the performance of the re-
dense model struggles to maintain consistency with
the pre-trained dense model. Appendix A.2 pro-
vides a detailed analysis for sparse regularization.

2.3 Second Pruning

Directly adjusting weights in a Sparse-to-Sparse
manner seems intuitive for enhancing a sparse

model’s performance; however, when applied to
a model after the initial pruning stage, it only re-
sults in minor performance gains on the lightest
models (cf., Table 8). This approach simply intro-
duces a first-order loss term to guide the layer-wise
optimization, which is insufficient.

Considering the aforementioned challenges, we
introduce sparse weight adjusting as the conclud-
ing step in the SDS framework. The re-dense
model obtained with sparse regularization guidance
may inevitably perform inferior to the pre-trained
model. As a result, directly pruning it might not
be ideal. Therefore, we perform weight adjust-
ment for the second-pruned model. To elaborate,
we first prune the re-dense model using the same
method employed during the initial pruning, yield-
ing Wsparse-2nd. Subsequently, weight adjusting is
conducted utilizing a soft sparse mask:

Lbase(W
sparse-2nd
ℓ ) =

∥∥∥Wdense
ℓ Xℓ−1 −W

sparse-2nd
ℓ Xℓ−1

∥∥∥2
2
,

ŴSDS
ℓ = Masksoft

ℓ ⊙ argmin
W

sparse-2nd
ℓ

(
Lbase(W

sparse-2nd
ℓ )

)
,

(4)
where the weight alignment target is Wdense

ℓ in-
stead of Wre-dense

ℓ , for avoiding the inevitable loss
of information in the initial pruning and re-dense
process. Xℓ−1 is collected from the forward propa-
gation of the second pruned model. Masksoft

ℓ repre-
sents a soft sparse mask, which is dynamically se-
lected by |Wsparse-2nd

ℓ | in each iteration. Due to the
inherent awareness of activation information from
backpropagation, this magnitude (absmin) (Hagi-
wara, 1994) mask selection metric can achieve re-
sults similar to the elaborate salience metric in
SparseGPT and Wanda. In both steps of weight
adjustment, the L2 loss is utilized, inherently em-
phasizing the loss in regions with outliers (Xiao
et al., 2023), which plays a pivotal role in the per-
formance of language models. Therefore, outliers
can be protected and less affected by weight ad-
justments. Notably, for most models above three
billion parameters, it is possible to do direct one-
shot pruning of the re-dense model and exceed the
performance of initial pruning. At this point, we
choose to early-exit, skipping the weight adjust-
ment process and, therefore, more efficient.

As shown in Figure 1, the weights presented af-
ter the second pruning became moderate, i.e., the
weight distribution of the second-pruned model is
smoother and more uniform than that of the initial
pruning step, which means that the model param-
eters have suitable values in different ranges, pos-
sessing a stronger ability to adapt to unseen data.
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The process of SDS (using SparseGPT as the
base pruning method as an example) is shown in
Algorithm 1.

3 Experiments

3.1 Experimental Settings

Models. We utilize the widely adopted Open Pre-
trained Transformers (OPTs) (Zhang et al., 2022)
and LLaMAs (Touvron et al., 2023a,b; Dubey
et al., 2024), with focused model sizes ranging
from millions to seventy billion parameters. The
modules to be pruned are the computationally in-
tensive self_attn.q_proj, self_attn.k_proj,
self_attn.v_proj, self_attn.out_proj, fc1,
self_attn.up_proj, self_attn.gate_proj,
fc2 and self_attn.down_proj modules con-
structed from fully connected layers, which is
consistent with baseline.

Calibration. For the data used in calibration,
we adhere to the approach outlined in SparseGPT
and Wanda, selecting 128 segments of 2048 tokens
each from the initial partition of the C4 dataset
(Raffel et al., 2020). The C4 dataset, sourced from
a broad array of internet text, guarantees that our
experiments are zero-shot, as no task-specific infor-
mation is exposed during our optimization process.
More analysis on calibration samples can be found
in Appendix A.5.

Datasets and Evaluation. Regarding evalua-
tion metrics, our primary emphasis is on perplexity,
which remains a challenging and reliable metric
well suited for evaluating the language modeling
capability of compressed models (Frantar and Al-
istarh, 2022; Frantar et al., 2022; Yao et al., 2022).
We consider the Raw-WikiText2 (Merity et al.,
2017) test set for perplexity validation. To explore
the impact of compression on a broad range of
downstream tasks, we also provide zero-shot accu-
racy results for COPA (Wang et al., 2019), Lam-
bada (Paperno et al., 2016), OpenBookQA (Mi-
haylov et al., 2018), PIQA (Bisk et al., 2020), RTE
(Wang et al., 2018), StoryCloze (Sharma et al.,
2018) and Winogrande (Sakaguchi et al., 2019).

Implementation Details. We implement the
SDS framework in PyTorch (Paszke et al., 2019)
and use the HuggingFace Transformers / Datasets
library (Wolf et al., 2020) for managing models
and datasets. We follow the conventional method
(SparseGPT / Wanda) to prune the pre-trained
model in the initial pruning step. In the re-dense
weight reconstruction step, we use 128 samples

PLM Dense Sparsity
SDS workflow

SDS SDS SDS

OPT-125M 27.66
50% 36.85 31.78 34.23
2:4 60.43 44.46 51.30
4:8 44.77 37.82 41.66

OPT-350M 22.01
50% 31.58 24.78 29.36
2:4 51.11 31.58 46.23
4:8 39.59 26.15 34.18

OPT-1.3B 14.62
50% 17.46 17.39 17.07
2:4 24.34 20.00 22.67
4:8 20.05 18.06 19.34

Table 3: Perplexity on Raw-WikiText2 among the
SDS Workflow. SDS represents the initially SparseGPT
pruned baseline. SDS represents the dense model ob-
tained in the re-dense weight reconstruction step. SDS
represents the second round pruned model.

as inputs to perform layer-wise knowledge align-
ment: the number of alignment epochs is 200, the
learning rate is 0.1, the loss function is the L2
loss, and the regularization strategy contains L1
and L2 regularization with a ratio of 0.1. The op-
timization between adjacent layers is achieved by
directly using the output of the initial pruned layer
as the input for the next layer, eliminating the need
for additional forward propagation to obtain the
reconstructed layer’s output and, thereby, no accu-
mulation of pruning errors. In the second pruning
step, we use the same pruning method to prune the
re-dense model and use the same configuration as
in the previous step without weight regularization
to further adjust the weights of the pruned model
with a soft sparse mask (exit early and skip weight
adjustment when secondary one-shot pruning out-
performs initial pruning). The SDS framework
uses the same samples throughout while ensuring
that no sample is overloaded; it also coincides with
the advantage of requiring just a small amount of
samples.

3.2 Performance Variations in the SDS
Workflow

Table 3 presents the changes in language modeling
perplexity on Raw-WikiText2 after each step of
the SDS framework, with SparseGPT as the base-
line pruning method and primarily covering several
compact OPT models. The focus sparsity config-
urations include 50% sparsity, 2:4 sparsity, and
4:8 sparsity. After the re-dense step (SDS), the per-
plexity significantly decreases, averaging around
28.0 across all models, which is closer to the dense
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Sparsity Method
OPT LLaMA-1 LLaMA-2

LLaMA-3-8B
125M 350M 1.3B 2.7B 6.7B 7B 13B 7B 13B

0% Dense 27.66 22.01 14.62 12.47 10.86 5.68 5.09 5.47 4.88 6.14

50%

SparseGPT 36.85 31.58 17.46 13.48 11.55 7.36 6.21 6.72 6.03 9.51
SDS-SparseGPT 34.23 29.36 17.07 13.38 11.49 7.22 6.16 6.69 5.95 9.33
Wanda 39.79 41.88 18.51 14.38 11.99 7.26 6.15 6.92 5.97 9.83
SDS-Wanda 35.05 33.07 17.15 13.70 11.66 7.19 6.10 6.86 5.91 9.53

4:8

SparseGPT 44.77 39.59 20.05 14.98 12.56 8.72 7.43 8.49 7.01 12.49
SDS-SparseGPT 41.66 34.18 19.34 14.81 12.39 8.37 7.39 8.11 6.93 12.03
Wanda 53.97 62.49 22.33 16.80 13.59 8.57 7.41 8.61 7.00 14.56
SDS-Wanda 43.58 47.31 19.82 15.45 12.74 8.39 7.33 8.55 6.94 13.43

2:4

SparseGPT 60.43 51.11 24.34 17.18 14.20 11.32 9.12 10.88 8.74 17.88
SDS-SparseGPT 51.30 46.23 22.67 16.78 13.81 10.48 8.91 10.18 8.69 15.43
Wanda 82.47 113.17 28.33 21.20 15.99 11.54 9.61 12.14 8.98 24.29
SDS-Wanda 59.17 73.56 23.94 17.99 14.37 10.80 9.52 11.34 8.74 19.13

Table 4: Perplexity on Raw-WikiText2. SparseGPT and Wanda form the components of the SDS framework,
represented as SDS-SparseGPT and SDS-Wanda, respectively.

Sparsity Method
OPT LLaMA-1 LLaMA-2

LLaMA-3-8B
125M 350M 1.3B 2.7B 6.7B 7B 13B 7B 13B

0% Dense 50.82 54.12 60.83 62.81 64.98 66.71 72.78 68.53 72.24 72.86

50%

SparseGPT 48.85 52.33 55.89 61.14 64.32 64.75 70.75 65.78 70.08 69.85
SDS-SparseGPT 50.80 54.51 58.42 61.78 64.96 66.16 71.26 66.98 70.41 71.48
Wanda 48.46 48.90 56.18 59.36 63.21 66.26 70.51 67.08 70.17 68.06
SDS-Wanda 49.78 51.40 57.58 60.92 64.11 66.89 71.41 67.58 71.24 69.60

4:8

SparseGPT 48.29 49.85 54.94 60.24 63.36 64.40 68.70 65.19 68.29 66.11
SDS-SparseGPT 49.67 52.25 57.92 61.48 64.06 65.61 69.19 66.05 68.82 67.46
Wanda 46.28 46.41 55.04 58.21 61.58 64.60 67.33 66.21 69.16 62.93
SDS-Wanda 47.70 48.61 56.12 59.91 63.71 65.65 69.39 66.42 69.64 64.83

2:4

SparseGPT 47.56 48.34 53.57 58.48 62.72 62.58 67.69 64.73 66.15 63.00
SDS-SparseGPT 49.59 50.50 56.67 59.96 63.21 63.22 68.11 65.43 66.63 63.19
Wanda 45.69 44.77 52.86 55.51 61.01 61.58 65.65 61.93 65.16 57.17
SDS-Wanda 47.09 46.69 54.44 58.98 63.01 63.03 65.94 63.51 66.85 61.03

Table 5: Multitasking Zero-shot Performance. Accuracy (%) was averaged over seven downstream tasks,
including COPA, Lambada (OPTs and LLaMA3 only), OpenbookQA, PIQA, RTE, StoryCloze, and Winogrande.

models (average perplexity of 21.4), with minor
performance gap mainly due to regularization ef-
fects. Following the second round of pruning (SDS),
the performance improves beyond the initial prun-
ing baseline (SDS), averaging around 32.9 compared
to the initial average of 36.2. This suggests that
the re-dense process successfully produces a more
pruning-friendly model.

3.3 Performance
Performance on Language Modeling and Zero-
shot Benchmarks. We first focus on the typi-
cal sparsity configurations, including 50% sparsity
for model compression and 2:4 and 4:8 sparsity
for both compression and computational acceler-
ation. The results in Tables 4 and 5 demonstrate

that the SDS-enhanced models consistently out-
perform their baselines across all sparsity levels
(Table 13 provides detailed accuracy results for
each zero-shot downstream task). For instance, in
the 50% sparsity setting, SDS-SparseGPT achieves a
perplexity of 29.36 on OPT-350M, outperforming
SparseGPT’s 31.58. At the 4:8 sparsity level, SDS-

Wanda reaches an accuracy of 69.39% on LLaMA-
13B, surpassing both SparseGPT and Wanda. The
advantage of the SDS framework is also evident at
the 2:4 sparsity level; SDS-SparseGPT achieves the
lowest perplexity of 15.43 on LLaMA-3-8B, while
also improving accuracy to 63.19%. These results
highlight the robustness of the SDS framework in
enhancing the performance of pruned PLMs across
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Sparsity Method
OPT LLaMA-1 LLaMA-2 LLaMA-3

6.7B 13B 7B 13B 30B 65B 7B 13B 70B 8B 70B
0% Dense 10.86 10.13 5.68 5.09 4.77 3.56 5.47 4.88 3.12 6.14 2.86

60%

SparseGPT 13.42 12.97 10.56 8.39 6.67 5.80 10.23 8.25 5.28 15.34 7.90
SDS-SparseGPT 13.12 12.69 10.02 8.31 6.58 5.69 9.91 8.12 5.23 14.77 7.49
Wanda 15.26 15.89 10.71 8.76 6.55 5.91 10.79 8.40 5.24 23.58 9.63
SDS-Wanda 13.95 13.12 10.11 8.67 6.41 5.84 10.35 8.32 5.18 17.83 8.21

70%

SparseGPT 20.58 19.13 27.04 19.03 12.53 10.16 27.76 19.61 9.29 41.38 15.04
SDS-SparseGPT 19.73 18.75 22.73 17.54 12.09 9.49 23.58 17.46 8.90 37.50 14.16
Wanda 168.28 48.90 84.45 54.13 17.32 15.13 75.07 46.17 10.52 126.18 25.35
SDS-Wanda 54.42 26.65 55.83 32.67 13.85 12.72 34.02 30.47 10.38 60.51 16.96

80%

SparseGPT 97.32 72.61 184.71 103.37 54.91 33.40 112.47 99.22 28.12 186.68 48.73
SDS-SparseGPT 82.19 64.64 130.08 88.76 46.64 28.56 86.25 85.64 23.47 136.65 39.96
Wanda 3742.93 14463.86 7649.31 3993.33 2248.03 1672.99 2738.57 1540.65 150.60 893.56 203.85
SDS-Wanda 1703.81 7330.33 889.77 1188.50 248.43 259.46 276.95 697.75 91.11 330.10 119.32

Table 6: Perplexity on Raw-WikiText2 under higher sparsity.

Sparsity Method
OPT LLaMA-1 LLaMA-2 LLaMA-3

6.7B 13B 7B 13B 30B 65B 7B 13B 70B 8B 70B
0% Dense 64.98 66.08 66.71 72.78 73.88 74.72 68.53 72.24 75.36 72.86 76.11

60%

SparseGPT 64.09 63.03 64.41 66.83 70.35 73.06 64.34 68.51 74.85 63.95 73.14
SDS-SparseGPT 64.52 64.57 65.72 67.20 70.74 73.43 64.95 69.45 75.20 64.52 73.88
Wanda 60.36 62.14 64.62 67.13 69.69 72.90 63.31 67.99 73.55 58.97 69.33
SDS-Wanda 62.93 64.01 65.09 67.81 70.26 73.42 64.51 68.53 74.54 61.42 72.60

70%

SparseGPT 59.68 60.51 55.69 59.49 66.91 70.07 56.66 60.42 70.70 55.00 67.09
SDS-SparseGPT 60.50 61.12 57.73 60.46 67.98 70.40 57.93 60.90 71.49 56.02 67.97
Wanda 49.04 55.77 51.57 55.48 65.35 66.07 49.66 52.24 69.13 48.02 59.33
SDS-Wanda 52.73 56.27 52.51 56.38 65.89 68.50 51.50 53.84 69.43 49.03 63.53

80%

SparseGPT 51.90 53.81 49.37 50.62 54.33 56.48 48.42 49.39 59.40 47.92 54.18
SDS-SparseGPT 53.27 54.73 50.23 51.77 55.41 57.41 50.24 50.19 60.40 49.01 55.85
Wanda 47.31 47.88 47.57 48.88 49.09 48.64 47.72 48.56 49.62 48.22 48.84
SDS-Wanda 48.85 47.98 49.04 49.09 49.45 49.20 48.98 49.45 51.31 48.83 49.61

Table 7: Multitasking Zero-shot Performance under higher sparsity. Accuracy (%) was obtained by zero-shot
evaluation and averaging over seven downstream tasks, including COPA, Lambada (OPTs and LLaMA3 only),
OpenbookQA, PIQA, RTE, StoryCloze, and Winogrande.

different sparsity levels.

Higher Sparsity Performance. Higher sparsity
(60%, 70%, and 80%) implies higher compression
gains and increased performance drops. the SDS
framework consistently outperforms baseline meth-
ods at a higher sparsity constraint, as shown in
Tables 6 and 7. For instance, at 60% sparsity, SDS-

SparseGPT achieves a perplexity of 12.69 and an
accuracy of 64.57% on OPT-13B, outperforming
SparseGPT, which records a perplexity of 12.97
and an accuracy of 63.03%. At 70% sparsity, SDS-

Wanda achieves a perplexity of 16.96 on LLaMA-
3-70B, considerably lower than Wanda’s perplex-
ity of 25.35. At 80% sparsity, the performance
gap widens further, with SDS-SparseGPT achieving
the highest accuracy of 60.40% on LLaMA-2-70B,
outperforming Wanda, which suffers from severe
degradation at this level. These comparisons un-
derscore the robustness of the SDS framework in
maintaining performance under high sparsity, with

its benefits becoming increasingly evident as spar-
sity levels rise.

In summary, our evaluations convincingly
demonstrate the robustness and efficacy of the SDS
framework across a variety of sparsity configura-
tions. Both language modeling and zero-shot down-
stream multitask performance metrics affirm the
consistent superiority of SDS over the baselines.
Therefore, SDS is an efficient and effective pruning
method for PLMs.

3.4 Ablation Study

To validate the effectiveness of the step composi-
tion and the sparse regularization of the Sparse-
Dense-Sparse (SDS) framework, we conducted a
series of ablation experiments as shown in Table 8.
The first two rows represent the dense and sparse
baseline, respectively.

Rows 3 to 5 verify the effect of only perform-
ing one-shot pruning and sparse weight adjustment.
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Method Wiki.↓ COPA↑ Lamb.↑ BookQ.↑ PIQA↑ RTE↑ Story.↑ Wino.↑ Avg acc.↑
1: Dense 27.66 66 39.16 28.0 62.02 50.18 60.03 50.36 50.82
2: SDS 60.43 62 27.55 25.8 57.24 53.79 55.38 51.14 47.56
3: SDS w DD 58.63 62 27.03 26.0 58.11 52.35 55.25 50.75 47.36
4: SDS w SD 58.56 62 20.96 26.4 58.65 51.62 56.21 50.98 46.69
5: SDS w KD 56.82 63 30.04 26.2 58.76 53.79 55.63 49.64 48.15
6: SDS 57.98 62 26.68 26.2 59.30 48.74 56.27 50.98 47.17
7: SDS w/o WR 51.96 63 30.04 26.2 58.92 51.95 56.46 51.38 48.29
8: SDS w DD 57.72 62 26.99 26.0 59.30 54.15 55.19 51.46 47.87
9: SDS w KD 57.32 61 29.15 26.4 59.51 54.01 54.17 51.38 47.95

10: SDS w SD 51.30 65 31.57 27.8 59.85 54.15 57.42 51.46 49.61
11: SDS w MSD 52.06 64 30.35 27.0 60.01 50.18 57.16 52.57 48.75

Table 8: Comparison of Different Configurations of the SDS Framework. We compare the language understand-
ing perplexity and accuracy of OPT-125M on eight tasks in a 2:4 sparse configuration. The gray characters represent
the skipped steps; DD stands for dense data, which uses the activations generated by the dense model as inputs for
weight adjustment; SD stands for sparse data, which uses the activations generated by the sparse model as inputs for
weight adjustment; KD stands for KD-aware data, which uses the activations of the model after weight adjustment
as inputs for the next layer of weight adjustment; WR represents weight regularization; MSD stands for multiple
sparse data, which means that different samples are used for each step of the SDS process.

This approach reflects the effect of pruning in the
case where the loss is formally computed instead
of the "Hessian approximation". Overall, SDS was
only able to outperform SparseGPT on three tasks.
Comparing the different input data used in the SDS
case, SDS w KD can outperform SparseGPT on
seven tasks, which is considered better than choos-
ing the other two data types. Thus it can be con-
cluded that SDS mode has limited optimization for
SparseGPT and selection of data with low loss
(KD) is more suitable for SDS mode than selection
of data with high loss (DD or SD).

Row 6 verifies the effect of the second round
pruning of the dense model after injecting it di-
rectly with sparse regularization, skipping the ini-
tial pruning, i.e. residual sparse characteristics.
SDS outperforms the performance of SparseGPT
on five tasks, but it does not yet reach the supe-
rior performance of SDS w SD. This observation
demonstrates that residual sparse characteristics
are effective.

Rows 7 to 10 verify the role of weight-based
and data-based regularization in SDS, respectively.
Unlike SDS, SD is a more suitable data choice for
SDS, and this harder data serves the purpose of reg-
ularization while avoiding the challenge of learning
hard data in multiple steps. Also, it can be argued
that residual sparse characteristics and data regular-
ization dominate in sparse regularization compared
to weight regularization. Section A.3 provides an

analysis from a distributional perspective.
Row 11 shows the impact of using different sam-

ples at each step of SDS. The optimization is closer
to SDS w SD, but only two tasks outperform it.
This indicates that SDS achieves favorable results
and does not necessitate additional samples.

3.5 Efficiency Analysis

To illustrate the enhanced efficiency of pruned
models, we present the inference speed of dense
and sparse models on AMD CPU. We use the
DeepSparse library (Kurtic et al., 2023) and apply
50% unstructured pruning on OPTs and LLaMAs
in this experiment. Table 9 indicates that the pruned
models can achieve 1.19x ∼ 1.87x speedup com-
pared to their dense counterparts. This significant
boost in inference speed underscores the critical
importance of model pruning in practical applica-
tions. More efficiency analysis can be found in
Appendix A.7.

4 Related Work

Pruning for Language Model Compression. The
surging complexity of Transformer-based language
models, which now feature hundreds of billions of
parameters, has accentuated the urgent need for ef-
fective and efficient model pruning methods (Han
et al., 2016, 2015; Hassibi et al., 1993). These
pruning methods can be broadly classified into
structured and unstructured approaches. Structured
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Model OPT-1.3B OPT-2.7B OPT-6.7B LLaMA-7B
Metric Throughput Latency Throughput Latency Throughput Latency Throughput Latency
Dense 14.1 71.19±1.5 6.9 145.17±3.1 2.9 345.39±7.1 2.3 409.98±5.5

Sparse 16.8 59.55±2.1 9.3 107.07±1.9 4.4 225.67±2.8 4.3 229.52±2.3

Speedup 1.19x 1.35x 1.52x 1.87x

Table 9: Inference Speed Comparison of Pre- and Post-pruned PLMs using DeepSparse on AMD Ryzen 7 PRO
5850U @ 1.90 GHz with batchsize = 1 and seqlen = 2048, throughput (batch/sec) and latency (ms/batch) are tested.

pruning is more hardware-friendly, as it directly
prunes entire segments of weights, thereby remov-
ing consecutive computations (Ma et al., 2023; Liu
et al., 2023). Unstructured pruning (sparsification)
is also receiving interest, particularly as hardware
advancements increasingly support the acceleration
of sparse patterns such as 2:4 or 4:8 sparse (Mishra
et al., 2021). Techniques such as SparseGPT (Fran-
tar and Alistarh, 2023) extend the OBS (Hassibi
et al., 1993) methodology to column-wise prune
weights, allowing the modification of values in the
unpruned columns to compensate for the pruning
errors. Prune-and-Tune (Syed et al., 2023) enhance
SparseGPT by incorporating minimal iterative task
fine-tuning during the pruning process, demonstrat-
ing performance improvements at high sparsity lev-
els. Wanda (Sun et al., 2023) introduces a simple
yet effective pruning strategy that prunes weights
based on their magnitudes and corresponding acti-
vations. OWL (Yin et al., 2024) considers the inho-
mogeneous distribution of interlayer outliers and
further extends Wanda to a non-uniform sparsity
distribution, achieving better performance. DS∅T
(Zhang et al., 2024) and SPP (Lu et al., 2024), as
tuning methods designed for sparse models, can
improve the performance of pruned PLMs within
limited complexity.

Weight Distribution Optimization. Various
techniques have been employed to understand
and optimize weight distributions in the quest for
more efficient neural networks. The Dense-Sparse-
Dense training method (Han et al., 2017) provides
a three-step flow: an initial dense training to learn
connection weights, a sparsity-inducing phase that
prunes unimportant connections, and a final re-
dense step. This process improves performance
across various network architectures and under-
scores the importance of parameter distribution in
achieving better local optima. Ji et al., 2024a treat
the process of Dense-Sparse-Dense as a regularized
entirety, improving the model’s cross-domain few-
shot classification capability. Regularization meth-
ods serve as pivotal tools for optimizing the param-

eter distribution. SPDF (Thangarasa et al., 2023)
adopts a language model construction paradigm of
sparse pre-training and dense fine-tuning, which
both introduce sparse regularization to the train-
ing process and improve the training efficiency.
Dropout (Srivastava et al., 2014) is a form of en-
semble learning of neural networks. It implicitly
changes the parameter distribution by randomly ze-
roing out weights during training, encouraging a
sparse representation. Yoshida and Miyato, 2017
focus on constraining the spectral norm of weights
matrices to improve the generalization capabilities
of neural networks. This method plays a crucial
role in shaping the parameter space, making it more
amenable to sparse approximations.

In this paper, the proposed Sparse-Dense-Sparse
(SDS) framework first regularizes the weights into
a pruning-friendly dense distribution and prunes
the models, aiming to enhance the language com-
prehension and multitasking performance of the
state-of-the-art conventional pruning methods.

5 Conclusion

We introduced the Sparse-Dense-Sparse (SDS)
framework for optimizing pruned pre-trained lan-
guage models (PLMs), consisting of initial prun-
ing, re-dense weight reconstruction, and a second
pruning round. The SDS framework focuses on
weight distribution optimization and incorporates
sparse regularization elements—including residual
sparse characteristics, data-based regularization,
and weight-based regularization. As a result, SDS
not only enhances the model’s pruning friendliness
but also achieves state-of-the-art pruning results.
Experimental results show that SDS reduces per-
plexity by 5.16 on Raw-Wikitext2 and enhances
accuracy by an average of 3.86% across various
zero-shot benchmarks for LLaMA-3-8B compared
to Wanda with a 2:4 sparsity configuration.
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A Appendix

A.1 The sparse-dense-sparse framework

Algorithm 1 The Sparse-Dense-Sparse (SDS) Framework
Input: Pre-trained dense model Wdense = {Wdense

1 ,Wdense
2 , ...,Wdense

L }
Output: Final pruned model ŴSDS = {ŴSDS

1 ,ŴSDS
2 , ...,ŴSDS

L }
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Initial Pruning - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Require: Original unlabeled samples X; sparsity
for each Wdense in Wdense do
Wsparse = empty(Wdense)
H = XX⊤

for c = 1 to column_size(Wdense) do

s = sort

(
Wdense

:,c
2

[H−1]2c,c

)
M = 1 (s > sparsity)
W

sparse
:,c = M:,c ⊙Wdense

:,c ▷ Prune one column with mask M

Wdense
:,c+1: = Wdense

:,c+1: −
Wdense

:,c −W
sparse
:,c

[H−1]c,c
· [H−1]c,c: ▷ Error Compensation

end for
X←WsparseX ▷ Error Accumulation

end for
- - - - - - - - - - - - - - - - - - - - - - - - Re-dense Weight Reconstruction - - - - - - - - - - - - - - - - - - - - - - -
Require: Pre-trained dense model Wdense = {Wdense

1 , . . . ,Wdense
L };

Initial pruned sparse model Wsparse = {Wsparse
1 , . . . ,W

sparse
L };

Original unlabeled samples X; Learning rate η;
L1 regularization ratio λ1; L2 regularization ratio λ2

for ℓ = 1 to L do
while not converged do

W
re-dense(t)
ℓ = W

re-dense(t−1)
ℓ − η∇

∥∥∥Wdense
ℓ X−W

re-dense(t−1)
ℓ X

∥∥∥2
2

−ηλ1∇
∥∥∥Wre-dense(t−1)

ℓ

∥∥∥
1
− ηλ2∇

∥∥∥Wre-dense(t−1)
ℓ

∥∥∥2
2

end while
X←W

sparse
ℓ X ▷ Error Accumulation

end for
- - - - - - - - - - - - - - - - - - - - Second pruning: sparse weight adjustment - - - - - - - - - - - - - - - - - - - -
Require: Pre-trained dense model Wdense = {Wdense

1 , . . . ,Wdense
L };

Re-dense trained model Wre-dense = {Wre-dense
1 , . . . ,Wre-dense

L };
Original unlabeled samples X;
Learning rate η;
Sparsity

Repeat the pruning process and yield Wsparse-2nd = {Wsparse-2nd
1 , ...,W

sparse-2nd
L }

for ℓ = 1 to L do
while not converged do

s = sort
(∣∣∣WSDS(t)

ℓ

∣∣∣)
M = 1 (s > sparsity)

W
SDS(t)
ℓ = M⊙

(
W

SDS(t−1)
ℓ − η∇

∥∥∥Wdense
ℓ X−W

SDS(t−1)
ℓ X

∥∥∥2
2

)
end while
X←W

sparse-2nd
ℓ X ▷ Error Accumulation

end for



1731

A.2 Error Accumulation and Data-based
Regularization

Dense
𝑋

Dense

w KD aware

w error accum

Sparse Sparse

Updated

(a) KD-data
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𝑋
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Sparse Sparse
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(b) SD-data
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𝑋
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w/o error accum
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(c) DD-data
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𝑋

Dense
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w/o error accum

Sparse Sparse

Updated

(d) DD-data

Figure 2: Four Data Selection Paradigms in Weight
Adjustment. Straight lines represent forward propaga-
tion and dashed lines represent knowledge distillation.

The input data used in weight adjustment can
be categorized in two ways: whether to perform
error accumulation and whether to be aware of
the knowledge distillation (KD) process. Figure 2
presents four different data selection patterns for
weight adjustment.

(a) Weight adjustment with KD aware and error
accumulation, this paradigm corresponds to KD-
data in our ablation study (cf., Subsection 3.4):
after applying KD to the sparse layer, a subsequent
forward propagation is needed to generate inputs
for the next layer. These inputs are solely based
on the former layer’s outputs, thus accumulating
errors. Since KD aims to reduce loss, this extra
forward propagation simplifies the data, making it
easier for the subsequent layer to learn. (b) Weight
adjustment with error accumulation but without
KD aware, this paradigm corresponds to SD-data
in our ablation study: unlike paradigm (a), this
approach abandons the additional forward propa-
gation to account for changes in the layer updated
by KD. This results in the next layer of learning
from data corresponding to a higher loss, making
learning more challenging than in paradigm (a).
KD-data and SD-data, which use sparse model
activations as inputs, further provide a priori on
the importance of the parameters. (c) and (d) are
two ways of adjusting the weights without accu-
mulating errors. The presence or absence of KD
awareness has a minimal impact on either, as the
optimization direction is constrained by the dense
model in both cases. The DD-data paradigm in our
ablation study employs paradigm (d).

From the perspective of data difficulty, DD-data
is the most difficult because it requires each layer

to compensate for the errors accumulated in all
previous layers. This difficulty is more prominent
in the KD process under sparsity constraints. In
the ablation study (cf., Subsection 3.4), the opti-
mization of the sparse model using DD-data cannot
achieve the best results, verifying the above obser-
vation. KD-data is the easiest because the weights
of the sparse model are updated in the direction of
lower loss during knowledge distillation. The use
of KD-data has yielded relatively good results only
in single-step optimization of the sparse model due
to the fact that simple data carries less data reg-
ularization and a relatively low upper bound for
optimization. SD-data is relatively moderate in dif-
ficulty and comes with sparse regularization and
hence achieved an ideal result in SDS’s optimiza-
tion of the sparse model. The reason why SD-data
did not achieve an ideal result in the single-step
optimization could be the challenge of the difficult
data.

A.3 Distribution Analysis
Figure 3 visualizes the impact of several pertinent
optimizations performed on pruned PLMs from the
perspective of weight distribution changes.

Magnitude-based one-shot pruning method is
ineffective on PLMs primarily because it focuses
only on the absolute value of the weights. This sim-
plistic approach tends to create a truncated bimodal
distribution of the model weights, concentrating
them at extreme positive and negative values. Dis-
tribution truncation can lead to model instability, as
removing near-zero weights disrupts the model’s
ability to make subtle, nuanced adjustments. Due
to the large amount of information lost in the prun-
ing process, the model’s performance can only be
recovered to a limited extent after weight adjust-
ment. In contrast, modern pruning methods like
SparseGPT take into account higher-order rather
than zero-order information, which manages to
maintain an untruncated bimodal distribution sim-
ilar to what magnitude pruning plus subsequent
weight adjustment would achieve. However, they
do it in a single step and are able to achieve better
performance.

As shown in Figure 3b, the model has a rela-
tively sharp bimodal peak in its distribution after
being pruned by SparseGPT, which challenges the
model’s generalization ability, optimization space
and stability. Direct adjustment of the pruned
model’s weights yields limited performance and
optimization of the weight distribution. Therefore,
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Figure 3: Changes in Distributions During Optimization of Pruned PLMs. The distribution observations
are from the last layer of OPT-125m with 50% pruning. (a) represents the process of first pruning the model by
magnitude (absmin) (Hagiwara, 1994) and then optimizing the pruned model using SD-data. (b) represents the
SDS w KD in the ablation study (cf., Subsection 3.4). (c) represents the SDS. (d) represents the SDS w KD. (e)
represents the SDS w SD. (f) represents the SDS w SD and with Wanda as the pruning method. Zero values are
omitted in sparse weight distributions for better clarity.

it is necessary to consider the SDS process.

Before attempting the SDS process, Figure 3c
and Figure 3d show the trend of weight distribution
changes for only injecting regular regularization or
residual sparse characteristics into the model, re-
spectively. Both find a new dense solution to some

extent: a dense model with a smoother distribution
and more zeros can be found by using data-based
regularization and weight-based regularization for
dense weight adjustment, and a dense model that
converges to a multi-peaked distribution with more
zeros is obtained after re-dense reconstruction of



1733

Model OPT-1.3B OPT-2.7B OPT-6.7B LLaMA(1&2)-7B
Metric Throughput Latency Throughput Latency Throughput Latency Throughput Latency
Dense 29.5 29.56±0.9 14.7 68.03±0.8 5.5 181.21±0.9 5.3 189.83±0.7

Sparse 39.1 33.88±0.8 22.9 43.65±0.5 11 90.65±0.9 12.4 80.75±0.6

Speedup 1.33x 1.56x 2.0x 2.34x

Table 10: Inference Speed Comparison of Pre- and Post-pruned PLMs using DeepSparse on Intel(R) Xeon(R)
Platinum 8372C CPU @ 3.20GHz with batchsize = 1 and seqlen = 2048, throughput (batch/sec) and latency
(ms/batch) are tested.

the sparse model without regular regularization. Af-
ter a second round of pruning, both approaches lead
to a recovery in the model’s performance. However,
they are not as effective as the SDS process that
uses a combination of data-based regularization,
weight-based regularization, and residual sparse
characteristics, as shown in Figure 3e and Figure 3f.
This illustrates the effectiveness and mutual rein-
forcement effect of regularization techniques in the
SDS framework. An interesting phenomenon is
that when regular regularization is not used, it is
possible to reconstruct the pruned model to equal or
even higher performance than the pre-trained dense
model. This is perhaps due to the absence of regu-
larization techniques, which allowed the re-dense
model to overfit the behavior of the pre-trained
dense model. The limited performance improve-
ment of the re-dense model after a second round of
pruning also supports the above deduction.

A.4 SDS Steadily Optimizes Multiple Pruning
Methods

Method
PPL ↓ (Dense: 6.14) ACC. ↑ (Dense: 72.86)
2:4 4:8 70% 2:4 4:8 70%

SparseGPT 17.88 12.49 41.38 63.00 66.11 55.00
SDS-SparseGPT 15.43 12.03 37.50 63.19 67.46 56.02
Wanda 24.29 14.56 126.18 57.17 62.93 48.02
SDS-Wanda 19.13 13.43 60.51 61.03 64.83 49.03
Admm 13.71 10.56 29.39 62.48 64.56 55.30
SDS-Admm 13.59 10.49 26.94 63.53 65.23 55.88
Zero 22.99 12.98 260.21 59.15 62.95 48.62
SDS-Zero 16.47 11.51 69.38 61.86 64.22 50.05
DS∅T 21.97 14.01 119.35 59.26 63.27 48.32
SDS-DS∅T 17.28 12.64 57.60 61.89 64.17 49.82

Table 11: SDS Steadily Optimizes Multiple Pruning
Methods on LLaMA-3-8B. The performance of vari-
ous pruning methods, including AdmmPruner (Admm),
PrunerZero (Zero), and DS∅T (with Wanda as the base
pruning method), is validated with and without SDS
optimization. The results show that SDS consistently
improves both perplexity (PPL) and accuracy (ACC.,
averaged across COPA, Lambada, OpenbookQA, PIQA,
RTE, StoryCloze, and Winogrande), demonstrating its
effectiveness and generalizability in optimizing a wide
range of pruning methods.

Table 11 demonstrates that SDS has a signifi-
cant optimizing effect on a wide range of prun-
ing methods, including AdmmPruner (Boza, 2024),
PrunerZero (Dong et al., 2024), and even the post-
pruning fine-tuning method DS∅T (Zhang et al.,
2024). For instance, AdmmPruner achieves a low
PPL of 29.39 after 70% pruning, yet SDS further
enhances its post-pruning accuracy, reducing the
PPL to 26.94. The consistent improvements across
diverse methods highlight SDS’s strong generaliz-
ability. SDS is a versatile optimization technique
that improves performance across various models
and pruning strategies.

A.5 SDS Steadily Optimizes Pruning Effect
with Different Calibration Samples

Some works (Williams and Aletras, 2024; Ji et al.,
2024b; Bandari et al., 2024) have found that calibra-
tion samples affect language model compression.
Here we try different calibration datasets to verify
the effect of calibration sample variation on SDS
optimization effect, as shown in Table 12.

Calibration Method
PPL ↓ (Dense: 6.14) ACC. ↑ (Dense: 72.86)
2:4 4:8 2:4 4:8

C4

SparseGPT 17.88 12.49 63.00 66.11
SDS-SparseGPT 15.43 12.03 63.19 67.46
Wanda 24.29 14.56 57.17 62.93
SDS-Wanda 19.13 13.43 61.03 64.83

Wiki2

SparseGPT 12.26 9.88 62.35 65.80
SDS-SparseGPT 11.31 9.20 63.01 66.93
Wanda 21.58 13.37 56.87 61.67
SDS-Wanda 17.57 12.19 61.14 64.32

Pile

SparseGPT 18.71 13.66 63.10 66.08
SDS-SparseGPT 15.89 12.79 63.32 67.55
Wanda 24.97 14.88 57.29 63.22
SDS-Wanda 18.88 14.15 60.94 65.01

Table 12: SDS Steadily Optimizes Pruning Effort
with Different Calibration Samples on LLaMA-3-
8B. The results show that SDS consistently improves
both perplexity (PPL) and accuracy (ACC., averaged
across COPA, Lambada, OpenbookQA, PIQA, RTE,
StoryCloze, and Winogrande) regardless of the calibra-
tion dataset chosen, demonstrating the robustness of
SDS to calibration samples.

The results show that SDS improves both per-
plexity (PPL) and accuracy (ACC.) on LLaMA-
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Sparsity Method PPL Lamb. COPA BookQ PIQA RTE Story. WinoG. Acc AVG
0 - 6.14 75.55 89.00 45.00 80.90 67.51 78.87 73.16 72.86

50%

SparseGPT 9.51 74.18 88.00 43.00 78.07 59.84 75.62 70.27 69.85
SDS-SparseGPT 9.33 74.50 91.00 41.40 77.04 69.31 76.56 70.56 71.48

Wanda 9.83 72.62 84.00 40.00 76.82 58.84 73.01 71.11 68.06
SDS-Wanda 9.53 76.50 88.00 40.80 77.20 59.93 73.65 71.82 69.60

4:8

SparseGPT 12.49 70.18 82.00 36.40 74.76 58.12 72.18 68.14 67.11
SDS-SparseGPT 12.03 70.77 86.00 36.40 74.54 62.45 73.77 68.27 67.46

Wanda 14.56 63.05 81.00 35.20 72.36 53.07 69.19 66.61 62.93
SDS-Wanda 13.43 68.68 85.00 35.00 73.12 52.71 71.29 68.03 64.83

2:4

SparseGPT 17.88 64.62 82.00 35.20 71.76 53.07 70.53 63.85 63.00
SDS-SparseGPT 15.43 65.22 82.00 33.20 71.76 54.15 70.66 65.35 63.19

Wanda 24.29 45.95 76.00 32.00 68.28 52.71 64.86 60.38 57.17
SDS-Wanda 19.13 58.59 79.00 32.80 70.02 57.04 67.54 62.19 61.03

Table 13: Detailed Zero-Shot Results on LLaMA-3-8B. SDS outperforms baselines on most individual zero-shot
downstream tasks, demonstrating higher accuracy and strong generalizability.

3-8B. At 2:4 sparsity, on the C4 dataset, SDS-

SparseGPT reduces PPL from 17.88 to 15.43 and
increases accuracy from 63.00 to 63.19. On Pile, it
lowers PPL from 18.71 to 15.89 and boosts accu-
racy from 63.10 to 63.32. These results highlight
SDS’s effectiveness in optimizing pruning across
different calibration datasets.

A.6 Detailed Zero-Shot Downstream Results

Table 13 provides a detailed breakdown of the zero-
shot accuracy on individual downstream tasks for
LLaMA-3-8B. SDS consistently outperforms base-
line methods across various pruning strategies. For
example, at 50% sparsity, SDS-SparseGPT achieves a
lower perplexity of 9.33 compared to the baseline’s
9.51, while improving accuracy on tasks like COPA
from 88.00 to 91.00 and on RTE from 59.84 to
69.31. Similarly, SDS-Wanda shows improvements
at 2:4 sparsity, reducing perplexity from 24.29 to
19.13, and boosting accuracy on tasks such as Sto-
ryCloze from 60.38 to 62.19. These results demon-
strate that SDS enhances performance across mul-
tiple zero-shot downstream tasks, highlighting its
effectiveness in optimizing pruning methods while
ensuring strong generalizability.

A.7 SDS Efficiency Analysis

Table 10 further illustrate the enhanced efficiency
of pruned pre-trained language models (PLMs)
on CPUs. This table meticulously enumerates the
inference latency improvements of PLMs subjected
to 50% unstructured pruning on Intel CPU. The re-
sults indicate that the pruned models can achieve a
maximum speed increase of up to 2.3 times com-
pared to their unpruned, dense counterparts. This

significant boost in inference speed underscores the
critical importance of model pruning in efficiency
increase.

Tables 14 and 15 respectively display the kernel-
level speedup ratio and the end-to-end level
speedup ratio for the entire network, both
achieved through the utilization of semi-structured
sparse matrix multiplication (SpMM) kernels sup-
ported by the CUTLASS library on NVIDIA Am-
pere and newer GPUs. These findings indicate that
operations using sparse matrices can surpass the ef-
ficiency of dense operations, achieving more than
a twofold increase in speed. Furthermore, even
when considering the broader context of end-to-
end speedups, the pruned model is observed to
outperform the dense model, with potential speed
enhancements reaching up to 1.2 times without
other optimization. This data underscores the tan-
gible advantages of pruning methodologies, partic-
ularly in contexts where computational resources
are constrained.

Weight Q/K/V/Out Up/Gate/FC1 Down/FC2
Dense 1.574 9.956 12.705
Sparse 1.077 6.026 6.002
Speedup 1.46x 1.65x 2.12x

Table 14: CUTLASS 2:4 Sparse Kernel Speedup on
NVIDIA A100 PCIe 40GB with seqlen = 1024 and
hidden_size = 12288, latency (ms) tested.

Execution Efficiency of the SDS Framework.
Table 16 demonstrates the time required to per-
form SDS optimization (no consideration of early
exit scenarios, c.f., Subsection 2.3). The time con-
sumption for layer-serial SDS optimization using
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Batchsize
OPT-1.3B OPT-2.7B LLaMA-7B

Dense Sparse Speedup Dense Sparse Speedup Dense Sparse Speedup
1 10999 12193 1.11x 8568 8581 1.00x 5866 6612 1.12x
4 15995 17889 1.12x 10710 12450 1.16x 6889 7723 1.12x
8 18419 19950 1.08x 11339 13105 1.16x 7029 7637 1.09x

16 18970 21909 1.15x 10251 12946 1.26x 6270 8033 1.28x

Table 15: CUTLASS 2:4 Sparse End-to-end Speedup on NVIDIA A100 PCIe 40GB with seqlen in [512, 1024,
2048], throughput (tokens/s, averaged) tested.

Type 1.3B 2.7B 7B 13B
Serial ∼ 3.3 hours ∼ 6.4 hours ∼ 12.9 hours ∼ 25.0 hours
Parallel ∼ 26 minutes ∼ 41 minutes ∼ 1.7 hours ∼ 3.1 hours

Table 16: Time Consuming of SDS Optimization. There is time consumption of single-device serial optimization
and multi-device parallel optimization as the weight adjustment type.

a single NVIDIA V100 32GB GPU ranges from
3 to 25 hours as the model grows larger. Since
SDS optimization uses SD-data (cf., Section A.2),
which is available in advance, and SDS does not
need to perform an additional forward propagation
for each optimized layer, each layer in the network
can perform optimization in parallel. On eight
V100 GPUs, we optimize layers within individual
GPUs serially and layers between GPUs in paral-
lel, so it only took us from 26 minutes to 3 hours
to perform the SDS optimization. Figure 4 shows
the wall-clock running time of SDS-SparseGPT on
LLaMA-7B and its detailed time decomposition.

  

Second Pruning

Re-dense W

Figure 4: Time Decomposition for SDS-SparseGPT Op-
timization on LLaMA-7B (1.68 hours in total).

A.8 Limitation
The Sparse-Dense-Sparse (SDS) framework im-
proves pruned PLMs through the perspective of
weight distribution optimization. Our approach
surpasses the previous SOTA methods including
SparseGPT and Wanda under the same sparsity
configuration. One limitation is that our sparsity
optimization process consumes more computation

overhead. However, we note that the introduced
optimization time is still small compared to train-
ing a language model. Once the sparse model is
obtained and deployed, one can benefit from the
acceleration on the specific hardware. The effect of
adopting different base pruning methods on SDS
and the efficiency enhancement of the SDS process
will be our future research directions.
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