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Abstract

Neural language models (LMs) are arguably
less data-efficient than humans from a language
acquisition perspective. One fundamental ques-
tion is why this human–LM gap arises. This
study explores the advantage of grounded lan-
guage acquisition, specifically the impact of
visual information — which humans can usu-
ally rely on but LMs largely do not have access
to during language acquisition — on syntactic
generalization in LMs. Our experiments, fol-
lowing the poverty of stimulus paradigm under
two scenarios (using artificial vs. naturalistic
images), demonstrate that if the alignments be-
tween the linguistic and visual components are
clear in the input, access to vision data does
help with the syntactic generalization of LMs,
but if not, visual input does not help. This high-
lights the need for additional biases or signals,
such as mutual gaze, to enhance cross-modal
alignment and enable efficient syntactic gener-
alization in multimodal LMs.

1 Introduction

Neural language models (LMs) have accelerated
progress in natural language processing (NLP), but
there remains a significant disparity in their data
efficiency compared to humans. For instance, GPT-
3 (Brown et al., 2020) is trained on approximately
2,000 times more text than a 10-year-old child is
exposed to (Warstadt and Bowman, 2022) and this
gap is even greater in modern large LMs, and yet
the model still struggles with some language tasks.
We investigate what kind of differences between
human and LM language acquisition scenarios can
potentially close the gap in data efficiency, specifi-
cally to achieve syntactic generalization.

One general criticism of neural LMs is their
lack of grounding (Roy and Reiter, 2005; Barsa-
lou, 2008): they learn language solely based on
text and do not model the explicit association be-
tween linguistic expressions and the associated
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Figure 1: Overview of the experimental design. A
vision-language neural model is trained on ambigu-
ous data for a particular linguistic rule. Then, we
test whether the model learned a cognitively plausi-
ble rule using data disambiguating the model’s general-
ization. Through this experimental scheme, we adjust
whether/how the visual information helps the model in-
fer the proper linguistic generalization.

objects/events in the real world. This naturally
leads to the hypothesis that the human–LM data
efficiency gap comes from this disconnect.

In this study, we investigate whether visual in-
formation, as a representative modality promot-
ing grounding, can accelerate the emergence of
the syntactic hierarchical generalization ability of
LMs, which underlies human language acquisi-
tion (Chomsky, 1964). Our experiments extend
the single modality version of the poverty of stim-
ulus (POS) setting (Wilson, 2006; Perfors et al.,
2011; McCoy et al., 2018, 2020; Warstadt and Bow-
man, 2020; Yedetore et al., 2023) into the vision-
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and-language domain. That is, we train LMs on
ambiguous image–text pairs in terms of particular
linguistic rules (e.g., HIERARCHICAL vs. LINEAR

English subject–verb number agreement rules; see
Figure 1). Then, we investigate whether visual
input efficiently guides the models to make cogni-
tively plausible (hierarchical) generalizations given
ambiguous data, compared to text-only models.

To adjust the visual conditions, we base our
experiments on either (i) realistic image–caption
data (Sharma et al., 2018), or (ii) simplified, artifi-
cial data, which is a proxy for externally-guided at-
tentional focus. Notably, it has been argued that ei-
ther strong inductive bias or additional signals, such
as mutual gaze, pointing, or other forms of atten-
tional focus, are needed to make use of multimodal
input for linguistic generalization (Qu and Chai,
2008; Johnson et al., 2012) since merely adding
an input modality may incur many superficial cor-
relations and complicate rather than simplify the
task (Gleitman and Gleitman, 1992; Dupoux, 2018).
Thus, our investigation using the two types of mul-
timodal data can be seen as an evaluation of the
inductive bias of neural LMs toward multimodal
linguistic generalization with and without such ad-
ditional signals. Most work on grounded and sit-
uated multimodal LM as well as human language
acquisition has focused on word learning (Hill and
Wagovich, 2020; Ma et al., 2023). In this work,
we extend these investigations to the acquisition of
syntactic hierarchical generalizations, the central
topic toward the POS setting in NLP (McCoy et al.,
2018, 2020), with multimodal LMs.

In a realistic setting, we found that overall: (i)
vision data does not substantially accelerate hier-
archical generalization; (ii) this trend is consistent
among 20 model settings; and (iii) this is also con-
sistent across four different degrees of ambiguity.
In contrast, with simplified, artificial data, where vi-
sual/linguistic concepts are already abstracted and
simplified, we generally found the opposite trend:
vision data did boost hierarchical linguistic general-
ization. These contrasts suggest that neural models
have the potential to make use of visual input for
linguistic generalization when the visual input is
made salient either through inductive bias or exter-
nal signals. However, efficient generalization via
more complex and ambiguous visual input is not
possible in the model variants tested either because
the visual processing module lacks appropriate in-
ductive bias or the external signals of attentional
salience are absent.

2 Background

2.1 Inductive bias in language acquisition

In general, a unique generalization or rule cannot
be determined solely based on the observation of
finite data. The choice depends on the inductive
biases of the model, such as a learner’s prior knowl-
edge (Mitchell, 1980).

In humans: In the context of language acqui-
sition, it has long been argued that human learn-
ers possess a strong inductive bias due to rapid
language acquisition from limited language expo-
sure (Chomsky, 1980; McCoy et al., 2018). The
main question is what type of biases humans have
and where these biases originate. Regarding the
former question, it has been reported that humans
have a bias to prefer hierarchical generalization
over linear generalization in situations like those
depicted in Figure 1 (Crain and Nakayama, 1987;
Legate and Yang, 2002). As for the latter ques-
tion, there are two primary potential sources of
inductive biases: innate factors and environmen-
tal/empirical factors. To address this question, this
study investigates the influence of a specific envi-
ronmental factor — access to visual information
during language acquisition — through computer
simulations.

In neural models: Neural models typically ex-
hibit non-human-like generalizations, such as the
use of superficial cues and linear rules, as widely
observed across various NLP domains (McCoy
et al., 2019; Warstadt and Bowman, 2020; Warstadt
et al., 2020b; McCoy et al., 2020). Large amounts
of data are required to overcome such cognitively
implausible biases during training (Warstadt and
Bowman, 2020; Warstadt et al., 2020b). In this
context, addressing the inadequate biases in neural
models and tackling their data-inefficiency issues
are two aspects of the same problem. Our inter-
est lies in understanding whether and how visual
information contributes to the development of ap-
propriate inductive bias in neural language learners.

2.2 Hypotheses on the advantage of vision

There has already been some investigation into the
contribution of vision in language learning. It is
important to note that this study does not take a
strong position on the benefits of vision but rather
conducts an exploratory investigation.
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Figure 2: Images can explicate the subject–verb depen-
dency. If a learner can ground cat, glasses, and walk
to their visual components, they can disambiguate that
what is walking is not glasses but cat; such information
will potentially bias the learner’s language acquisition
in favor of the linguistically correct rule.

Positive view: The general advantages of input
beyond text modality in language acquisition have
been historically emphasized (Goldberg, 2005;
Bender and Koller, 2020). From an NLP perspec-
tive, the advantage of visual information typically
for syntactic parsing was demonstrated (Shi et al.,
2019; Kojima et al., 2020). Note that such NLP
research used a specially-designed parser that al-
ready has a strong inductive bias (e.g., the training
objective is parsing); our question is whether even
vanilla neural models, a domain-general learner,
with next-word prediction can take advantage of
visual information for syntactic hierarchical gen-
eralization. Moreover, in achieving hierarchical
generalizations in settings like that illustrated in
Figure 1, intuitively, images have the potential to
boost correct generalization. For example, in a
sentence such as a cat with glasses walks, the in-
formation that it is the cat, not the glasses that
is walking, could potentially bias the learning to-
wards a hierarchical generalization. Such a clue —
it is the cat walking and not the glasses — would
be explicit in the image (Figure 2) if the learner
or model understands the visual concepts of cat,
glasses, walk, and their composition (e.g., walking
cat). In addition, at least for the number agreement
problem, the number information is, more or less,
salient in the vision domain. When the number of
visual objects corresponding to grammatical sub-
jects changes, the content of the image will change
drastically, while in the text domain, only a few
characters/tokens are changed.1

Negative view: There is also skepticism that
merely providing visual input without appropri-

1Strictly speaking, grammatical and physical (visual) num-
bers are not exactly the same concepts (Spector, 2007; Zweig,
2009).

ate linguistic knowledge or attentional focus could
over-complicate the problem, e.g., increase the po-
tential for superficial correlations (Gleitman and
Gleitman, 1992; Dupoux, 2018). For example,
Gleitman and Gleitman (1992) and McDonough
et al. (2011) assumed that children use syntactic
category information to ground words to visual in-
put; this implies that syntactic knowledge comes
first, followed by grounding. These studies gen-
erally claim that the advantage of input beyond
text in language acquisition could be driven by
both humans’ prior knowledge and visual input. In
this sense, if neural LMs, which are assumed to
have no innate knowledge, fail to accelerate lin-
guistic generalization with visual input, this im-
plicitly highlights the necessity of specific learners’
inductive biases or additional attentional signals in
multimodal language acquisition. Beyond syntac-
tic generalization, there are actually some reports
that visual input does not enhance the fundamental
linguistic knowledge of models (Yun et al., 2021;
Wang et al., 2023) or classifiers (Ma et al., 2021)
(c.f. contemporaneous work by Zhuang et al. (2024)
arguing multimodal input does accelerate neural
LM word learning on some smaller datasets).

Similar attempts: Concurrent works have em-
pirically investigated what linguistic ability par-
ticular neural networks can acquire solely from
developmentally-plausible multimodal data that is
recorded by a head-mounted camera of English-
speaking children (Vong et al., 2024; Qin et al.,
2024; Wang et al., 2023), motivated by the gen-
eral, historical debates on the empiricism toward
language acquisition (Elman, 1990; Kirov and
Cotterell, 2018). Although their results suggest
the learnability of certain linguistic properties by
image-captioning models and these data, the exact
advantage of visual input itself was nuanced on
BLiMP (Wang et al., 2023), beyond the focus (Qin
et al., 2024), or unclear (Vong et al., 2024) since the
evaluation tasks are image-classification/mapping,
where it is somewhat obvious to see the advantage
of visual input. Furthermore, these studies exam-
ined a very limited variant of visual encoders; thus,
the generality of the results was unclear. Our evalu-
ation potentially achieves fairer comparisons since
the task itself (acceptability judgment toward syn-
tactic generalization) is agnostic to the existence
of visual modality, and we observe generally con-
sistent results from 12 variants of vision-language
models.
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3 Problem definition

We briefly introduce the poverty of stimulus (POS)
settings (Wilson, 2006; Perfors et al., 2011; McCoy
et al., 2018, 2020; Warstadt et al., 2020b; Warstadt
and Bowman, 2020, 2022; Yedetore et al., 2023).
Through our experiments, we aim to quantify
whether vision accelerates cognitively-plausible
generalization in neural LMs.

3.1 HIERARCHICAL vs. LINEAR
generalizations

We use the subject–verb number agreement rule as
a target phenomenon. In English, the subject and
corresponding verb should match in terms of their
grammatical number:

(1) a. Girls with a hat walk.

b. A girl with a hat walks.

Here, Example (1b) is ambiguous because a
learner can infer at least two different generaliza-
tions from this example alone, i.e., HIERARCHI-
CAL and LINEAR rules:

(1b) A girl with a hat walks

HIERARCHICAL

LINEAR

The HIERARCHICAL rule associates the grammati-
cal number of a verb with that of its grammatical
subject, while the linear one associates the number
between a verb and its closest noun in a linear word
order. By contrast, Example (1a) is not ambiguous
in terms of the HIERARCHICAL and LINEAR rules
since the number does not match under the LINEAR

assumption:

(1a) Girls with a hat walk

HIERARCHICAL

*LINEAR (explicit violation of number agreement)

Our interest lies in which rule a particular learner
acquires from ambiguous data and what factors
(e.g., vision) can guide the learner to prefer the
HIERARCHICAL rule that is linguistically correct
(Section 3.2). The motivation for this experimental
setting is further described in Section 3.2.

We only employed this subject–verb number
agreement setting in our experiments, although
other studies have focused on different syntactic
transformation tasks, such as question formulation
or passivization (McCoy et al., 2020; Warstadt and

Bowman, 2020; Mueller et al., 2022). Our motiva-
tion is the ease of collecting natural images for sen-
tences with subject–verb agreement and the strong
correlations between image entities and grammat-
ical number. Such correlations are either absent
or weak in the case of interrogative vs. declarative
sentences and passive vs. active mood.

3.2 Poverty of stimulus setting
Children acquire HIERARCHICAL rules despite
the scarcity of disambiguating sentences, like Ex-
ample (1a), in real language exposure (Crain and
Nakayama, 1987; Legate and Yang, 2002). Build-
ing on this scenario, we expose a model to (nearly)
ambiguous data where the generalization cannot
be determined as to whether LINEAR or HIERAR-
CHICAL rules are correct. Then, we evaluate the
model in terms of which rule is obtained from the
ambiguous data via a test using unambiguous data.

Data splitting strategy: We split data into two
groups: (i) those that do not disambiguate LIN-
EAR and HIERARCHICAL rules (AMBIGUOUS);
and (ii) those that support the HIERARCHICAL rule
(UNAMBIGUOUS). Examples are shown in Table 1.
Basically, the AMBIGUOUS instances are used in
training, and UNAMBIGUOUS instances are used
in evaluation. We insert a few held-out UNAM-
BIGUOUS instances into training data since it is
counter-intuitive that a learner never encounters di-
rect evidence for hierarchical generalizations, i.e.,
UNAMBIGUOUS instances, during language acqui-
sition. Therefore, we controlled the injection rate —
the extent to which disambiguating data appear dur-
ing training — for experiments analyzing sensitiv-
ity to the scarcity of direct evidence (Section 4.1).

Model comparison: In this series of experi-
ments, we compare neural models that can access
visual information ( ) and ones that do not ( )
to assess the contribution of vision modality. Note
that “visual information” in this study denotes an
image compatible with the meaning of a sentence,
i.e., we use image–caption pairs. The source of
image caption data is described in Section 3.3.

3.3 Data
We introduce two complementary data types: (i)
NATURAL captions; and (ii) ARTIFICIAL captions.
The NATURAL captions are collected from an
image–caption corpus, while the ARTIFICIAL cap-
tions are automatically created by rules to simplify
the task.
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Split
Setting NATURAL ARTIFICIAL

AMBIGU
-OUS

girl aged stands with a
hand on a tree alone

a lime rectangle with a red
rectangle waves its hand

young boys with school
uniforms and backpacks
prepare for school on an
early morning

two yellow circles with three
blue hexagons take a photo

DISAMBIGU
-ATING

young girls dressed in
colonial gear tie their
shoes at farm

two red rectangles with a black
circle play soccer

Table 1: Examples of image-caption pairs. The NATURAL data is collected from conceptual captions corpus, and the
ARTIFICIAL data is generated by rules. In the AMBIGUOUS set, the grammatical numbers of verb, its corresponding
subject, and its immediately preceding noun are identical; in this sense, they are ambiguous toward which is the
correct rule of number agreement, LINEAR or HIERARCHICAL. By contrast, the DISAMBIGUATING instances
disambiguate the rule.

NATURAL dataset: We extracted image–
caption pairs from the Conceptual Captions
Corpus (Sharma et al., 2018), which is a widely-
used and relatively large-scale image–caption
dataset. Specifically, we first collected captions
that: (i) form a complete sentence, (ii) do not
have grammatical errors2; and (iii) do not have
collective expressions such as family or pair of
since these are confusing in terms of grammatical
number. Then, we split the data into the AMBIGU-
OUS and UNAMBIGUOUS sets using a dependency
parser.3 Note that there might be parsing errors in
this process, but we later observe that the models
did not prefer the HIERARCHICAL rule without
injection of any disambiguating examples; this
suggests that such errors do not inadvertently
bias the model toward the HIERARCHICAL rule.
Examples are shown in the left part of Table 1. The
training set (AMBIGUOUS part) consists of 348,861
image–caption pairs, and the unambiguous test set
consists of 1,253 pairs.

ARTIFICIAL dataset: Image–caption pairs were
generated by rules. Specifically, a caption is
first generated with the template of NUM1 COLOR1
SHAPE1 with NUM2 COLOR2 SHAPE2 VP; then,
the corresponding image is automatically created
(the detailed process is shown in Appendix A). Ex-
amples are shown in the right part of Table 1. As
with the NATURAL setting, we split the data into
AMBIGUOUS and UNAMBIGUOUS cases. Then,
training and test data are created with different in-

2We used language-tool-python 2.7.1
3We used SpaCy (Honnibal et al., 2020).

jection rates. The training set (AMBIGUOUS part)
consists of 15,000 pairs, and the test set consists of
5,000 pairs.

This setting limits the variations of linguis-
tic/visual concepts and sentence constructions com-
pared to the NATURAL setting, and importantly,
the alignment between linguistic and visual com-
ponents can easily be extracted since the image
only has visual objects related to the caption (less
confounding factors), and word types and visual
features have a one-to-one relationship (no lexi-
cal ambiguity; see appendix A). Thus, we use this
artificial data setting to approximate the richer envi-
ronment in which learners exploit visual inductive
bias, gaze recognition, pointing and other extralin-
guistic signals of salience and focus to interpret
otherwise ambiguous linguistic input.

3.4 Evaluation

For each UNAMBIGUOUS instance, we prepared
two candidate captions differing only in the verb’s
grammatical number (e.g., two red rectangles with
a black circle play/plays soccer); one aligns with
the HIERARCHICAL rule, and the counterfactual
one with the LINEAR rule by modifying the gram-
matical number of its main verb. The model’s gen-
eralization preference is determined by which cap-
tion has a higher probability.

Specifically, a model θ computes the probabil-
ities of each caption s = [w1, · · · , wn] given the
corresponding image v:

p(s|v) =
n∏

t=1

pθ(wt|w<t, v) , (1)
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Figure 3: Generalization performance of the model initialized with Vit-base. The x-axis denotes the parameter
update steps, and the y-axis denotes the preference for the HIERARCHICAL generalization rule (F1 scores multiplied
by 100). We adopted four settings with different injection rates of {0, 0.001, 0.005, 0.01}. The normal lines
correspond to the model with visual input ( ), and the dashed lines correspond to the preference of those without
visual input ( ). The chance rate of the F1 score is 50.

where w<t denotes the left context of wt in the
caption s. We calculated the macro-F1 score, con-
sidering the inflection corresponding to the HIER-
ARCHICAL rule as correct and treating the task
as a binary classification problem for selecting a
grammatically-correct sentence. As we are inter-
ested in language acquisition efficiency, we report
F1 scores at various intermediate training steps.

3.5 Models

We use the Transformer seq2seq image-caption
model as a vision-and-language model ✓, with
the encoder set as a pre-trained vision encoder like
ViT (Dosovitskiy et al., 2021). An image is input to
the encoder, and the decoder predicts the caption in
a left-to-right manner, accessing visual information
via cross-attention. Intuitively, this can be viewed
as a sentence-level LM that can access visual infor-
mation. For the image-less model, we replaced
the input image with a white noise image during
training and inference. Models are trained with
cross-entropy loss to generate the reference cap-
tion. The vision encoder is further updated during
the training.

We adopted the GPT-2 small (124M) architec-
ture (Radford et al., 2019) for the decoder, with
parameters randomly initialized, considering a lan-
guage acquisition scenario from scratch. As an en-
coder, we initially used Vit-base (Dosovitskiy et al.,
2021) in Section 4.1 and further examined various
encoders in Section 4.2 to enhance the generality
of the conclusion. Hyperparameters are listed in
Appendix B. In each setting, we train two models
with different seeds and report the average score.

4 Experiments

4.1 Generalization preferences

We first analyze the model using the pre-trained Vit-
base encoder. We examined four different injection
rates of {0, 0.001, 0.005, 0.01}; for example, the
rate 0.001 means that ten held-out UNAMBIGUOUS

instances are added into the training data if the
original training data size is 10,000.

Results: The results are shown in Figure 3, with
scores averaged across models with different seeds.
These indicate the following:

• In the NATURAL setting, visual inputs do not
generate a substantial difference in generaliza-
tion efficiency.

• In the ARTIFICIAL setting, visual inputs accel-
erate hierarchical generalization, especially at
the early stages of learning.

• At the initial stage of learning in the NAT-
URAL and ARTIFICIAL settings with a low
injection rate, the LINEAR rule emerged (F1-
score below chance rate), indicating that the
model originally has a LINEAR bias. This
is consistent with existing studies in the text-
only domain (McCoy et al., 2020).

• With moderate rates of injection, e.g., above
the rate of 0.005, the models gradually ac-
quired the HIERARCHICAL rule, showing sen-
sitivity to the slight bias in data distribution.

We further discuss the implications of the con-
trasting results between the NATURAL and ARTIFI-
CIAL settings in Section 5.
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NATURAL ARTIFICIAL

Models Vision 1,000 5,000 10,000 100 500

Vit-base
(86M)

✓ 52.8 72.0 81.9 90.6 99.7
∆ +0.41 −2.38 −0.94 +57.4 −0.31

Vit-large
(307M)

✓ 52.9 74.9 83.1 52.6 92.2
∆ +0.93 −1.13 +0.65 +19.4 −7.76

Vit-huge
(632M)

✓ 52.6 73.9 82.6 42.6 100
∆ +1.98 −2.07 +0.10 +9.21 0.00

Beit-base
(86M)

✓ 46.7 59.0 66.4 45.8 74.8
∆ +2.99 +5.68 −1.50 +11.7 −25.0

Beit-large
(307M)

✓ 45.6 65.3 73.3 38.3 57.7
∆ +1.57 +4.32 +3.80 +5.09 −38.4

Deit-base
(86M)

✓ 54.9 72.5 81.2 67.4 99.9
∆ +4.23 −1.77 −1.35 +32.9 +0.08

Deit-small
(22M)

✓ 52.9 73.7 83.2 73.1 94.1
∆ +3.79 −0.16 −0.52 +27.1 −5.86

Deit-tiny
(5M)

✓ 52.6 73.5 81.0 88.8 87.8
∆ +2.16 −1.29 −1.87 +32.5 −12.2

Swin-base
(88M)

✓ 53.0 73.0 81.8 80.5 100
∆ +0.92 −2.61 −1.05 +33.2 0.00

Swin-large
(197M)

✓ 53.3 73.9 82.4 74.9 100
∆ +0.85 −0.79 −0.11 +39.3 0.00

Scratch
(86M)

✓ 49.3 72.6 81.0 50.7 100
∆ +1.75 −3.22 −1.62 +5.10 0.00

Vit-GPT2
(86M)

✓ 95.6 97.0 96.6 90.8 100
∆ +0.04 +0.18 −0.11 −9.21 0.00

Table 2: The preference for HIERARCHICAL generaliza-
tion (F1 score) of models without various configurations.
F1 scores are multiplied by 100. The column names
such as 1,000, 5,000, and 10,000 denote the training
steps. Scores in the ✓ row indicate the results of models
with visual inputs , and those in ∆ indicate the score
difference between models with and without visual in-
puts ( − ).

4.2 Vision encoder variations

To investigate whether our results are specific to a
particular model setting, we further analyze ten
vision-language models with different encoder-
decoder settings, demonstrating general consis-
tency across various settings.

Generality of the (in)effectiveness of vision:
We tested the models using ten different vision
encoders: Vit-{base, large, xlarge} (Dosovitskiy
et al., 2021), Beit-{base, large} (Bao et al., 2022),
Deit-{base, small, tiny} (Touvron et al., 2021), and
Swin-{base, large} (Liu et al., 2021). We also
examined two baselines: one using randomly ini-
tialized Vit-base (Scratch) and a model using the
pre-trained GPT-2 (Radford et al., 2019) as a de-
coder (Vit-GPT2). Note that the Vit-GPT2 model
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(a) Relationship between encoders’ ImageNet accuracy (x-
axis) and their advantage in HIERARCHICAL generalization
(F1 score difference of − ; y-axis). The F1 score is
measured at several checkpoints during training (1000, 5000,
and 10000).
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(b) Relationship between encoders’ captioning performance in
the validation set (x-axis) and their advantage in HIERARCHI-
CAL generalization (F1 score difference of − ; y-axis).
These scores are measured at several checkpoints during train-
ing (1000, 5000, and 10000).

Figure 4: Relationship between CV-oriented metrics
and the contribution to HIERARCHICAL generalization
in the NATURAL setting. Each dot corresponds to each
setting {10 encoders}×{2 seeds}×{3 training steps},
and its color/shape corresponds to training steps.

is already trained on large-scale text data, including
disambiguating sentences; thus, it is not surprising
that they achieve hierarchical generalization. We
fix the inoculation rate to 0.01 in this Section.

The results are summarized in Table 2. The ob-
servations are similar to those in Section 4.1: (i)
the effect size of the visual input factor is larger in
the ARTIFICIAL setting than the NATURAL setting,
especially at the early stage of learning;4 (ii) vision
data generally has a positive/negative effect on the
generalization at the early/late stage.5 Note that

4With a two-sided Wilcoxon rank-sum test, the ∆ scores
from the 100-step ARTIFICIAL setting was significantly larger
than those in the 1000-step setting across models and seeds
(p = 5.3e−4 < 0.05).

5With a two-sided one-sample t-test, the ∆ scores were
significantly larger than zero across models and seeds in the
1,000-step NATURAL setting (p = 4.1e−4 < 0.05) and 100-
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the walls over the toilet need a
small cabinet

boys with eyes like that drive me
crazy

Table 3: Examples exhibiting some challenging features
of NATURAL image captions.

models with visual input ( ) achieved ROUGE-L
F1 scores of 30–40 in the NATURAL setting (Ap-
pendix B), whereas those without visual input ( )
yielded the scores of around 15; this improvement
indicates that the models do not ignore visual input.

As minor points, Beit-based models yielded
somewhat idiosyncratic trends (HIERARCHICAL

generalization is hurt at the late stage in the ARTI-
FICIAL setting). In addition, as a sanity check, Vit-
GPT2, which is pre-trained over a massive amount
of text data, achieved almost perfect hierarchical
generalization from the early stages of training in
both NATURAL and ARTIFICIAL settings.

Which vision encoder relatively accelerates hi-
erarchical generalization? Different vision en-
coders generally show a similar trend, but the de-
gree of their advantage is slightly different—what
kind of encoder benefits most from vision inputs?
This can be viewed as an evaluation of vision en-
coders from a cognitive perspective. Figure 4
shows the following: (i) no clear relationship be-
tween the encoders’ ImageNet top-1 accuracy6

and their contribution to linguistic HIERARCHI-
CAL generalization (∆ F1 score in Table 2); and
(ii) no clear relationship between image–captioning
performance and the contribution to hierarchical
generalization. Note that the ∆ROUGE in Fig-
ure 4b indicates the ROUGE gain from a model
without visual input to the one with visual input
based on the same architecture. The results indicate
that an engineeringly better vision encoder does not
always lead to better linguistic generalization when
combined with a language decoder.

5 Discussion and limitations

Mixed results in NATURAL and ARTIFICIAL set-
tings: The limited advantage of vision in the NAT-

step ARTIFICIAL setting (p = 1.8e−5 < 0.05), not signif-
icant in the 5,000/10,000-step NATURAL settings (p = 0.6,
p = 0.4), and lower than zero in the 500-step ARTIFICIAL
setting (p = 8.0e−3 < 0.05).

6We used the scores reported in their original papers.

URAL setting suggests at least two possibilities: (i)
vision is not helpful for efficient language acquisi-
tion; or (ii) vision is potentially helpful in human
language acquisition scenario, but neural models
lack certain human-like biases, such as learners’
prior knowledge or training/data scenario related
to vision-language grounding. If one accepts the
general argument about the advantage of vision
and/or the advantage in the ARTIFICIAL setting as
a support for the potential usefulness of visual in-
put, vision is useful in linguistic generalization —
and interpretation (ii) is plausible. Thus, the chal-
lenge lies in how the learner can extract meaningful
intake from raw images and texts, and at least the
modern neural models we examined might not pos-
sess such an ability. This view aligns with the
considerations put forth by, for example, Gleitman
and Gleitman (1992) and Dupoux (2018).

Words beyond the image content: What spe-
cific difficulties exist in the NATURAL data? One
potential challenge we considered based on the
dataset is that the natural caption contains informa-
tion that is not present in the image, which might
cause confusion in terms of the visual grounding
of the sentence. For example, the first image in
Table 3 has a caption the walls over the toilet need
a small cabinet. In this case, the cabinet is not in
the image, although it is not directly relevant to
the subject–verb agreement. The second example’s
caption in Table 3 also mentions objects beyond
the image; here, the word boys does not refer to
the boy in this image but any boy with similar eyes
to him. This is potentially confusing in terms of
number agreement since the grammatical subject
is in plural form, but the image shows one object.
These assert that visual grounding already needs
linguistic knowledge and the question of where
such linguistic knowledge should come from.

Coverage of the experiments: We only focused
on a specific syntactic phenomenon, subject–verb
number agreement rule. Extending the experimen-
tal settings to cover broader linguistic phenom-
ena, e.g., including revisiting vocabulary acquisi-
tion (Räsänen and Khorrami, 2019), is needed to
draw more general conclusions. In Appendix C,
we conducted a preliminary examination using the
BLiMP benchmark (Warstadt et al., 2020a) on the
linguistic knowledge of models with/without vi-
sion; this also implied that visual input alone does
not lead to a substantial advantage. Nevertheless,
typical resources for linguistic probes, including
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BLiMP, use only text input; it is not obvious how to
use such data to evaluate multimodal models. We
hope that this study encourages the community to
build a dataset to probe the fine-grained linguistic
knowledge of multimodal models.

6 Conclusions

We conducted two complementary experiments —
a noisy, realistic setting and a simplified, artifi-
cial one — to investigate the advantage of vision
in the syntactic generalization of LMs. Our re-
sults showed that vision accelerates proper linguis-
tic generalization under a simplified setting, but
LMs struggled with proper generalization based
on noisy, realistic data. These mixed results sug-
gest several possibilities; for example, an image
can potentially boost language acquisition, but neu-
ral learners may require additional visual/linguistic
prior knowledge or externally-provided attentional
focus to robustly make use of raw images for effi-
cient language acquisition.

Limitations

In addition to the limitations of our work raised
in § 5, the following are potential concerns. First,
the data size is relatively small; the training data
in the NATURAL setting consists of around 3.5M
tokens. Nevertheless, experiments with similar
motivations have been conducted with the same
or smaller scale of dataset (Nikolaus et al., 2019;
Wang et al., 2023). Furthermore, at least based on
the report that human infants around 18 months
learn syntactic dependencies (Perkins and Lidz,
2021) and they are typically exposed to 2–7M
words per year (Gilkerson et al., 2017), our data
size may not be too small to learn syntactic rules.

Second, we only focused on a specific type of
vision-language model—image-captioning models.
There are other formulations involving vision-and-
language interaction, such as text-to-image mod-
els (Ramesh et al., 2021), discrimination models
like CLIP (Radford et al., 2021), or more generally,
LMs with a visual input support (Alayrac et al.,
2022; OpenAI, 2023). Investigating the inductive
bias related to such architectural/task differences
would be an interesting direction for future work.
Evaluating larger models will also provide us with
insights into scaling laws in this context. Having
said that, such experiments require more comput-
ing resources than a typical laboratory has, which
was an unrealistic direction for us to explore. More

generally, humans see both static and dynamic in-
put during language acquisition. Therefore, exten-
sion from image to video is an important future
direction of research.

Third, there are concurrent endeavors to ex-
amine the contribution of visual information to
proper linguistic generalizations of neural LMs
from cognitively-motivated perspectives (Wang
et al., 2023; Zhuang et al., 2024); the closest initia-
tive would be the 2nd-round of the BabyLM shared
task, which includes multimodal data (Choshen
et al., 2024). Enhancing the connection to such
recent works will be the target of future work, and
we would like to highlight that our study has em-
ployed a control to the training data properties to
gain rich insights into the model’s inductive biases,
which has rarely been achieved in existing multi-
modal experiments and is orthogonal to the holistic
evaluation of pretrained vision-language models.

Ethical concerns

This study employed a widely-used, publicly avail-
able image–caption dataset, to avoid ethical con-
cerns. In our argument, we assumed that humans
usually have access to visual information during
language acquisition; this is not intended to dis-
criminate against vision-impaired people. Our gen-
eral interest is in grounding, which can also be
established by other modalities, and we focus on
the vision modality as one case study. Perhaps
our results of no advantage of visual input may be
supported by the success of human language acqui-
sition regardless of their congenital blindness; such
a broader connection to human language acquisi-
tion should be enhanced in future work.
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Appendix

A Artificial data

Table 4 shows the textual and visual features used
in the ARTIFICIAL dataset. The NUM2 COLOR2
SHAPE2 objects are placed on top of each NUM1
COLOR1 SHAPE1 object, and the VP object is over-
laid on the NUM1 COLOR1 SHAPE1 object. We cre-
ated 3×3×5×4×4×4×10=28,800 image–caption
pairs; 15,000 data are used for training, 1,000 data
are used for validation, and 5,000 data are used for
evaluation (we sampled 21,000 instances from the
28,800 data).

Category Word Visual feature

NUM1/2
a
two
three

COLOR1/2

black
red
blue
yellow
lime

SHAPE1/2

circle(s)
rectangle(s)
triangle(s)
hexagon(s)

VP

walk(s)

sleep(s)

run(s) fast

wave(s) its hand

write(s) a text

take(s) a bus

take(s) a photo
play(s) soccer

play(s) baseball

throw(s) an arrow at a
target

Table 4: Vocabularies and their corresponding visual
features used in the ARTIFICIAL dataset.

B Vision encoders

All the encoders we used are available in Hug-
gingface. These are pre-trained/fine-tuned on
the ImageNet-21k(22k) data with 2242 resolution
and batch size of 16. Table 6 shows the com-
mon hyperparameters across the models; other
encoder hyperparameters follow the original pre-
trained model. To avoid over-fitting, we ap-
plied RandAugemnt (Cubuk et al., 2020) to the

input image and replaced the input image with
a white noise with a probability of 0.2. Ta-
ble 7 shows the image–captioning performance
of each model in the validation split of NATU-
RAL data.7 The ROUGE score is computed us-
ing the implementation of https://huggingface.
co/spaces/evaluate-metric/rouge. The exact
pre-trained models we used are as follows:

Vit:

• https://huggingface.co/google/
vit-base-patch16-224-in21k

• https://huggingface.co/google/
vit-large-patch16-224-in21k

• https://huggingface.co/google/
vit-huge-patch14-224-in21k

Beit:

• https://huggingface.co/microsoft/
beit-base-patch16-224-pt22k-ft22k

• https://huggingface.co/microsoft/
beit-large-patch16-224-pt22k-ft22k

Deit:

• https://huggingface.co/facebook/
deit-base-distilled-patch16-224

• https://huggingface.co/facebook/
deit-small-distilled-patch16-224

• https://huggingface.co/facebook/
deit-tiny-distilled-patch16-224

Swin:

• https://huggingface.co/microsoft/
swin-base-patch4-window7-224-in22k

• https://huggingface.co/microsoft/
swin-large-patch4-window12-384-in22k

C Evaluation on BLiMP benchmark

We evaluate linguistic knowledge in models
with/without vision using the BLiMP benchmark,
which has several “circuits” targeting specific lin-
guistic knowledge. Each instance in the circuit is
a minimally different sentence pair regarding the
targeted grammar item. Similar to our experiment,

7Hold-out 1000 AMBIGUOUS instances that do not overlap
with the training data.

https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/spaces/evaluate-metric/rouge
https://huggingface.co/google/vit-base-patch16-224-in21k
https://huggingface.co/google/vit-base-patch16-224-in21k
https://huggingface.co/google/vit-large-patch16-224-in21k
https://huggingface.co/google/vit-large-patch16-224-in21k
https://huggingface.co/google/vit-huge-patch14-224-in21k
https://huggingface.co/google/vit-huge-patch14-224-in21k
https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k
https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k
https://huggingface.co/microsoft/beit-large-patch16-224-pt22k-ft22k
https://huggingface.co/microsoft/beit-large-patch16-224-pt22k-ft22k
https://huggingface.co/facebook/deit-base-distilled-patch16-224
https://huggingface.co/facebook/deit-base-distilled-patch16-224
https://huggingface.co/facebook/deit-small-distilled-patch16-224
https://huggingface.co/facebook/deit-small-distilled-patch16-224
https://huggingface.co/facebook/deit-tiny-distilled-patch16-224
https://huggingface.co/facebook/deit-tiny-distilled-patch16-224
https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k
https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k
https://huggingface.co/microsoft/swin-large-patch4-window12-384-in22k
https://huggingface.co/microsoft/swin-large-patch4-window12-384-in22k
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Vision OVERALL

ANA. AGR

D-N
AGR

IR
REGULAR

S-V
AGR

ARG. STR

ELLIP
SIS

FIL
LER-G

AP

IS
LAND

NPI
QUANTIF

IE
RS

BIN
DIN

G

CTRL. RAIS
.

59.1 60.3 61.1 70.8 61.1 61.0 48.9 65.7 56.5 43.2 72.6 61.4 59.1
59.1 60.5 60.3 69.3 62.0 61.6 48.9 65.3 55.3 42.5 73.7 62.9 59.5
58.8 59.4 60.4 70.7 62.3 62.7 42.4 65.7 59.7 42.5 69.8 66.0 61.1

Table 5: Accuracy on each circuit on the BLiMP benchmark. The model corresponds to the Vit-base model used
in the main experiment, the model corresponds to the model trained with a white noise image, and the model
corresponds to the model trained with shuffled image-caption data.

Decoder Following the settings in https://huggingface.
co/gpt2/blob/main/config.json

Dropout rate in encoder 0.1 (attention and hidden state)

Optimizer AdamW (Loshchilov and Hutter, 2018)
learning rate 1e-4
betas (0.9, 0.999)
epsilon 1e-8

Learning scheduler linear decay
max steps 10,000 (NATURAL setting), 1000 (ARTIFICIAL set-

ting)
warm up steps 0
weight decay 0

Batchsize 512

Beam size 4 (when computing ROUGE)

Table 6: Common hyperparameters across the models with different vision encoders.

we observed whether a model could assign a lower
perplexity8 to the grammatically correct sentence.

BLiMP has only text input; thus, we must in-
put a sentence alone (and a white noise image)
to vision-language models. When inputting only
text, a model without vision might be unfairly
favored over a model with vision from the per-
spective of the training–inference gap. To achieve a
fairer comparison, we also introduce another base-
line without proper visual grounding that is
trained with randomly shuffled image–caption pairs.
We intend that and models suffer from a
similar degree of handicap regarding the training–
inference gap.

Table 5 shows accuracies on each circuit of
BLiMP. Vit-base encoder models were evaluated,
which are trained using the training set of NAT-
URAL data with 10,000 parameter updates. The

8Sentence pairs in the BLiMP sometimes have different
lengths; thus, we avoid using a vanilla probability.

model with vision does not show a substantial
advantage over and baselines; this implies
that visual input alone cannot enhance their linguis-
tic knowledge.

https://huggingface.co/gpt2/blob/main/config.json
https://huggingface.co/gpt2/blob/main/config.json
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NATURAL ARTIFICIAL ImageNet

ROUGE-L F1 ROUGE-L F1
Models Vis. 1,000 5,000 10,000 100 500 Acc@1

Vit-base
(86M)

✓ 32.0 35.5 37.8 80.5 100.0 84.0
∆ +17.3 +20.2 +22.8 +45.1 +64.5

Vit-large
(307M)

✓ 30.8 35.1 37.9 76.3 100.0 85.2
∆ +16.1 +20.2 +22.6 +40.7 +64.5

Vit-huge
(632M)

✓ 29.2 34.1 35.8 59.1 100.0 85.1
∆ +14.9 +18.8 +20.5 +23.8 +63.9

Beit-base
(86M)

✓ 31.7 34.5 37.4 51.5 100.0 85.2
∆ +15.9 +19.2 +22.1 +16.5 +64.6

Beit-large
(307M)

✓ 30.4 37.0 40.2 81.2 100.0 87.4
∆ +15.7 +21.8 +24.9 +46.0 +64.8

Deit-base
(86M)

✓ 32.2 35.6 38.2 98.5 100.0 83.4
∆ +18.5 +20.4 +22.9 +63.0 +64.4

Deit-small
(22M)

✓ 31.0 34.6 36.6 83.0 100.0 81.2
∆ +16.3 +19.6 +21.2 +47.7 +64.6

Deit-tiny
(5M)

✓ 30.1 33.7 35.4 93.2 100.0 74.5
∆ +15.4 +18.4 +20.1 +58.1 +64.6

Swin-base
(88M)

✓ 34.3 37.6 40.7 99.3 100.0 85.2
∆ +19.6 +22.3 +25.4 +64.0 +64.3

Swin-large
(197M)

✓ 34.5 38.3 41.7 97.6 100.0 87.3
∆ +19.2 +23.4 +26.4 +62.3 +64.3

Scratch
(86M)

✓ 13.94 23.7 24.5 37.3 65.6 -
∆ +0.16 +8.78 +8.93 +1.88 30.3

Vit-GPT2
(86M)

✓ 32.4 35.3 37.4 93.3 100.0 84.0
∆ +17.7 +20.4 +22.1 +57.7 +64.2

Table 7: ROUGE-L F1 scores of the models at several checkpoints with different training steps. The scores are
multiplied by 100. ImageNet accuracy scores are obtained from their original papers.
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