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Abstract
Combined Image Retrieval (CIR) involves re-
trieving an image based on a reference image
and a brief text description, which is widely
present in various scenarios such as fashion
recommendation. Existing methods can be
mainly divided into two categories, respec-
tively supervised CIR methods and Zero-Shot
CIR (ZS-CIR) methods. In contrast to super-
vised CIR methods, which need manually an-
notated triples for training task-specific models,
ZS-CIR models can be trained using images
datasets only and performs well. However, ZS-
CIR still faces the primary challenge of learn-
ing how to map pseudo-words to images within
the joint image-text embedding space. There-
fore, in this paper, we propose a novel image-
text mapping network, named MLLM-I2W,
which adaptively converts description-related
image information into pseudo-word markers
for precise ZS-CIR. Specifically, the image and
text encoding enhancement module within the
MLLM prompt selects subject headings and
generates text descriptions. It then reduces the
modality gap between images and text using
uncertainty modeling. An adaptive weighting
module and a prototype are proposed to adjust
and learn the deep fusion features, which are
further mapped to pseudo-word markers via
well-designed MOE-based mapping network.
Our model demonstrates consistent improve-
ments across common CIR benchmarks, includ-
ing COCO, CIRR, and Fashion-IQ.

1 Introduction

Combined Image Retrieval (CIR), also known as
Image Retreival conditioned on Language Feed-
back, involves retrieving an image based on a
reference image and a brief text description (Vo
et al., 2019; Li et al., 2024). Specifically, the ref-
erence image captures the overall scene, while the
text description provides specific modification de-
tails. The CIR task is widely present in various
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real-world scenarios. For example, in fashion rec-
ommendation and shopping scenarios (Wu et al.,
2021), there are often specific requirements, such
as finding other clothing items that are similar to
a given style but have a different logo. A major
challenge of this task is distinguishing between
crucial information (e.g., objects of interest) and ir-
relevant details (e.g., background elements). There
are two categories of approaches to addressing the
above challenge, respectively supervised CIR meth-
ods and Zero-Shot CIR (ZS-CIR) methods. As
illustrated in Figure 1 (a), supervised CIR meth-
ods use triples consisting of reference images, text
descriptions, and target images, while Zero-Shot
CIR methods utilize images or image-text pairs for
training. Although supervised CIR models excel
in retrieval tasks, however, annotating triples are
required for training these models, which involves
two costly processes (Liu et al., 2021a): collecting
reference and target image pairs and providing de-
scriptions of modifications. Additionally, models
trained on labeled data are often tailored to spe-
cific use cases and may not generalize well to other
CIR tasks (Saito et al., 2023; Baldrati et al., 2023).
To address this issue, researchers have turned their
attention to ZS-CIR methods (Saito et al., 2023)
which do not need a task-specific annotated dataset.
Instead, these methods employ readily available
image-text pairs to train a general model applicable
across various tasks.

The basic workflow of ZS-CIR methods involves
two stages. In the initial stage, a dual-stream model
was trained to enhance the similarity between im-
ages and text. This was achieved using an image-
text pre-training model, such as CLIP (Radford
et al., 2021), on an image-text pair dataset. In
the second stage, the language encoder in CLIP is
used to map images to pseudo-word tags. This ap-
proach allows the language encoder to effectively
integrate query image features with text descrip-
tions. In the ZS-CIR task, we use pseudo-words to
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Figure 1: CIR differs from ZS-CIR in both training and processing due to variations in mapping strategies.

represent text features that closely match the query
image’s embedded features in CLIP’s public image
embedding space. The core task of ZS-CIR is to es-
tablish a combined understanding between image
and text, specifically capturing text features that
closely align with image features in the image-text
joint embedding space. These mapped text features
are referred to as pseudo-words. Figure 1 (c) and
(d) illustrate two typical ZS-CIR model paradigms,
while Figure 1 (e) demonstrates the role of the
MLLM model in our proposed MLLM-I2W frame-
work. Previous work encountered several issues:
the absence of visual guidance caused model to
struggle with focusing on relevant content, particu-
larly in images with multiple objects. Additionally,
the integration of image and text features lacked
thorough exploration of deep semantic informa-
tion. Furthermore, the mapping network relies on
a single fully connected layer, which limits model
performance.

This paper focuses on pseudo-word generation
for the ZS-CIR task. We use a pre-trained CLIP
model as the backbone of our mapping network. To
enable the model to concentrate on key visual ele-
ments, we use a learnable token <replace> to direct
its attention to specific parts of the image, rather
than broadly analyzing global image features. To
select tags effectively, we designed a prompt that
directs MLLM to base its selections on image con-
tent, rather than relying solely on parts of speech.
Additionally, subtitles generated by CLIP and simi-
lar zero-shot models are often overly simplistic,
coarse, and lacking in context. Automated or

semi-automated annotations for large-scale graphic
datasets also frequently result in overly abbreviated
text. To address this issue, we leverage MLLM to
image and text understanding capabilities, along
with its modality generation features, to design
prompts that enhance text data augmentation. To
summarize, we designed a image encoding en-
hancement module within MLLM prompts. This
module comprises two components: subject word
selection and text enhancement. Like other image
and text retrieval tasks, ZS-CIR encounters modal
gaps (Liang et al., 2022), where fine-grained im-
age features and coarse-grained text features are
located in different clusters within a shared feature
space. To address this issue, we incorporate un-
certainty modeling to both the visual and textual
feature branches. Specifically, adding Gaussian
noise to the feature increases its dispersion in the
feature space, leading to greater overlap among
features from different modes. Our experiments
revealed that visual features are not as significant
as text features, and the query results depend on
the weights assigned to these features. Based on
these observations, we have designed an adaptive
fusion module that assigns varying weights to query
images and texts based on their respective contribu-
tions, thereby generating optimized fusion features.
To further enhance performance, we developed a
set of prototypes for querying and learning deep
fusion features. We also modified the mapping net-
work to an Mixture of Experts (MOE) structure to
improve generalization capabilities.
• In this paper, we propose a novel mapping net-
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work that translates images into pseudo-words
using MLLM. This network leverages MLLM
for subject word selection and text enhancement
in image and text encoding.

• We addresse the modality gap by incorporating
uncertainty modeling in feature fusion and im-
proves feature learning through this modeling
approach. This approach offers a novel perspec-
tive on aligning visual and textual information.

• We merge prototype learning to extract deep fu-
sion features within the MLLM-I2W framework.
Additionally, we design the mapping network
component as an MOE model, which enhances
the performance of MLLM-I2W.

• The proposed MLLM-I2W mapping network
performs effectively in ZS-CIR tasks, demon-
strating superior results across three CIR bench-
marks: object composition, object/scene oper-
ation, and attribute operation. It outperforms
context-independent mapping methods and most
supervised approaches.

2 Related Work

2.1 Multimodal Large Language Models

Multimodal large language models (MLLMs) (Yin
et al., 2023) build upon pre-trained large language
models (LLMs) as their unimodal components.
LLMs are designed for semantic understanding,
reasoning, and decision-making, generating text
outputs and signal labels from various modali-
ties (Zhao et al., 2023). LLMs offer key features
including robust language generation (Yin et al.,
2023), zero-shot transfer capabilities, and contex-
tual learning (ICL) (Kojima et al., 2022). While
LLMs typically handle natural language processing
(NLP) tasks, MLLMs support a broader range of ap-
plications. Given MLLM success in image-to-text
understanding and modality-specific generation, re-
searchers have sought to enhance CIR models us-
ing MLLM. Examples include HyCIR (Jiang et al.,
2024), which generates query text for image pairs
using visual language models and LLMs, and the
use of synthetic CIR triplets to boost CIR perfor-
mance. CIREVL (Karthik et al., 2023) employs
pre-trained generative VLMs to caption reference
images and uses LLMs to reassemble these cap-
tions according to text modifications, facilitating
subsequent retrieval with models like CLIP (Rad-
ford et al., 2021). LDRE (Yang et al., 2024) em-
ploys a pre-trained title model to generate detailed
titles for reference images. It then prompts LLMs

to perform combinatorial inference based on these
titles and modified texts, producing various editing
titles that cover potential semantics of the com-
bined target.

These studies explored the use of MLLM and
LLM models in CIR tasks but did not leverage
MLLM’s capabilities for detailed analysis and pro-
cessing of image-text pairs. Therefore, we propose
that MLLM should use the image to identify rele-
vant subject words in the text. This approach will
help guide the model in focusing on pertinent infor-
mation, generating accurate visual modalities, and
improving the text description of the image.

2.2 Zero-Shot Composed Image Retrieval
Combined Image Retrieval (CIR) (Wu et al., 2021;
Ilharco et al., 2021) leverages both text-based and
image-based retrieval methods. It uses fine-grained
image details to address gaps in coarse-grained text
descriptions, allowing users to refine query images
through interactive conversations to retrieve spe-
cific items. Training a CIR model requires a triplet
consisting of a query image, description text, and a
target image. Annotating this triplet involves two
steps (Liu et al., 2021a): collecting relevant refer-
ence and target image pairs for the CIR system, and
providing a description of the modified reference
image for the target. Both steps involve substantial
labeling costs. Additionally, models trained on la-
beled data are often tailored to specific use cases
and may not generalize well to other CIR tasks.
Recent research in visual language models has led
to interest in zero-shot combined image retrieval
methods that do not rely on task-specific models.
Previous works can be categorized based on their
data usage during training. Some use only images,
such as Pic2Word (Saito et al., 2023), which em-
ploys a pre-trained visual language model to con-
vert images into language markers, enabling flexi-
ble combinations of images and text queries. Text-
only approaches, like LinCIR (Gu et al., 2024), use
a self-supervised dataset known as Self-Masking
Projection (SMP). This method projects latent text
embeddings into a marker embedding space and
generates new text by replacing keyword tags from
the original text. This process ensures that the new
text has the same potential embedding vector as the
original text. Methods trained on image-text pairs
include Context-I2W (Tang et al., 2024), which
introduces a novel image-to-context word map-
ping network. This network enhances performance
through view selection and target extraction and
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uses operation descriptions and learnable queries as
multi-level constraints for visual information filter-
ing, offering a new approach to visual-to-language
alignment.

These methods have limitations: using image-
only training lacks interaction between query im-
ages and text descriptions, and does not fully lever-
age textual information. Text-only methods empha-
size generating new text and descriptions but also
lack interaction between query images and text,
missing fine-grained information provided by im-
ages. Training methods with image-text pairs fall
into two categories: those using human annotation
and those using automated or semi-automated text
generation or correction. Automated methods often
overlook contextual cues from visual content, in-
troducing irrelevant noise and leading to inaccurate
query results.

3 Methodology

3.1 Overview

To address the challenge of ZS-CIR, we propose the
MLLM-I2W framework. This framework includes
enhanced encoding with MLLM, an uncertainty
modeling module, adaptive modal fusion, a proto-
type learning module, and an MOE-based mapping
network, as illustrated in Figure 2. We will now
provide a detailed description of each module in
the model.

3.2 Enhanced Encoding with MLLM

In CIR tasks, text descriptions typically target spe-
cific objects within an image. Directly using these
descriptions as visual guides can lead the model to
focus on global visual features, such as background
elements and irrelevant objects. To overcome this
issue, prior research employed contextual features
as mapping rules. These rules translate image rep-
resentations into text-specific views that interact
with visual features in complementary ways, en-
hancing the accuracy of pseudo-word mapping. For
instance, in Context-I2W, the part-of-speech anno-
tator Spacy (Honnibal et al., 2020) replaces the first
noun in the context with a learnable tag [replace]
during training. However, this approach does not
ensure that the first noun in the context will be the
most relevant subject for the image’s main content.
Leveraging the superior performance of MLLMs
in image-to-text tasks, we designed the Enhanced
Encoding with MLLM module. This module com-
prises two components: the MR/ME Text Descrip-

tion Module (MRT/MET). The MRT component
prompts: "Please replace the most relevant nouns
in the <replace> text with learnable markers [re-
place] using MLLM," while the MET component
prompts: "Please generate a brief description of the
image." Finally, the text was input into the frozen
visual encoder of CLIP, and the [CLS] tag embed-
ding t = {ti}di=1 ∈ Rd×1 was obtained to guide
visual feature extraction.

3.3 Uncertainty Modeling

The core task of ZS-CIR is to map text features
corresponding to image feature I to pseudo-word
markers S∗ in the shared embedding space of im-
ages and text. However, previous studies have
shown that text and image embeddings, such as
those in CLIP, often cluster separately in the fea-
ture space. This issue is commonly referred to as
a modal gap (Liang et al., 2022; Gu et al., 2023).
To address this issue, (Chen et al., 2022) com-
bines uncertainty modeling and regularization to
tackle the challenges of both coarse-grained and
fine-grained image retrieval in real-world scenarios.
Specifically, adding Gaussian noise to the feature
increases its dispersion in the feature space, leading
to greater overlap among features from different
modes. This approach involves generating uncer-
tainty features to describe and dynamically adjust
weights according to fluctuations. Inspired by this
approach, we redesigned the Uncertainty Model-
ing module, illustrated in Figure 2. This redesign
involves adding Gaussian noise to the target fea-
tures derived from the original feature distribution,
calculating the mean and standard deviation of this
noise, and incorporating multi-head attention to
enhance the representation of visual and textual
features. Simply put, adding noise disperses the
eigenvectors of this modality in the eigenspace,
leading to increased overlap with eigenvectors of
other modalities.

3.4 Adaptive Modal Fusion

Previous studies often treated visual and text fea-
tures as equally important. However, our experi-
ments revealed that varying the weights assigned
to image and text features influenced retrieval per-
formance. We tested this hypothesis using COCO
and CIRR datasets, with detailed results provided
in Table 1. For the COCO dataset, the optimal per-
formance of 11.2 was achieved with text and image
weights of 0.6 and 0.4, respectively. In contrast, for
the CIRR dataset, the highest performance of 24.7
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Figure 2: Architecture of the proposed MLLM-I2W framework.

was observed with text and image weights of 0.8
and 0.2, respectively, compared to 13.0 with equal
weights of 0.5. These results indicate that appro-
priately allocating modal weights can significantly
enhance performance. Therefore, different weights
should be assigned to query images and texts based
on their relative contributions. Inspired by the work
of (Huang et al., 2024), we have developed an adap-
tive modal fusion module, as illustrated in Figure 2
(d). This module uses an attention mechanism to
effectively represent both text feature t and visual
feature v, the attention module is used to represent
t∗, v∗,

tatt = Att(Q,K, V ) = softmax

(
QKT

√
d

)
V,

vatt = Att(Q,K, V ) = softmax

(
QKT

√
d

)
V,

(1)

t̃ = FFW (tatt + t) + tatt,

ṽ = FFW (vatt + t) + vatt,
(2)

where FFW (·) denotes 2-layer feed-forward net-
works.

t∗ = MLP
[
Concat

(
tatt, t̃

)]
,

v∗ = MLP [Concat (vatt, ṽ)] .
(3)

Specifically, we use α for the importance of the
text and 1− α for the importance of the image. α
is calculated as:

α = Sigmoid (FC (t∗,v∗)) . (4)

The final fusion feature f is represented as:

f = α · t∗ + (1− α) · v∗. (5)

3.5 Prototype Learning Modeling
Prototype learning simulates human generalization
to new situations by learning from typical exam-
ples. Its core idea is to optimize a set of repre-
sentative samples (archetypes) and use them for
tasks such as classification, regression, or cluster-
ing. The main advantage of prototype learning is
its ability to manage complex data distributions,
particularly when there is overlap or imbalance
among categories. In this subsection, we aim to
extract more robust features for ZS-CIR tasks using
prototype-based learning modules. Specifically, we
designed a set of randomly initialized prototypes
P = [p1, p2, · · · , pk] ∈ Rd×k. Each prototype con-
tains distinct semantic information. To enable these
archetypes to capture deep features, each archetype
acts as a query in the converter layer, with the fu-
sion feature f serving as the key and value. The
deep fusion feature f̃ ∈ Rk×d̄ obtained through
prototype learning is expressed as follows:

f̃ = PL (P, f) = Concat (g1 (p1, f) , · · · , gk (pk, f)) ,
(6)

gi (pi, f) = Wk (MHA(pi, f, f) , (7)

MHA (Q,K, V ) = MLP (MultiHead (Q,K, V )) ,

(8)
where W k ∈ Rd̄×d denotes an FC layer for the kth

query p. Formally, MHA represents a transformer
block, comprising a multi-head attention mecha-
nism and a feed-forward network, where Q, K, and
V are abbreviations for query, key, and value.
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Dataset
Text weights/Image weights

0.9/0.1 0.8/0.2 0.7/0.3 0.6/0.4 0.5/0.5 0.4/0.6 0.3/0.7 0.2/0.8 0.1/0.9

COCO 7.2 9.4 10.8 11.2 11.0 10.4 9.9 9.6 9.6
CIRR 24.3 24.7 20.5 16.0 13.0 10.7 9.4 8.6 7.8

Table 1: The results of R1 on the COCO and CIRR datasets when the text image is assigned with different weights.

3.6 Mapping network of the MOE model

The primary challenge in ZS-CIR is to develop a
combinatorial understanding between image and
text. To address this issue, previous work (Saito
et al., 2023; Cohen et al., 2022) proposed a method
based on pseudo-word markers, which uses a pro-
jection module to convert VLP image encoder out-
puts into pseudo-word markers. Specifically, the
mapping network consists of three fully connected
layers. The pseudo-word tag is combined with the
text tag and then forwarded to the VLP text en-
coder to generate a representation embedding for
image-text ZS-CIR. To enhance the performance of
MLLM-I2W across various tasks, we will replace
the MLP network with an MOE model. Specifi-
cally, each expert model is a three-layer fully con-
nected network. In our experiments, we define
four experts, routing inputs to the first two experts.
Additionally, to prevent all tokens from being pro-
cessed by only one or a few experts, we establish
an expert capacity limit. If an expert exceeds its
capacity, it will truncate the excess tokens.

3.7 Loss Function

As shown in Figure 2 (a), we add S∗ to the end of
the token embedding in the prompt, i.e., a photo
of, to get s̃. We then input s̃ into the language
encoder to get the language embeddingŝ, hoping
that ŝ will represent the input image embedding
v. To achieve this, we recommend minimizing the
loss of contrast relative to the mapped network, i.e.

L = Lt2i(ŝ, v) + Li2t(ŝ, v). (9)

The two contrastive loss terms with a temperature
hyperparameter τ that controls strength of penalties
on hard negative samples are defined as:

Lt2i(ŝ, v) = − 1

|B|
∑
i∈B

log
exp

(
τ ŝ

T
i vi

)
∑

j∈B exp
(
τ ŝi

T
vj

) ,
(10)

Li2t(ŝ, v) = − 1

|B|
∑
i∈B

log
exp

(
τvTi ŝi

)∑
j∈B exp

(
τviT ŝj

) ,
(11)

Dataset Query images Candidate images

COCO 4766 4766
CIRR(test) 4148 2315

Fashion(Dress) 2017 3817
Fashion(Shirt) 2038 6346

Fashion(Toptee) 1961 5373

Table 2: The number of images used for evaluation in
each dataset.

where ŝ = ŝi
∥ŝi∥ , v =

vj
∥vj∥ are the normalized fea-

tures of ith prompt sentence embedding ŝi, and the
jth image global embedding vj in a batch B.

3.8 Inference
During the inference process, our objective is to
extract combined features and calculate similarity
metrics for the candidate image features. As illus-
trated in Figure 2 (b), we developed a prompt input
CLIP text encoder featuring a [replace] tag as a
visual guide. The pseudo-word label S∗, mapped
through the MLLM-I2W network, is then com-
bined with the visual features as input. Subse-
quently, the [replace] tag in the text is substituted
with S∗, and the resulting combination feature is
queried. For each task, we design our prompts as
follows: Object/scene composition: "a photo of [re-
place], [obj1 tag], . . . , and [objn tag];" Sentence
manipulation: "a photo of [replace], [sentence]."

4 Experiment

4.1 Experimental Setup
Datasets. The Conceptual Captions (Sharma
et al., 2018) consists of 3 million image-caption
pairs, designed for training and evaluating machine
learning-based image captioning systems. The MS
COCO (Microsoft Common Objects in Context)
dataset (Lin et al., 2014) is a large-scale dataset
for object detection, segmentation, keypoint detec-
tion, and image captioning. It contains 328,000
images. The CIRR (Compose Image Retrieval on
Real-life images) dataset (Liu et al., 2021b) con-
tains over 36,000 pairs of crowd-sourced, open-
domain images with human-generated descriptive
text. This dataset aims to incorporate linguistic
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Supervision Methods R1 R5 R10

Zero-shot

Image-only 8.6 15.4 18.9
Text-only 6.1 15.7 23.5

Image+Text 10.2 20.2 26.6
Pic2word 11.5 24.8 33.4

Context-I2W 13.5 28.5 38.1
MLLM-I2W 15.7 31.2 40.9

CIRR Combiner 9.9 22.8 32.3
Fashion-IQ Combiner 13.2 27.1 35.2

Table 3: Results of the object composition task using
COCO.

Figure 3: Retrieved results on the object composition
task using COCO.

context into visual reasoning research. Fashion
IQ (Wu et al., 2021) is the first fashion dataset to
offer human-generated captions that differentiate
similar garment images. It also includes side infor-
mation such as real-world product descriptions and
derived visual attribute labels for these images.

Evaluation Dataset. Table 2 describes the de-
tails of the dataset, i.e., number of query images
and candidate images used for evaluation.

Baseline.
• Images only: This baseline calculates the fea-

tures of both the target image and the query im-
age using CLIP visual encoder, then computes
the similarity between these features.

• Text only: This baseline computes features for
the text using CLIP text encoder and features
for the image using CLIP visual encoder, then
calculates the similarity between these features.

• Image + text: This baseline uses CLIP to extract
features from both the text and the query image,
averages these features to form a combined query
feature, and then computes the similarity with the
target image features.

Evaluation Metrics. As in previous studies, we
evaluate model performance on the CIR dataset
using Recall@K. Recall@K measures the ratio of
relevant results among the top K retrieved results to
the total number of relevant results in the database,
indicating the retrieval system’s recall rate.

Figure 4: Retrieved results on the object/scene manipu-
lation task using CIRR.

Figure 5: Retrieved results on the attribute manipulation
task using Fashion-IQ.

Implementation Details. We use the ViT-L/14
CLIP model (Radford et al., 2021), pre-trained
on 400 million image-text pairs. For training
MLLM-I2W, we use the Conceptual Captions
dataset (Sharma et al., 2018). We set the number of
shared prototypes K to 6 and use 4 experts in the
MOE model, with each expert being a three-layer
MLP with a hidden dimension of 512. To enhance
training stability, we initialize the learnable scalar
of the tanh-gating to 0 (Bachlechner et al., 2021).
We use AdamW (Loshchilov, 2017) with a learning
rate of 5×10−6, a weight decay of 0.1, and a linear
warmup over 10,000 steps. The batch size for con-
trastive learning is 512, and we train the model on 4
Tesla A6000 (48G) GPUs. Performance results are
reported as the average over three trials to ensure
reliability.

4.2 Main Results
To assess the validity of our model design, we
evaluated it on three distinct ZS-CIR datasets:
COCO (Lin et al., 2014) for object composition,
CIRR (Liu et al., 2021b) for object and scene ma-
nipulation, and Fashion-IQ (Wu et al., 2021) for
attribute manipulation. To ensure a fair compari-
son, we adhered to the dataset configurations used
in recent studies. The baselines we selected for
comparison included both a zero-shot baseline and
a partially supervised model. The specific baselines
are as follows:
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Supervision Methods R1 R5 R10 R50

Zero-shot

Image-only 7.4 23.6 34.0 57.4
Text-only 20.9 44.8 56.7 79.1

Image+Text 12.4 36.2 49.1 78.2
PALAVRA 16.0 - 58.5 83.9
Pic2word 23.9 51.7 65.3 87.8
Searle-xl 24.2 52.4 66.3 88.6
CIReVL 24.6 52.3 64.9 86.3

Context-I2W 25.6 55.1 68.5 89.8
PM 26.1 - 67.5 90.2

MLLM-I2W 28.3 57.9 70.2 93.9
CIRR Combiner 30.3 60.4 73.2 92.6

Fashion-IQ Combiner 20.1 47.7 61.6 85.9
CIRR Combiner* 33.6 65.4 77.4 95.2
CIRR TIRG 14.6 48.4 64.1 90.0
CIRR ARTEMIS 17.0 46.1 61.3 87.7
CIRR CIRPLANT 19.6 52.6 68.4 92.4

Table 4: Results on CIRR for object/scene manipulation.

• Image only, Text only and Image+Text: we use
CLIP encoder extract relevant features for re-
trieval tasks.

• ZS-CIR: We compare our method with re-
cent zero-shot combined image retrieval ap-
proaches, including Pic2word (Saito et al., 2023),
iSEARLE (Agnolucci et al., 2024), Context-
I2W (Tang et al., 2024), PM (Zhang et al., 2024),
CIReVL (Karthik et al., 2023) and LinCIR (Gu
et al., 2024).

• Supervised combined image retrieval: We also
compare several classic supervised models for
comparison, including Combiner (Baldrati et al.,
2022) (Combiner* in tables indicates using
ResNet50x4 as a backbone), TIRG (Vo et al.,
2019), ARTEMIS (Delmas et al., 2022), CIR-
PLANT (Liu et al., 2021a) and MAAF (Dodds
et al., 2020).
Object composition. Figure 3 illustrates the

identification of specific objects within complex,
everyday scenes containing common natural ele-
ments. In the Object composition results (Table 3),
MLLM-I2W consistently outperforms existing ap-
proaches, including the supervised ones, and re-
markably outperforms the State-of-the-Art (SoTA)
Context-I2W by 2.57% on average.

Object/scene manipulation. Figure 4 demon-
strates the identification of visually similar images
from real-world datasets, where sentences have
been artificially modified. In the object/scene ma-
nipulation results (Table 4), MLLM-I2W consis-
tently outperforms existing approaches, including
the supervised ones, and remarkably outperforms
the State-of-the-Art (SoTA) Context-I2W by 2.83%
on average.

Attribute manipulation. Figure 5 focuses on
differentiating similar clothing image pairs using

side information derived from real-world product
descriptions and visual attribute labels. In the at-
tribute manipulation results (Table 5), MLLM-I2W
consistently outperforms existing approaches, in-
cluding the supervised ones, and remarkably out-
performs the State-of-the-Art (SoTA) CIReVL by
1.61% on average.

We have performed a paired t-test for the in-
dicators of the best and suboptimal results on all
datasets, specifically, we have conducted five exper-
iments and tested them according to the experimen-
tal results The test p-values of R1, R2, and R10 on
the COCO dataset are: 2.23× 10−5, 2.55× 10−5,
4.33× 10−4, respectively; The p-values of R1, R5,
R10 and R50 on the CIRR dataset were 3.286,
1.99× 10−4, 0.0094 and 0.0011, respectively. The
average R10 and R50 test p-values on the Fashion-
IQ dataset were 8.39 × 10−5 and 5.55 × 10−5,
respectively, and all p-values were less than 0.05,
indicating that the optimal results were significantly
better than the suboptimal results.

Our proposed MLLM-I2W outperforms the zero-
shot baseline and several ZS-CIR models, and even
surpasses some supervised methods. Pic2Word
fails to focus on the relevant visual parts because
it only maps global image features and lacks ob-
ject selection capabilities. Context-I2W specially
designed VTE addresses this issue but is overly
simplistic in selecting subject headings. Neverthe-
less, it effectively mitigates dataset-specific biases
by selecting context-relevant visual information be-
fore mapping, making it the best model for various
tasks. Our designed MLLM-I2W leverages latent
world knowledge to select optimal subject words
and generate detailed text descriptions, resulting
in improved performance. Experimental results
demonstrate that MLLM-I2W achieves varying de-
grees of improvement across different tasks.

4.3 Ablation Study
To understand the contributions of each component
in our framework, we conduct a detailed empir-
ical analysis in this section.Specifically, Table 6
presents the results of various components of our
framework on the CIRR (Liu et al., 2021b) dataset.
For the baseline, we use the image and text en-
coders from CLIP to extract features from image-
text pairs. These features are averaged and then pro-
cessed through a mapping network with three fully
connected layers to generate pseudo-word mark-
ers. In ablation 1., we incorporated the MLLM to
enhance the coding module. This included substi-
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Supervision Methods Dress Shirt Toptee Average
R10 R50 R10 R50 R10 R50 R10 R50

Zero-shot

Image-only 5.4 13.9 9.9 20.8 8.3 17.7 7.9 17.5
Text-only 13.6 29.7 18.9 31.8 19.3 37.0 17.3 32.9

Image+Text 16.3 33.6 21.0 34.5 22.2 39.0 19.8 35.7
Pic2word 20.0 40.2 26.2 43.6 27.9 47.4 24.7 43.7
Searle-xl 20.3 43.2 27.4 45.7 29.3 50.2 25.7 46.3

PALAVRA 21.5 37.0 17.3 35.9 20.6 38.8 19.8 37.3
Context-I2W 23.1 45.3 29.7 48.6 30.6 52.9 27.8 48.9

PM 27.1 43.8 21.4 41.7 28.9 47.3 25.8 44.2
CIReVL 29.5 47.4 24.8 44.8 31.4 53.7 28.6 48.6

MLLM-I2W 29.9 48.6 27.3 46.5 33.8 55.2 30.3 50.1
CIRR Combiner 17.2 37.9 23.7 39.4 24.1 43.9 21.7 40.4

Fashion-IQ Combiner 30.3 54.5 37.2 55.8 39.2 61.3 35.6 57.2
Fashion-IQ Combiner* 31.6 56.7 36.4 58.0 38.2 62.4 35.4 59.0
Fashion-IQ CIRPLANT 17.5 40.4 17.5 38.8 21.6 45.4 18.9 41.5
Fashion-IQ ARTEMIS 27.2 52.4 21.8 43.6 29.2 54.8 26.1 50.3
Fashion-IQ MAAF 23.8 48.6 21.3 44.2 27.8 53.6 24.3 48.8

Table 5: Results on Fashion-IQ for attribute manipulation.

Methods
CIRR

R1 R5 R10

0. baseline 20.6 48.6 57.6
1. MRT+MET 22.8 50.4 60.5
2. Uncertainty Modeling 24.2 52.3 63.7
3. Adaptive Modal Fusion 24.8 54.0 64.5
4. Prototype Learning Modeling 25.7 55.4 65.2
5. MOE 27.1 56.7 68.8
6. full model 28.3 57.9 70.2

Table 6: Ablation study on CIRR.

tuting subject words in the text and augmenting
the text data, which improved the extraction of vi-
sual information related to the target. In ablation
2., we introduced uncertainty modeling to bridge
the modal gap between image and text features. In
ablation 3., we implemented an adaptive weighting
module to replace the average of visual and text
features. This change led to improved performance
and validated the hypothesis that different modal
weights should be assigned to images and texts
based on their contributions. In ablation 4. and ab-
lation 5., we applied prototype learning to capture
deep semantic information from the fused features,
followed by a mapping network with MOE struc-
tures, which improved the performance of MLLM-
I2W.

5 Conclusion

In this paper, we propose a novel image to
pseudo-word mapping network, nammed MLLM-
I2W, which incorporates Enhanced Encoding with
MLLM for improved text and subject word se-
lection, employs uncertainty modeling to address
modal gaps, utilizes an adaptive fusion model, and
explores deep information through prototype learn-
ing. The network maps features to pseudo-words
using an MOE-based mapping network. MLLM-

I2W demonstrates superior generalization, achiev-
ing the best performance across three distinct ZS-
CIR tasks compared to existing methods.

6 Limitations

Our mapping network, similar to previous ap-
proaches, utilizes a fully connected layer network.
However, in the shared embedding space for im-
ages and text, the features are distributed across
different clusters. Consequently, mapping image
features to text features via this network results in
some information loss. Future work could focus on
designing a more effective optimization problem
for the mapping network, specifically a nonlinear
optimization problem.
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