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Abstract

Multimodal named entity recognition (MNER)
extends traditional named entity recognition
(NER) by integrating visual and textual infor-
mation. However, current methods still face
significant challenges due to the text-image
mismatch problem. Recent advancements in
text-to-image synthesis provide promising so-
lutions, as synthesized images can introduce
additional visual context to enhance MNER
model performance. To fully leverage the ben-
efits of both original and synthesized images,
we propose an adaptive mixup image augmenta-
tion method. This method generates augmented
images by determining the mixing ratio based
on the matching score between the text and im-
age, utilizing a triplet loss-based Gaussian Mix-
ture Model (TL-GMM). Our approach is highly
adaptable and can be seamlessly integrated into
existing MNER models. Extensive experiments
demonstrate consistent performance improve-
ments, and detailed ablation studies and case
studies confirm the effectiveness of our method.

1 Introduction

Multimodal named entity recognition (MNER) ex-
tends traditional named entity recognition (NER)
by integrating visual and textual information
(Zhang et al., 2021). Unlike conventional NER,
which relies solely on text, MNER incorporates
images to enhance contextual understanding. This
proves particularly beneficial in scenarios such as
multimedia news extraction and product informa-
tion retrieval on online platforms (Zheng et al.,
2021). Current research in MNER typically focuses
on optimizing modality representations (Zhang
et al., 2018b; Chen et al., 2021), achieving modal-
ity alignment and fusion (Lu et al., 2018; Bao et al.,
2023; Guo et al., 2023; Zeng et al., 2024; Zhou
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Figure 1: An example of using different image augmen-
tation methods for the MNER task.

et al., 2024), and mitigating image noise interfer-
ence (Sun et al., 2021; Xu et al., 2022; Zhang et al.,
2023; He et al., 2024).

Despite significant advancements, current
MNER methods struggle with the text-image mis-
match problem. When the visual content of an im-
age does not align with the corresponding textual
information, it forces models to rely solely on text
or, worse, make incorrect predictions due to image
noise. For example, in Figure 1(a), the image lacks
entities mentioned in the text, highlighting the inef-
ficiency of existing methods in handling modality
mismatches, thereby limiting model performance
and accuracy.

Recent advancements in text-to-image synthe-
sis offer promising solutions to these limitations
(Ramesh et al., 2022; Nichol et al., 2021). Tech-
nologies such as Stable Diffusion (Rombach et al.,
2021) and DALL-E (Ramesh et al., 2022) can gen-
erate visually relevant content based on text inputs,
enhancing MNER model performance. While syn-
thesized images align better with textual informa-
tion, reducing mismatches, they often lack the rich
semantic detail in real images. Conversely, though
semantically richer, real images tend to suffer from
text-image mismatches.

To leverage the benefits of both real and synthe-
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sized images, we propose using the mixup image
augmentation method (Zhang et al., 2018a). Tra-
ditional mixup techniques usually apply random
ratios for data and label mixing. Since labels can-
not be altered in the MNER context, the mixing
ratio becomes particularly crucial. We introduce an
adaptive mixup image augmentation model that de-
termines the ratio of original to synthesized images
based on a matching score derived from a triplet
loss-based Gaussian mixture model (TL-GMM).
This adaptable method can be seamlessly integrated
into existing MNER models, replacing original im-
ages with augmented ones to significantly enhance
performance.

Our main contributions can be summarized as
follows:

• We are the first to propose the use of synthe-
sized images to address the text-image mis-
match problem in MENR tasks, enhancing
performance by integrating additional visual
context.

• We introduce a novel adaptive mixup image
augmentation method, employing a triplet
loss-based Gaussian mixture model to deter-
mine the mixing ratio of original and synthe-
sized images. This method acts as a plugin
that seamlessly integrates into existing multi-
modal named entity recognition models.

• We conduct extensive experiments on multiple
MNER models, demonstrating consistent per-
formance improvements with our augmented
images. Detailed ablation studies and case
analyses confirm the effectiveness and advan-
tages of our adaptive mixing ratio setting.

2 Overview

2.1 Problem Formulation

The task of multimodal named entity recognition
(MNER) aims to extract named entities from a
given text T = {t1, t2, · · · , tn} and its associ-
ated original image I , classifying these entities
into predefined categories to produce an output set
Y = {y1, y2, · · · , yn}, where each yi is a label se-
lected from a predefined label set according to the
BIO2 annotation scheme.

This paper focuses on an enhanced version of the
MNER task that incorporates image augmentation.
Initially, an augmented image Vmix is generated
using the text T and the original image I . The

objective is to perform multimodal named entity
recognition based on the text T and the augmented
image Vmix.

2.2 Framework

As shown in Figure 2, the left diagram outlines the
overall architecture of the MNER task, which in-
cludes four components: input, adaptive mixup im-
age augmentation model (AMIA), MNER model,
and output. Our proposed AMIA model, which
is the core of our approach, aims to generate aug-
mented images that better match the text, replacing
the original images as the input for the MNER
model.

The right diagram in Figure 2 details the struc-
ture of our proposed AMIA model. It consists of
four main modules: the input representation mod-
ule, the text-image matching module, the text-to-
image generation module, and the mixup image
augmentation module. Firstly, the input represen-
tation module generates representations for both
the text and the original image. Secondly, the text-
image matching module calculates the text-image
matching score using a triplet loss-based Gaussian
mixture model (TL-GMM) to obtain an adaptive
matching score. Thirdly, the text-to-image gener-
ation module generates a synthesized image that
matches the text. Lastly, the mixup image augmen-
tation module blends the original and synthesized
images based on the adaptive matching score to
produce the augmented image.

These augmented images, along with the text,
serve as inputs to the MNER model. The MNER
model, which can be any existing model, processes
these inputs to enhance overall performance.

3 Method

In this section, we provide a detailed explanation of
how augmented images are obtained using our pro-
posed adaptive mixup image augmentation model,
which consists of four main modules: input repre-
sentation, text-image matching, text-to-image gen-
eration, and mixup image augmentation.

3.1 Input Representations Module

The input representations module is responsible for
extracting representations of the text and the orig-
inal image, which are crucial for the subsequent
text-image matching calculation. As illustrated in
Figure 2, we employ the multimodal vision and
language pre-trained model CLIP (Radford et al.,
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Figure 2: The workflow of our proposed adaptive mixup augmentation framework.

2021) as our modality-specific encoder to obtain
these representations. CLIP’s text and image en-
coders project the visual and textual modalities into
a shared embedding space, thus facilitating effec-
tive alignment between the two.

For the text input, the CLIP text encoder is used
to encode it. Given an input text T , we first tok-
enize it using byte pair encoding (BPE), result-
ing in a token sequence (t1, t2, . . . , tn), where
n denotes the sequence length. Special tokens
[SOS] and [EOS] are added at the beginning
and end of the sequence, respectively, forming
([SOS], t1, t2, . . . , tn, [EOS]). The representation
of the entire text, denoted as Ts ∈ Rd, is then ob-
tained from the activation of the [SOS] token in
the last layer of the CLIP text encoder.

For the image input, the CLIP image encoder is
employed to encode the image. An input original
image I is first resized to 224 × 224 pixels. The
image is then divided into non-overlapping 16×16
patches, which are linearly embedded to produce
their representations (i1, i2, . . . , i196). A [CLS]
token, with the same dimension as the patch em-
beddings, is prepended to the sequence, resulting
in ([CLS], i1, i2, . . . , i196). The representation of
the image, denoted as Is ∈ Rd, is derived from the
activation of the [CLS] token in the last layer of
the CLIP image encoder.

3.2 Text-Image Matching Module

The text-image matching module is designed to
evaluate the compatibility between text and original
images by calculating a matching score. Inspired

by prior research on noisy label learning (Han et al.,
2023; Huang et al., 2021), which revealed that
clean data tends to have a lower loss than noisy
data during early stages of training due to the mem-
ory effect of deep neural networks (Arpit et al.,
2017), we utilize this loss difference to distinguish
between matched and mismatched text-image pairs.
Building on this insight, we employ a triplet loss-
based Gaussian mixture model (TL-GMM) to as-
sess text-image matching and generate adaptive
matching scores θ. The specific process is as fol-
lows.

Firstly, we compute the triplet loss between text-
image pairs. Given an input text-image pair (Ts, Is)
in a batch of size N , where Ts and Is are obtained
from the input representation module, we employ
a bidirectional triplet loss to comprehensively mea-
sure text-image matching. This loss includes both
image-to-text and text-to-image triplet losses. The
image-to-text triplet loss is defined as follows:

L(I→T )
s = max(0,m− pos(I→T )

s + neg(I→T )
s )

(1)

pos(I→T )
s =

Is
∥Is∥

· Ts

∥Ts∥
(2)

neg(I→T )
s = max

i∈N

(
Is
∥Is∥

· Ti

∥Ti∥

)
, i ̸= s. (3)

Here, m is a positive margin coefficient. The text-
to-image triplet loss is defined as follows:

L(T→I)
s = max(0,m− pos(T→I)

s + neg(T→I)
s )

(4)

pos(T→I)
s =

Ts

∥Ts∥
· Is
∥Is∥

(5)
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neg(T→I)
s = max

i∈N

(
Ts

∥Ts∥
· Ii
∥Ii∥

)
, i ̸= s. (6)

We sum up the two losses to obtain the final triplet
loss Ls:

Ls = L(I→T )
s + L(T→I)

s (7)

Secondly, we fit these triplet losses using a Gaus-
sian mixture model (GMM). The triplet loss Ls

is modeled with a two-component GMM to ef-
fectively distinguish between matched and mis-
matched text-image pairs. Representing the triplet
losses with two Gaussian components helps sep-
arate the lower losses (typically corresponding to
matched pairs) from the higher losses (typically
corresponding to mismatched pairs). We optimize
the GMM using the expectation-maximization al-
gorithm and calculate the posterior probability of
the two components, which serves as a measure of
text-image matching quality. The posterior proba-
bility is defined as follows:

p(k|Ls) =
p(k)p(Ls|k)

p(Ls)
. (8)

Here, k ∈ {0, 1} indicates whether it is a matched
or mismatched component.

Finally, we choose the posterior probability of
k = 0 as the adaptive matching score θ for the text-
image pair (Ts, Is). The final adaptive matching
score is θ = p(k = 0|Ls).

3.3 Text-To-Image Generation Module
The text-to-image generation module is designed
to generate synthesized images based on the input
text. Models utilizing generative adversarial net-
works and variational autoencoders (Nichol et al.,
2021; Ramesh et al., 2022; Saharia et al., 2022)
are capable of capturing subtle semantic informa-
tion in textual descriptions and converting it into
visual features. Leveraging this capability, we use
these models to generate images that match the text,
thereby mitigating noise introduced by text-image
mismatch.

Specifically, we employ the stable diffusion (SD)
model (Rombach et al., 2021) for image generation.
The stable diffusion model is renowned for its abil-
ity to generate high-quality images that accurately
correspond to the input text. By inputting the text
T into the stable diffusion model, we obtain the
synthesized images V = SD(T ). For instance,
as illustrated in Figure 2, using the text "Jill and
I go to a bluegrass festival" as input, the Stable

diffusion model generates a synthesized image that
accurately reflects the textual description.

3.4 Mixup Image Augmentation Module
The mixup image augmentation module is designed
to combine the original image I with the synthe-
sized image V using an adaptive matching score θ
to generate augmented images.

Specifically, we employ the mixup method
(Zhang et al., 2018a) to linearly interpolate be-
tween the original and synthesized images, thus
producing an augmented image. Unlike traditional
methods, which mix both data and labels, we per-
form mixups solely on the images and do not al-
ter the labels. To balance the contributions of the
original and synthesized images, we introduce the
adaptive matching score θ. The process is detailed
as follows:

Vmix = θ × I + (1− θ)× V. (9)

Here, θ represents the adaptive matching score de-
rived from the text-image matching module. This
dynamic score adjusts the weight between the orig-
inal and synthesized images, ensuring that the aug-
mented image Vmix provides a balanced and con-
textually relevant visual representation. This aug-
mented image, along with the text, serves as input
to the MNER model, thereby enhancing overall
recognition performance.

4 Experiment

4.1 Dataset
We evaluate our proposed method on two widely
used datasets in MNER tasks: Twitter 2015 and
Twitter 2017 (Xu et al., 2022; Lu et al., 2018). Each
dataset consists of text-image pairs where the tex-
tual content may or may not correspond to the con-
tent in the image. Additionally, the text may con-
tain zero or more named entities. The entities are
categorized into four types: Person (PER), Organi-
zation (ORG), Location (LOC), and Miscellaneous
(MISC).

4.2 Evaluation Metrics
For the MNER task, an entity is deemed accurately
identified if both its span and entity type match
the gold standard. We evaluate the performance of
our proposed method using overall precision (P),
recall (R), and F1 score (F1), which are standard
metrics in MNER tasks (Chen et al., 2022; Zhou
et al., 2022).
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Data Method Twitter 2015 Twitter 2017

P R F1 P R F1

Text

BiLSTM-CRF (Huang et al., 2015) 68.14 61.09 64.42 79.42 73.43 76.31
CNN-BiLSTM-CRF (Ma and Hovy, 2016) 66.24 68.09 67.15 80.00 78.76 79.37

HBiLSTM-CRF (Lample et al., 2016) 70.32 68.05 69.17 82.69 78.16 80.17
BERT (Devlin, 2018) 68.30 74.61 71.32 82.19 83.72 82.95

BERT-CRF (Devlin, 2018) 69.22 74.59 71.81 83.32 83.57 83.44

Text+Original Image

GVATT-HBiLSTM-CRF (Lu et al., 2018) 69.15 74.46 71.70 83.64 84.38 84.01
AdaCAN-CNN-BiLSTM-CRF (Zhang et al., 2018b) 69.87 74.59 72.15 85.13 83.20 84.10

RpBERT (Sun et al., 2021) 71.15 74.30 72.69 82.85 84.38 83.61
ViLBERT (Wei et al., 2024) 73.00 74.37 73.68 83.63 85.86 84.73
UMGF (Zhang et al., 2021) 74.49 75.21 74.85 86.54 84.50 85.51
MAFN (Zhou et al., 2024) 71.99 75.19 73.56 85.66 85.79 85.72
SMVAE (Zhou et al., 2022) 74.40 75.76 75.07 85.77 86.97 86.37

DebiasCL (Zhang et al., 2023) 74.45 76.13 75.28 87.59 86.11 86.84
MRC-MNER (Jia et al., 2022) 78.10 71.45 74.63 88.78 85.00 86.85
HVPNeT (Chen et al., 2022) 73.87 76.82 75.32 85.84 87.93 86.87
R-GCN (Zhao et al., 2022) 73.95 76.18 75.00 86.72 87.53 87.11

UMT* (Yu et al., 2020) 70.24 75.671 72.86 84.04 85.34 84.69
MAF* (Xu et al., 2022) 70.98 75.05 72.96 85.08 84.83 84.95

BERT-ResNet-CRF* (Wang et al., 2022) 73.17 75.98 74.55 86.11 86.75 86.43

Text+Augmented Image
UMT*+ AMIA 73.48 73.68 73.58 85.16 85.79 85.47
MAF*+ AMIA 73.33 73.95 73.64 85.09 86.16 85.62

BERT-ResNet-CRF* + AMIA 75.08 76.21 75.62 87.23 88.00 87.62

Table 1: Comparison results on two MNER datasets. Methods marked with an * are reproduced by ours.

4.3 Parameter Settings

All experiments are conducted on an NVIDIA RTX
3090 GPU using PyTorch 1.7.1. The parameter set-
tings for our framework are as follows: For the
input representation module, we use CLIP to ob-
tain the representations of text and original images.
For the text-image matching module, we set the
batch size to 64 and the positive margin to 0.1. For
the text-to-image generation module, we utilize sta-
ble diffusion turbo to generate synthesized images
from textual descriptions.

4.4 Baselines

To evaluate the effectiveness of our proposed
method, we apply it to several existing MNER mod-
els and compare their performance under identical
settings. Specifically, we compare the performance
of these models when using text and original im-
ages versus using text and augmented images gen-
erated by our adaptive mixup image augmentation
method. Additionally, we compare our approach
against the state-of-the-art (SOTA) methods to pro-
vide a comprehensive evaluation. The baselines we
consider are as follows.

For text-based models, we select five meth-
ods: BiLSTM-CRF (Huang et al., 2015), CNN-
BiLSTM-CRF (Ma and Hovy, 2016), HBiLSTM-
CRF (Lample et al., 2016), BERT (Devlin, 2018),

https://huggingface.co/openai/
clip-vit-base-patch16

https://huggingface.co/stabilityai/
sdxl-turbo

and BERT-CRF (Devlin, 2018).
For multimodal models, we select fourteen

methods: GVATT-HBiLSTM-CRF (Lu et al.,
2018), AdaCAN-CNN-BiLSTM-CRF (Zhang
et al., 2018b), RpBERT (Sun et al., 2021), ViL-
BERT (Wei et al., 2024), UMT (Yu et al., 2020),
UMGF (Zhang et al., 2021), MAFN (Zhou et al.,
2024), MAF (Xu et al., 2022), SMVAE (Zhou et al.,
2022), DebiasCL (Zhang et al., 2023), HVPNeT
(Chen et al., 2022), MRC-MNER (Jia et al., 2022),
R-GCN (Zhao et al., 2022). Specifically, to vali-
date the effectiveness of our method, we reproduce
the UMT, MAF, and BERT-ResNet-CRF models
and compare the effects of using original images
versus augmented images.

4.5 Overall Performance
We conducted experiments on two multimodal
datasets, Twitter 2015 and Twitter 2017. As shown
in Table 1, we report the overall Precision (P), Re-
call (R), and F1 score (F1) for both datasets.

Firstly, we compared multimodal models with
text-based unimodal methods and observed that all
multimodal models outperform text-based meth-
ods. This finding demonstrates that incorporating
images enhances model performance in multimodal
named entity recognition tasks. The images pro-
vide additional context and details to the text, es-
pecially for ambiguous entities, helping the model
to better understand and distinguish them. More-
over, multimodal models capture semantic corre-
lations and consistency more effectively, thereby

https://huggingface.co/openai/clip-vit-base-patch16
https://huggingface.co/openai/clip-vit-base-patch16
https://huggingface.co/stabilityai/sdxl-turbo
https://huggingface.co/stabilityai/sdxl-turbo
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improving the robustness and accuracy of the over-
all model.

Secondly, we compared the performance of three
classic MNER models (i.e., UMT, MAF, and BERT-
ResNet-CRF) using both original and augmented
images. The results indicate that integrating aug-
mented images significantly outperforms using
original images. This validates the generalizability
and effectiveness of the augmented images in en-
hancing MNER model performance. One reason
for this improvement is that augmented images re-
duce noise from mismatched images and provide
additional image semantics that complement the
text. For the BERT-ResNet-CRF model, using aug-
mented images resulted in the best performance,
highlighting the benefits of noise reduction and ad-
ditional semantics provided by augmented images.
For the UMT and MAF models, although our repro-
duced results are slightly lower than those reported
in the original papers, using augmented images still
improved performance. This suggests that our aug-
mented images are robust across different models
and settings.

4.6 Ablation Study

In this section, we conduct ablation studies to verify
the effectiveness of our proposed model. Specif-
ically, we compare the results of using different
mixing strategies and examine the effects of using
matched and mismatched text-image pairs.

4.6.1 Comparison of Different Mixing
Strategies

We compare the results of various mixing strate-
gies: 1) no mixing, meaning using either only syn-
thesized images (θ = 0) or only original images
(θ = 1); 2) fixed mixing ratios (θ = 0.3, 0.5, 0.7);
and 3) dynamic mixing ratios, including cosine sim-
ilarity between text and images, and the text-image
matching module proposed in this paper. The re-
sults are presented in Table 2.

Firstly, we compare the effectiveness of dynamic
mixing ratios against no mixing at all. The non-
mixing methods involve using only original im-
ages (θ = 1) or only synthesized images (θ = 0).
The experimental results across three different mul-
timodal named entity recognition models show
that dynamic mixing ratios outperform non-mixing
methods. This indicates that original and synthe-
sized images are complementary, and the best per-
formance is achieved when both are utilized to-
gether.

Method Mixing Ratios Twitter 2015 Twitter 2017

P R F1 P R F1

UMT+AMIA

Ours 73.48 73.68 73.58 85.16 85.79 85.47
cosine 71.91 74.84 73.37 85.11 85.05 85.08

θ = 1.0 70.24 75.67 72.86 84.07 85.21 84.64
θ = 0.0 71.44 75.67 73.49 85.08 84.31 85.06

θ = 0.7 70.01 75.16 72.50 82.82 86.69 84.71
θ = 0.5 72.01 74.02 73.00 83.06 86.67 84.83
θ = 0.3 71.51 74.42 72.94 84.94 84.81 84.87

MAF+AMIA

Ours 73.33 73.95 73.64 85.09 86.16 85.62
cosine 73.31 75.25 73.28 85.14 85.64 85.39

θ = 1.0 70.98 75.05 72.96 85.08 84.83 84.95
θ = 0.0 70.68 74.62 72.65 83.35 86.23 84.74

θ = 0.7 70.11 75.09 72.58 83.81 85.89 84.84
θ = 0.5 70.39 75.17 72.70 82.79 87.29 84.98
θ = 0.3 71.42 74.99 73.16 84.66 85.58 85.12

BERT-ResNet-CRF+AMIA

Ours 75.08 76.21 75.62 87.23 88.00 87.62
cosine 74.59 75.89 75.24 87.04 87.50 87.26

θ = 1.0 73.17 75.98 74.55 86.11 86.75 86.43
θ = 0.0 73.71 76.27 74.97 85.86 88.49 87.16

θ = 0.7 74.37 74.85 74.61 86.73 86.60 86.67
θ = 0.5 74.03 75.00 74.51 86.87 86.68 86.77
θ = 0.3 74.91 74.97 74.94 86.10 87.56 86.83

Table 2: Comparison results of different MNER models
using different mixing strategies.

Secondly, we compare the performance of dy-
namic mixing ratios with fixed mixing ratios. The
experimental results across three different multi-
modal named entity recognition models indicate
that dynamic mixing ratios outperform fixed mix-
ing ratios, underscoring the necessity of the pro-
posed dynamic mixing approach.

Lastly, we compare the performance of different
dynamic mixing methods. The experimental results
across three different MNER models show that the
dynamic mixing methods based on the triplet loss-
based Gaussian Mixture Model proposed in this
paper outperform those based on cosine similarity.
This demonstrates the effectiveness of the triplet
loss-based Gaussian mixture model methods pro-
posed in this paper.

4.6.2 Effects of Mismatched and Matched
Text-Image Pairs

We compare the performance of different MNER
models on matched and mismatched text-image
pairs. The determination of matched and mis-
matched pairs is based on the matching score pro-
posed in this paper. If θ > 0.5, it indicates that the
text and image are matched; otherwise, they are
mismatched. We split the test sets of Twitter2015
and Twitter2017 into two parts and compared the
performance of different models on these distinct
subsets. The results are shown in Table 3.

Firstly, we compare the performance of all meth-
ods on matched and mismatched text-image pairs.
The experimental results consistently show that
using matched text-image pairs outperforms us-
ing mismatched pairs. This aligns with common
understanding and further validates that our pro-
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Method Image Twitter 2015 Twitter 2017

P R F1 P R F1

Mismatched Text-Image Pairs

UMT
Original 70.73 73.75 72.21 82.32 85.89 84.07

Synthesized 70.87 74.48 72.63 84.59 84.53 84.56
Augmented 70.06 75.49 72.68 83.38 86.20 84.76

MAF
Original 70.52 74.12 72.28 83.61 84.65 84.13

Synthesized 71.10 73.84 72.76 83.43 85.89 84.64
Augmented 70.77 75.16 72.86 83.56 85.89 84.71

BERT-ResNet-CRF
Original 73.21 75.49 74.33 85.85 86.51 86.18

Synthesized 72.80 76.36 74.54 86.51 86.90 86.71
Augmented 74.00 76.66 74.82 86.98 86.81 86.90

Matched Text-Image Pairs

UMT
Original 72.87 76.04 74.42 85.53 86.16 85.84

Synthesized 73.13 76.04 74.54 85.25 86.16 85.70
Augmented 73.07 76.32 74.66 86.05 85.94 85.98

MAF
Original 74.16 75.08 74.55 84.83 86.53 85.67

Synthesized 73.36 75.77 74.51 84.95 86.53 85.73
Augmented 73.59 75.86 74.71 85.88 85.71 85.78

BERT-ResNet-CRF
Original 73.21 75.49 74.33 85.78 88.82 87.23

Synthesized 74.00 76.66 74.48 87.84 87.19 87.51
Augmented 74.19 74.81 74.50 86.84 88.45 87.64

Table 3: Comparison results of different MNER models
on mismatched and matched text-image pairs.

posed method can effectively distinguish between
matched and mismatched text-image pairs.

Secondly, we compare the performance of differ-
ent image strategies on matched text-image pairs.
The experimental results indicate that when text
and images are matched, using either original im-
ages or synthesized images achieves similar per-
formance, both of which are lower than using aug-
mented images. This suggests that synthesized
images can indeed complement original images
to enhance the performance of multimodal named
entity recognition tasks.

Lastly, we compare the performance of different
image strategies on mismatched text-image pairs.
The experimental results show that when text and
images are mismatched, synthesized images out-
perform original images, and both are less effective
than using augmented images. This also demon-
strates the effectiveness of our proposed mixing
strategy.

4.7 Case Study

We select two representative samples from the test
set to verify the effectiveness of our proposed adap-
tive mixup image augmentation method. The de-
tails are as follows and are illustrated in Table ??:

In the first case, the augmented image supple-
ments the missing semantic information of the orig-
inal image through a synthesized image. The text
contains two entities, "Manchester" and "Ariana
Grande", but the original image only depicts a
scene related to "Manchester". The augmented
image adds synthesized content related to "Ariana
Grande". The augmented image incorporates in-

formation from both entities by utilizing adaptive
matching scores, correcting the model’s initial error
of recognizing only "Manchester".

In the second case, the augmented image effec-
tively filters out noise that does not match the orig-
inal image context. The original image contains
only a segment of text, causing the model to incor-
rectly identify the entity "Hemingway" as miscella-
neous. The synthesized image includes a portrait of
Hemingway, and the augmented image, optimized
through adaptive matching scores, emphasizes the
relevant synthesized content while reducing the
noise impact from the original image. This allows
the model to correctly recognize "Hemingway" as
the correct entity type.

5 Related Work

5.1 Multimodal Named Entity Recognition

Multimodal named entity recognition (MNER) has
garnered significant attention in recent years. It
aims to enhance the accuracy and robustness of
entity recognition by integrating information from
both text and images (Zhang et al., 2023; Liu et al.,
2024; Zhou et al., 2024). Existing research pri-
marily concentrates on modality fusion and align-
ment and mitigating image noise interference. ITA
(Wang et al., 2022) aligns images with regional
object tags, image-level captions, and optical char-
acters as visual contexts. These are concatenated
with input texts to form a new cross-modal input,
which is then fed into a pre-trained textual em-
bedding model. HamLearning (Liu et al., 2023)
proposes dynamically aligning image and text se-
quences to achieve multi-level cross-modal learn-
ing, thereby enhancing text word representation.
The cross-modal matching module of MAF (Xu
et al., 2022) and the fine-grained visual feature ex-
traction method of P-MNER (Zhuang et al., 2023)
aims to reduce noise by selectively filtering out
irrelevant regions of the image. Additionally, (Lu
et al., 2018) proposes an attention mechanism-
based model to extract visual features from image
areas most relevant to the text while ignoring irrel-
evant visual information. However, these models
do not truly address the issue of mismatched im-
ages and texts. When the images are mismatched,
these models can only rely on text information.
This paper proposes using a text-to-image model to
generate images related to the text, addressing the
limitations of the above multimodal named entity
recognition models.
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Case 1 Case 2

Original Synthesized Augmented Original Synthesized Augmented

Image

Text Ariana Grande [PER] arrives in Manchester [LOC] The strategy of Hemingway [PER]

Adaptive Matching Score 0.4739 0.0103

BERT-ResNet-CRF O , LOC X MISC X

BERT-ResNet-CRF+AMIA PER, LOC ✓ PER ✓

Table 4: Two cases demonstrating the importance of the AMIA model.

5.2 Cross-modal Matching

Cross-modal matching aims to establish a corre-
spondence between two modalities (Huang et al.,
2021; Zha et al., 2024). It has extensively been
researched within the multimodal field and serves
as the basis for tasks such as cross-modal retrieval
(Huang et al., 2023), visual question answering
(Guo et al., 2019), and text-image matching. Ex-
isting matching methods primarily learn modality-
specific feature representations and then align the
two modalities in a common embedding space
(Chen et al., 2021; He et al., 2021). VSE++ (Faghri
et al., 2017) proposed a hard negative sample min-
ing strategy applied to the ranking loss to improve
discriminative embeddings of each specific modal-
ity. CHAN (Pan et al., 2023) uses hard assign-
ment codes to mine informative region-word pairs
and filters out mismatched alignments. These ap-
proaches are based on the ideal assumption of per-
fect cross-modal matching. However, most data
are not perfectly matched, introducing noise that
reduces model performance. Consequently, noisy
correspondence learning has emerged as an impor-
tant research direction in this field (Han et al., 2023;
Huang et al., 2024). Noisy correspondence rectify
(NCR) (Huang et al., 2021) involves processing im-
age data with label noise and then dividing the data
into clean and noisy datasets based on a Gaussian
mixture model fitted with each sample loss. In this
paper, we propose a new noisy label paradigm by
replacing traditional label noise with images that
do not match the text, thereby measuring the degree
of text-image matching.

5.3 Image Augmentation

Image augmentation research primarily seeks to
enhance image quality and visual effects, expand
existing datasets, and improve model generaliza-

tion capabilities (Wang et al., 2024). Traditional
methods often rely on geometric transformations
such as rotation, translation, cropping, resizing, and
flipping (Karen, 2014; Zhong et al., 2020). With
the advent of deep learning, techniques like Au-
toAugment (Cubuk et al., 2019) and RandAugment
(Cubuk et al., 2020) automatically select augmen-
tation operations based on search strategies. Addi-
tionally, mixup augmentation (Zhang et al., 2018a)
generates more diverse image features through lin-
ear interpolation between samples. However, these
methods are limited to transformations of the orig-
inal image and fail to fully utilize advanced tech-
niques, such as text-to-image models, to enhance
the alignment between images and task objectives,
thus restricting their performance in more complex
tasks. In this paper, the mixup method is employed
to combine original and synthetic images, generat-
ing augmented images to enhance the performance
of the MNER model.

6 Conclusion

In this paper, we propose an adaptive mixup im-
age augmentation model to address the text-image
mismatch issue in multimodal named entity recog-
nition (MNER) tasks. Our method employs a triplet
loss-based Gaussian mixture model to determine
the matching score between original text-image
pairs, generates synthesized images using a text-
to-image model, and then mixes the original and
synthesized images based on matching scores to
create an augmented image. Extensive experiments
demonstrate consistent performance improvements
across various MNER models. Detailed ablation
studies and case analyses confirm the effectiveness
of our approach, which can be seamlessly inte-
grated into existing MNER frameworks to enhance
their robustness and accuracy.
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Limitations

While our proposed adaptive mixup image aug-
mentation encoder can act as an image input plugin
for other MNER models, it has two main limita-
tions. First, existing methods might employ multi-
granularity image information, such as object la-
bels and scene graphs. Using our augmented im-
ages in such contexts may lead to information con-
fusion, limiting the applicability of our plugin to
MNER models that require multi-granularity image
processing. Second, the quality of our synthesized
images is constrained by the performance of cur-
rent text-to-image models, which can affect the
overall enhancement effect.
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