
Proceedings of the 31st International Conference on Computational Linguistics, pages 188–198
January 19–24, 2025. ©2025 Association for Computational Linguistics

188

Federated Incremental Named Entity Recognition

Zesheng Liu1,2, Qiannan Zhu4,5*, Cuiping Li1,2*, Hong Chen1,3

1School of Information, Renmin University of China, Beijing, China
2Key Laboratory of Data Engineering and Knowledge Engineering, MOE, China

3Engineering Research Center of Database and Business Intelligence, MOE, China
4School of Artificial Intelligence, Beijing Normal University, Beijing, China

5Engineering Research Center of Intelligent Technology and Educational Application, MOE, China
{lzs2022,licuiping,chong}@ruc.edu.cn, zhuqiannan@bnu.edu.cn

Abstract

Federated learning-based Named Entity Recog-
nition (FNER) has attracted widespread atten-
tion through decentralized training on local
clients. However, most FNER models assume
that entity types are pre-fixed, so in practical ap-
plications, local clients constantly receive new
entity types without enough storage to access
old entity types, resulting in severe forgetting
on previously learned knowledge. In addition,
new clients collecting only new entity types
may join the global training of FNER irregu-
larly, further exacerbating catastrophic forget-
ting. To overcome the above challenges, we
propose a Forgetting-Subdued Learning (FSL)
model which solves the forgetting problem on
old entity types from both intra-client and inter-
client two aspects. Specifically, for intra-client
aspect, we propose a prototype-guided adap-
tive pseudo labeling and a prototypical relation
distillation loss to surmount catastrophic forget-
ting of old entity types with semantic shift. Fur-
thermore, for inter-client aspect, we propose a
task transfer detector. It can identify the arrival
of new entity types that are protected by pri-
vacy and store the latest old global model for
relation distillation. Qualitative experiments
have shown that our model has made signifi-
cant improvements compared to several base-
line methods.

1 Introduction

Federated learning (FL) (Fallah et al., 2020; Wang
et al., 2020; De Lange et al., 2020; Wen et al., 2023;
Liu et al., 2024) is a decentralized training mode
that can learn global models across distributed local
clients without accessing their private data. Under
privacy protection, it alleviates the limitations of
data islands by training on multiple dispersed local
clients and achieves rapid development in named
entity recognition (NER) (Ma and Hovy, 2016;
Lample et al., 2016; Li et al., 2020, 2022; Shen
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Figure 1: Typical FINER setting for medical science.
Many hospitals including newly-joined ones receive
new entity types incrementally according to their own
needs. FINER aims to consecutively recognize new
medical entities such as diseases and drugs in clinical
reports via collaboratively learning a global NER model
on private medical data of different hospitals.

et al., 2023). Meanwhile, federated learning-based
named entity recognition (FNER) (Ge et al., 2020)
is also a popular research direction, which can sig-
nificantly save annotation costs in data scarce sce-
narios by training global NER models on private
data from different clients.

Existing FNER methods (Ge et al., 2020; Zhao
et al., 2021; Wang et al., 2023) unrealistically as-
sume that entity types are static and fixed over time,
because in real-world applications, local clients
may continuously receive stream data of new entity
types. A direct solution is to force local clients
to store all samples of old entity types, and then
learn a global model to continuously recognize new
entity types through FL. But with the continuous
arrival of new entity types, this requires a signifi-
cant amount of computation and memory overhead,
which limits the application capability of FNER.
Even worse, if local clients have no memory to
store old data of old entity types, existing FNER
methods will significantly reduce their recognition
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ability on old entity types (i.e., catastrophic forget-
ting (Goodfellow et al., 2013; Kirkpatrick et al.,
2017; Rebuffi et al., 2017; Wang et al., 2024)).
Moreover, non-entity type in current task has the
semantic shift (Douillard et al., 2021; Zhang et al.,
2023a), which may belong to the entity types in
old tasks or future tasks. This phenomenon seri-
ously exacerbates the forgetting speed. More im-
portantly, in practical scenarios, new local clients
that incrementally receive new entity types may
irregularly join global training, further intensifying
catastrophic forgetting.

To overcome the problems in realistic scenarios
mentioned above, we focus a novel practical prob-
lem called Federated Incremental Named Entity
Recognition (FINER), where local clients continu-
ously collect new entity types based on their pref-
erences, and new local clients that collect unseen
entity types may participate in global training ir-
regularly. In the FINER setting, entity types are
non-independent and identically distributed (Non-
IID) across different clients, and training data of
old entity types is not available for all local clients.
FINER aims to train a global incremental NER
model through collaborative FL training on local
clients to address catastrophic forgetting. In this
work, we use medical named entity recognition as
an example to better illustrate FINER, as shown
in Figure 1. A lot of hospitals collect unseen/new
medical entity types continuously in clinical re-
ports. Considering privacy protection, these hos-
pitals hope to learn global entity recognition pat-
terns through FL without accessing the data of each
other (Zhang et al., 2022).

A simple solution for FINER is to directly
integrate incremental named entity recognition
(INER) (Monaikul et al., 2021; Zheng et al., 2022;
Zhang et al., 2023b; Qiu et al., 2024) with FL. How-
ever, such a trivial solution requires that the global
server needs to have strong manual prior about
which and when local clients can collect new entity
types, so that local clients can solve the forgetting
issue on old entity types through knowledge dis-
tillation (Hinton et al., 2015; Wang et al., 2022;
Asadi et al., 2023). Considering privacy protec-
tion in FINER, this sensitive information cannot be
shared between local clients and global server. Con-
sequently, from the intra-client perspective, due
to lack of the signals for knowledge distillation,
this simple solution suffers from serious forget-
ting issue caused by catastrophic forgetting with
semantic shift. Also, from the inter-client perspec-

tive, it suffers from forgetting issue across different
clients caused by Non-IID distributions, because
the global server is unable to provide the above
signals to local clients.

To surmount the aforementioned challenges,
we develop a novel Forgetting-Subdued Learning
(FSL) model that alleviates the forgetting prob-
lem on old entity types from both intra-client and
inter-client two aspects. Specifically, to address
the intra-client forgetting issue caused by semantic
shift and catastrophic forgetting, we first propose a
prototype-guided adaptive pseudo labeling to adap-
tively generate confident pseudo labels for old en-
tity types with semantic shift. We then design a
prototypical relation distillation loss to maintain se-
mantic consistency between old model and current
local model, thereby overcoming catastrophic for-
getting within the local client under the guidance
of confident pseudo labels. Furthermore, consider-
ing solving the inter-client forgetting problem, we
develop a task transfer detector that automatically
recognizes new entity types without any human
prior and generate signals to store the latest old
model from a global perspective for relation dis-
tillation. Experiments on two NER datasets (i.e.,
I2B2 (Murphy et al., 2010) and OntoNotes5 (Hovy
et al., 2006)) show that our model has significant
improvements compared to baseline methods. We
summarize the main contributions of this work as
follows:

• We focus a novel practical problem called
Federated Incremental Named Entity Recog-
nition (FINER), where the major challenges
are intra-client and inter-client forgetting prob-
lems on old entity types caused by intra-client
catastrophic forgetting with semantic shift and
inter-client Non-IID distributions.

• We propose a Forgetting-Subdued Learning
(FSL) model to address the FINER problem
via overcoming forgetting from intra-client
and inter-client two aspects. As far as we
know, this is the first work to explore a global
continual NER model in the FL field.

• We develop a prototypical relation distillation
loss to solve intra-client forgetting problem,
under the guidance of confident pseudo la-
bels generated via prototype-guided adaptive
pseudo labeling.

• We design a task transfer detector to surmount
inter-client forgetting by accurately recogniz-
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ing new entity types under privacy protection
and storing the latest old model from global
aspect for relation distillation.

2 Related Work

Federated Learning-based Named Entity Recog-
nition (FNER) is a secure distributed machine
learning paradigm that aggregates model param-
eters of local-client to build a global NER model
under the privacy protection. FedNER (Ge et al.,
2020) proposes to decompose medical NER model
on each client into shared and private modules
to sufficiently utilize the knowledge from other
clients and learn the features of local data in
unison. FAL (Zhao et al., 2021) introduces the
adversarial training technology to effectively im-
prove the model robustness and generalization for
FNER. (Wang et al., 2023) employs distillation
with pseudo-complete annotation and an instance
weighting mechanism to cope with the hetero-
geneous tag sets and facilitate knowledge trans-
fer across different clients. However, the above-
mentioned FNER methods cannot recognize new
entity types continuously under the FINER settings.

Incremental Named Entity Recognition
(INER) considers class-incremental learning in
named entity recognition. ExtendNER (Monaikul
et al., 2021) is the pioneer in applying knowledge
distillation to INER task. CFNER (Zheng et al.,
2022) introduces a causal framework for extract-
ing new causal effects in entities and non-entities.
L&R (Xia et al., 2022) proposes a learn and review
framework by simultaneously training a backbone
model and a generative model to generate samples
of old entity types to be trained with new samples.
DLD (Zhang et al., 2023b) improves the knowl-
edge distillation method in ExtendNER via divid-
ing it into negative terms and positive terms for a
fine-grained knowledge distillation. CPFD (Zhang
et al., 2023a) proposes a pooled features distilla-
tion loss and designs a confidence-based pseudo-
labeling strategy for classification. Nevertheless,
these INER methods cannot be effectively applied
to address the FINER problem, due to their strong
prior knowledge to access privately-sensitive infor-
mation (i.e., when and which local clients receive
new entity types).

3 Task Definition

As claimed in INER, some continual NER tasks
are defined as T = {T t}Tt=1, where the t-th task

T t = {Xt
i,Y

t
i}N

t

i=1 is composed of N t pairs of
token sequences and labels. The label space Yt

of t-th task consists of E t new entity types. Be-
sides, E t new entity types have no overlap with
Eo =

∑t−1
i=1 E i old entity types (∪t−1

j=1Yj) learned
from the t − 1 old tasks. In the t-th task, we fol-
low INER methods to annotate Eo old entity types
as non-entity type eo (i.e., semantic shift), due to
unavailable training data of Eo old entity types.

Then, we extend the settings from INER to
FINER. Denote global server as Sg and L lo-
cal clients as {Sl}Ll=1. In the FINER, at the r-
th (r = 1, · · · , R) global round, we randomly
select some local clients to aggregate gradients.
When we choose the l-th local client to learn the
t-th NER task, the latest global model Θr,t is dis-
tributed to Sl, and trained on private training data
T t
l = {Xt

li,Y
t
li}

Nt
l

i=1 ∼ Pl of Sl. Xt
li and Yt

li ∈ Yt
l

denote token sequences and labels of the l-th client.
{Pl}Ll=1 are non-independent and identically dis-
tributed (i.e., Non-IID) across local clients. The
label space Yt

l ⊂ Yt of Sl in the t-th task is com-
posed of E tl new entity types (E tl ≤ E t) that belongs
to a subset ofYt = ∪Ll=1Yt

l . Following INER meth-
ods, we consider semantic shift in the FINER and
also annotate Eol =

∑t−1
i=1 E il ⊂ ∪

t−1
j=1Y

j
l old entity

types from t− 1 old tasks as non-entity type. Af-
ter getting global model Θr,t and performing local
training on T t

l , Sl obtains a updated local model
Θr,t

l . And global server Sg aggregates local models
of selected clients as the global model Θr+1,t for
training the next global round.

In the t-th task, following (Dong et al., 2022,
2023), all local clients {Sl}Ll=1 are divided into
three categories: {Sl}Ll=1 = So ∪Sc ∪Sn. Specifi-
cally, So is composed of Lo local clients that have
accumulated experience of previous tasks but can-
not collect new data of the t-th task; Sc consisting
of Lc local clients can receive new data of cur-
rent task and has experience of old tasks; Sn in-
cludes Ln new local clients with unseen new entity
types but without experience of old entity types.
These local clients are randomly determined in
each incremental task. New clients Sn are added
randomly at any global round in FINER, increasing
L = Lo + Lc + Ln gradually as continuous tasks.
More importantly, we don’t have any prior knowl-
edge about the distributions {Pl}Ll=1, quantity and
order of NER tasks, when and which local clients
receive new entity types. In this paper, FINER
aims to learn a global model ΘR,T to recognize
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Figure 2: Overview of the proposed FSL model. It includes a prototypical relation distillation loss LPRD to
overcome intra-client catastrophic forgetting with semantic shift, under the guidance of prototype-guided adaptive
pseudo labeling. At the same time, it makes use of a task transfer detector to tackle inter-client forgetting brought
by Non-IID distributions.

new entity types continuously while surmounting
forgetting on old entity types, under privacy preser-
vation of local clients.

4 Methodology

Figure 2 presents the overview of our model to
address the FINER problem. Our FSL model
overcomes intra-client forgetting problem via a
prototype-guided adaptive pseudo labeling (PAP,
Section 4.1) to mine pseudo labels for old entity
types with semantic shift, and a prototypical rela-
tion distillation loss (PRD, Section 4.2), collabo-
rating with generated pseudo labels. Meanwhile, it
addresses inter-client forgetting problem via a task
transfer detector (TTD, Section 4.3) to recognize
new entity types and store old model for relation
distillation.

4.1 Prototype-guided Adaptive Pseudo
Labeling

For the l-th local client Sl ∈ Sc ∪ Sn, the
named entity recognition loss Lner for a mini-batch
{Xt

li,Y
t
li}Bs

i=1 ⊂ T t
l sampled from the t-th incre-

mental task is formulated as:

Lner =
1

Bs

Bs∑
i=1

|Xli|∑
j=1

DCE

(
Pt

l(X
t
li,Θ

r,t)j , (Y
t
li)j

)
(1)

Algorithm 1 Determination of {(wt
lij)e}E

o

e=0 in
Eq. (2).

Input: T t
l = {Xt

li,Y
t
li}

Nt
l

i=1 and number K;
for i = 1, · · · , N t

l do
Ft

li = Ft−1
l (xt

li,Θ
t−1);

Lt
li = argmaxPt−1

l (xt
li,Θ

t−1) ∈ R|xt
li|;

Ft
l = [Ft

l ; flatten(F
t
li)];

Lt
l = [Lt

l ; flatten(L
t
li)];

for e = 0, · · · , Eo do
Fle = Ft

l [L
t
l == e];

ηt
l,e = mean{Fle};

Select K feature vectors closest to ηt
l,e from

Fle and recalculate ηt
l,e;

Calculate (wt
lij)e using Eq. (4);

where DCE(·, ·) denotes the cross-entropy loss. At
the r-th global round, global model Θr,t is transmit-
ted from global server Sg to Sl. Pt

l(X
t
li,Θ

r,t)j ∈
R1+Eo+Et

is the probability at the j-th (j =
1, · · · , |Xli|) token predicted by Θr,t, and it can
predict non-entity type, Eo old entity types, and E t
new entity types for the j-th token. (Yt

li)j ∈ Yt
l

is corresponding label of the j-th token. Bs de-
notes the batch size. E = card(E) represents the
cardinality of entity types.

As aforementioned, in the FINER settings, local
client Sl has no memory to store Eo old entity types,
while non-entity tokens may belong to Eo old en-
tity types, entity types from future tasks or real
non-entity type (i.e., semantic shift). As a result,
it enforces the updating of local model Θr,t

l (i.e.,
Eq. (1)) to suffer from intra-client forgetting prob-



192

lem among different old entity types brought by se-
mantic shift, after Sl receives the global model Θr,t

from Sg for local training. To this end, as shown in
Figure 2, we develop a prototype-guided adaptive
pseudo labeling to adaptively mine high-confidence
pseudo labels for old entity types marked as non-
entity tokens in t-th incremental task. These pseudo
labels based on dynamic weights of Eo old entity
types are essential to alleviate semantic shift within
local clients.

At the t-th learning step, as shown in Fig-
ure 2, given a sample {Xt

li,Y
t
li} ⊂ T t

l , we
feed it into old global model Θt−1 of the last
task and current local model Θr,t

l to obtain the
probabilities Pt−1

l (xt
li,Θ

t−1) ∈ R|xt
li|×(1+Eo) and

Pt
l(X

t
li,Θ

r,t
l ) ∈ R|Xt

li|×(1+Eo+Et) respectively.
Then pseudo label Ŷt

li ∈ R|Xt
li| of given token

sequence Xt
li is defined as:

(Ŷt
li)j =


e, if (Yt

li)j ̸= 0 & e = (Yt
li)j ;

e, if (Yt
li)j = 0 & e = argmax

(Wt
li)j ⊙Pt−1

l (Xt
li,Θ

t−1)j ;

0, otherwise

(2)

where (Ŷt
li)j is pseudo label of the j-th token from

Ŷt
li and ⊙ denotes the element-wise multiplica-

tion. Pt−1
l (Xt

li,Θ
t−1)j is softmax probability of

the j-th token from Pt−1
l (Xt

li,Θ
t−1) . Addition-

ally, (Wt
li)j = {(wt

lij)e}E
o

e=0 denotes the dynamic
weights used to adaptively select pseudo labels with
high confidence. As shown in Eq. (2), in the t-th
task T t

l , when the j-th token belongs to non-entity
type, its pseudo label is determined by (Ŷt

li)j =
argmax(Wt

li)j⊙Pt−1
l (Xt

li,Θ
t−1)j . If the j-th to-

ken is not labeled as eo, we consider its pseudo
label as current entity types: (Ŷt

li)j = (Yt
li)j . Oth-

erwise, (Ŷt
li)j = 0 denotes real non-entity type for

the j-th token of Ŷt
li. And classification loss Lner

can be rewritten in the following form:

L′
ner =

1

Bs

Bs∑
i=1

|Xli|∑
j=1

DCE

(
Pt

l(X
t
li,Θ

r,t)j , (Ŷ
t
li)j

)
(3)

The calculation flow of {(wt
lij)e}E

o

e=0 is summa-
rized in Algorithm 1. Firstly, we obtain the fea-
ture representation Ft

l with its corresponding posi-
tion Lt

l (i.e., entity type) for all training samples in
the t-th task T t

l based on old global model Θt−1.
Nextly, we get the prototype ηtl,e for each entity

type e ∈ eo ∪ Yo with Ft
l and Lt

l . Considering
noise in Fle, we reselect K feature vectors closest
to ηtl,e from Fle to recalculate ηtl,e. Finally, (wt

lij)e
is determined via the following process:

(wt
lij)e =

exp(−||Ft−1
l (Xt

li,Θ
t−1)j − ηtl,e||)∑

e′ exp(−||F
t−1
l (Xt

li,Θ
t−1)j − ηt

l,e′
||)

(4)
where e

′
represents any previously seen old entity

types and we set K = 100 in this work.
Thus, given a mini-batch {Xt

li,Y
t
li}Bs

i=1 ⊂ T t
l ,

we can generate pseudo labels {Xt
li, Ŷ

t
li}Bs

i=1 ⊂ T t
l

adaptively via considering dynamic weights Wt
li

in Eq. (2) for all old entity types. These high-
confident pseudo labels can provide strong guid-
ance for the local training to surmount intra-client
forgetting problem.

4.2 Prototypical Relation Distillation
To address catastrophic forgetting within local
client Sl ∈ Sc ∪ Sn, we propose a prototypical
relation distillation loss LPRD, as shown in Fig-
ure 2. It considers that the relationships between
different steps should remain constant. In confor-
mity to this, distilling inter-task relations from old
global model Θt−1 to current local model Θr,t

l can
address forgetting problem on old entity types. In
the meantime, considering that relying solely on the
prediction of a single sample to perform semantic
consistency between Θt−1 and Θr,t

l may introduce
noisy relations, so we construct type-wise proto-
types for task relation distillation, also known as
prototypical relation distillation.

Specifically, for a given sample {Xt
li,Y

t
li} ⊂

T t
l with generated pseudo label Ŷt

li, we first
obtain its current probability Pt

l(X
t
li,Θ

r,t
l ) pre-

dicted via local model Θr,t
l and old probability

Pt−1
l (Xt

li,Θ
t−1) predicted via old global model

Θt−1. We then replace the first 1 +Eo dimensions
of Yt

li with Pt−1
l (Xt

li,Θ
t−1) and get its new repre-

sentation Ȳt
l (X

t
li,Θ

r,t
l ). Next, under the guidance

of pseudo labels Ŷt
li, we separately construct new

type-wise relation prototype P̃t
l,k and its relation

groundtruth Ỹt
l,k for the k-th entity type in Yo∪Yt

as follows:

P̃t
l,k =

1

∆k

Bs∑
i=1

|Xli|∑
j=1

Pt
l(X

t
li,Θ

r,t
l ) · I(Ŷt

li)j=k (5)

Ỹt
l,k =

1

∆k

Bs∑
i=1

|Xli|∑
j=1

Ȳt
l (X

t
li,Θ

r,t
l ) · I(Ŷt

li)j=k (6)
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where ∆k =
∑Bs

i=1

∑|xli|
j=1 I(ŷt

li)j=k and I is the
indicator function. Finally, the proposed LPRD is
formulated as:

LPRD =
1

Eo + E t
Eo+Et∑
k=1

DKL(P̃
t
l,k, Ỹ

t
l,k) (7)

where DKL(·||·) indicates Kullback-Leibler diver-
gence. Consequently, LPRD can address intra-
client catastrophic forgetting problem via main-
taining consistent semantic relations between old
model Θt−1 and current local model Θr,t

l .
Overall, the objective formulation of the l-th

local client Sl to learn the t-th NER task T t
l is

expressed as follows:

Lobj = L
′
ner + αLPRD + βLKD (8)

where LKD inherits from (Monaikul et al., 2021),
α and β are trade-off parameters. When t ≥ 2, we
set α = 0.5 and β = 2 in Eq. (8) to train local
model Θr,t

l ; otherwise, we use Lner in Eq. (1) to
optimize Θr,t

l .

4.3 Task Transfer Detector

When local clients recognize new entity types con-
secutively, global sever Sg requires to automati-
cally identify when and which local clients collect
new entity types, and then store the latest old global
model Θt−1 to perform LPRD. As a result, the ac-
curate selection of the latest old model Θt−1 is
essential to address inter-client forgetting across
different local clients brought by Non-IID distribu-
tions, when new entity types arrive. However, con-
sidering privacy preservation, we don’t have human
prior about when to obtain new entity types in local
clients under the FINER settings. To address this
issue, a naive way is to detect whether the labels
of current training data have been observed before.
Nevertheless, the Non-IID distributions across lo-
cal clients make it impossible to identify whether
the collected data belongs to old entity types seen
by other clients or new entity types. Therefore,
we design a task transfer detector to automatically
discover when and which local clients collect new
entity types. At the r-th round, when Sl receives
global model Θr,t, it evaluates the average entropy
Qr,t

l on T t
l :

Qr,t
l =

1

N t
l

Nt
l∑

i=1

|Xt
li|∑

j=1

Z(P t
l (X

t
li,Θ

r,t)j) (9)

Datasets #Entity Type #Sample Entity Type Sequence

I2B2 16 141k

AGE, CITY, COUNTRY, DATE, DOCTOR,

HOSPITAL,IDNUM, MEDICALRECORD,

ORGANIZATION, PATIENT, PHONE,

PROFESSION, STATE, STREET,

USERNAME, ZIP

OntoNotes5 18 77k

CARDINAL, DATE, EVENT, FAC, GPE,

LANGUAGE,LAW, LOC, MONEY, NORP,

ORDINAL, ORG,PERCENT, PERSON,

PRODUCT, QUANTITY, TIME,

WORK_OF_ART

Table 1: The statistical information for each NER
dataset.

where Z(·, ·) =
∑

i pi log pi is entropy function.
If there is a sudden rise for averaged entropy Qr,t

l :
Qr,t

l − Q
r−1,t
l ≥ δ, we believe this can serve as

a signal that local clients are collecting new en-
tity types. Then, we update t via t ← t + 1, and
automatically store the latest global model Θr−1,t

as old model Θt−1 to optimize local model Θr,t
l

via Eq. (8). We set δ = 1.0 empirically in this
paper. This automatic selection of old model Θt−1

from global aspect is essential to tackle inter-client
forgetting problem via considering Non-IID distri-
butions across local clients.

4.4 Optimization Procedure
At the beginning of each global round in each in-
cremental task, all local clients employ Eq. (9) to
calculate the average relative entropy of local data,
and then some of local clients are randomly se-
lected by global server Sg to conduct local training
at each round. After these chosen clients utilize
task transfer detector to accurately recognize new
entity types, they automatically store the global
model learned at the last global round as the old
model Θt−1 to generate confident pseudo labels
for old entity types via Eq. (2), and optimize local
model Θr,t

l via Eq. (8). Finally, the updated local
models Θr,t

l of selected local clients are aggregated
as Θr+1,t by Sg for the next round training.

5 Experiments

5.1 Implementation Details
We utilize two benchmark datasets: I2B2 (Murphy
et al., 2010) and OntoNotes5 (Hovy et al., 2006)
under various experimental settings to analyze ef-
fectiveness of our FSL model. We summarized the
statistical data of them in Table 1. Meanwhile, we
compare our FSL with recent INER methods un-
der the FINER settings, namely ExtendNER (Mon-
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I2B2 OntoNotes5

FG-8-PG-1 FG-8-PG-2 FG-8-PG-1 FG-8-PG-2Method
Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

Finetuning + FL 15.69 12.95 27.03 22.06 12.58 8.59 18.51 12.02
PODNet (Douillard et al., 2020) + FL 20.80 12.35 47.21 25.21 11.12 7.64 13.10 10.33

LUCIR (Hou et al., 2019) + FL 25.38 17.37 51.40 27.51 19.23 12.46 21.04 14.92
ST (De Lange et al., 2019) + FL 41.82 23.93 55.25 32.29 45.14 22.61 48.66 26.65

ExtendNER (Monaikul et al., 2021) + FL 43.38 26.80 55.71 30.16 44.69 26.15 50.02 31.84
CFNER (Zheng et al., 2022) + FL 43.07 27.08 56.55 32.86 43.61 25.77 51.01 32.82
DLD (Zhang et al., 2023b) + FL 44.12 27.19 55.55 30.09 42.47 25.88 50.31 31.91
CPFD (Zhang et al., 2023a) + FL 43.52 26.60 57.49 34.94 50.81 29.31 51.29 31.28

FSL (Ours) 47.07 29.88 58.11 35.50 52.13 34.71 53.12 33.35
Imp. ⇑2.95 ⇑2.69 ⇑0.62 ⇑0.56 ⇑1.32 ⇑5.40 ⇑1.83 ⇑0.53

Table 2: Comparisons with baselines on I2B2 and OntoNotes5 two datasets. The bold denotes the highest result,
and the underline denotes the second highest result.

aikul et al., 2021), CFNER (Zheng et al., 2022)
and CPFD (Zhang et al., 2023a). Furthermore, we
also introduce incremental learning methods used
in the field of computer vision as baseline meth-
ods, including Self-Training (ST) (De Lange et al.,
2019; Rosenberg et al.), LUCIR (Hou et al., 2019),
and PODNet (Douillard et al., 2020). Addition-
ally, Finetuning method is directly employed as the
lower bound.

For fair comparisons with these INER baseline
methods, we follow them to set exactly the same
incremental tasks and entity type order, and adopt
BIO labeling scheme across all datasets. Besides,
a entity types are used to train the base model, and
we use b entity types for each incremental learning
step, represented as FG-a-PG-b. And for the I2B2
and OntoNotes5 datasets, we both use two FINER
settings: FG-8-PG-1 and FG-8-PG-2.

We employ SGD optimizer with initial learning
rate as 2×10−3 to train the base task and 4×10−4

to learn incremental tasks. Our model utilizes a
BERT-based encoder (Devlin et al., 2018) and em-
ploys a fully connected layer as the classifier. We
use the PyTorch (Paszke et al., 2019) framework to
implement the model, which is built on top of the
Huggingface (Wolf et al., 2019) implementation.
Considering the limitation of GPU overhead, we
set initial local clients as 10, and add 4 new local
clients for each task. We choose 4 local clients
randomly to perform local training with 8 epochs
if PG = 2 else 4 epochs. We randomly select 30%
samples for each client in each task if PG = 1;
otherwise, we randomly sample 50% entity types
from current label set Yt, and assign 60% samples

from these entity types to selected local clients.

Following baseline INER methods, we employ
Micro-F1 (Mi-F1) and Macro-F1 (Ma-F1) as met-
ric and serve the mean value across all steps as the
final performance, including the base task. This
two metrics evaluate the effectiveness to address
forgetting problem and the ability to recognize new
entity types continually.

5.2 Comparisons with Baselines

Experiments on I2b2 and OntoNotes5 two datasets
are introduced to analyze superiority of our FSL
under various settings of FINER, as shown in Ta-
ble 2. Our FSL achieves a certain improvement
over existing INER methods under various FINER
settings. Specifically, as depicted in the left half
of Table 2, our FSL achieves improvements over
the best results of previous INER methods mean
1.79% in Mi-F1, and 1.63% in Ma-F1, under the
two FINER settings of I2B2. In the right half of
Table 2, our FSL achieves improvements over the
best results of other INER methods mean 1.58% in
Mi-F1, and 2.97% in Ma-F1, under the two FINER
settings of OntoNotes5.

These results quantitatively illustrate the effec-
tiveness of our model against other INER methods
to learn a global continual NER model via col-
laboratively training local models under privacy
preservation. Except for this, they also validate
superiority of the proposed prototype-guided adap-
tive pseudo labeling and prototypical relation dis-
tillation loss to address intra-client and inter-client
forgetting problem under the FINER settings.
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Input Sentence Record date : 2097 - 03 - 25 Patient Name : Whitaker , Vincent

No PL [O] [O] [O] [O] [O] [O] [O] [O] [O] [O] [O] [B-PATIENT] [I-PATIENT] [I-PATIENT]

PL [O] [O] [O] [B-DATE] [O] [I-DATE] [I-DATE] [I-AGE] [O] [O] [O] [B-PATIENT] [I-PATIENT] [I-PATIENT]

PAP [O] [O] [O] [B-DATE] [I-DATE] [I-DATE] [I-DATE] [I-DATE] [O] [O] [O] [B-PATIENT] [I-PATIENT] [I-PATIENT]

Golden Labels [O] [O] [O] [B-DATE] [I-DATE] [I-DATE] [I-DATE] [I-DATE] [O] [O] [O] [B-PATIENT] [I-PATIENT] [I-PATIENT]

Figure 3: A real visualization example of some pseudo labels on I2B2 dataset under the FG-8-PG-2 setting.
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Figure 4: Comparisons of the step-wise Micro-F1 and Macro-F1 on I2B2 and OntoNotes5 two datasets.

I2B2 OntoNotes5
Method Mi-F1 Ma-F1 Mi-F1 Ma-F1

Ours w/o PL 48.17 31.81 38.71 22.97
Ours w/o PAP 55.64 33.37 50.14 28.78
Ours w/o PRD 54.46 32.74 52.32 32.43

FSL (Ours) 58.11 35.50 53.12 33.35

Table 3: Ablation studies on I2B2 and OntoNotes5 un-
der the FG-8-PG-2 setting of FINER.

5.3 Ablation Studies

To analyze effectiveness of each module in our
model, Table 3 presents ablation experiments un-
der various FINER settings. Ours w/o PL, Ours
w/o PAP and Ours w/o PRD indicate the results
of our model without pseudo labeling (denoted
as PL), prototype-guided adaptive pseudo labeling
(denoted as PAP) and prototypical relation distil-
lation (denoted as PRD), where Ours w/o PAP di-
rectly use the prediction results of the old model as
pseudo labels for the tokens marked as non-entity
type. Compared to our FSL, the effectiveness of all
ablation variants has significantly degraded.

More specifically, after removing PL, the results
show 9.94% Mi-F1 and 3.69% Ma-F1 drop of I2B2,
and 14.41% Mi-F1 and 10.38% Ma-F1 drop of
OntoNotes5 compared to the full model. At the
same time, after removing PAP from the full model,
the results show 2.47% Mi-F1 and 2.13% Ma-F1

drop of I2B2, and 2.98% Mi-F1 and 4.57% Ma-F1
drop of OntoNotes5. Meanwhile, we can refer to
an example in Figure 3. Without PL, the old entity
type DATE is labeled as non-entity type, which can
lead to semantic shift and exacerbate forgetting.
Moreover, the error rate of conventional PL is rela-
tively high compared to PAP (such as marking old
entity type DATE as entity type AGE or non-entity
type in Figure 3), so the effect will also be rela-
tively poor, which is consistent with the previous
experimental results. These results indicate that
the proposed PAP module can effectively tackle
semantic shift via confident pseudo labels.

And after removing PRD, the results show 3.65%
Mi-F1 and 2.76% Ma-F1 drop of I2B2, and 0.80%
Mi-F1 and 0.92% Ma-F1 drop of OntoNotes5 com-
pared to the full model. This proves that the pro-
posed PRD module can alleviate catastrophic for-
getting of old entity types under the guidance of
generated pseudo labels. As a consequence, the
above results verify the importance of all modules
to address the forgetting problem under the FINER
settings.

5.4 Analysis of Step-Wise Comparisons

As shown in Figure 4, we introduce step-wise com-
parisons to analyze the validity of our model under
FINER settings. Our model outperforms baseline
INER methods (Douillard et al., 2020; Hou et al.,
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2019; De Lange et al., 2019; Monaikul et al., 2021;
Zheng et al., 2022; Zhang et al., 2023b,a) combined
with FL for comparisons on I2B2 and OntoNotes5
under two FINER settings. Therefore, the proposed
FSL model can encourage local clients to learn a
global incremental NER model cooperatively un-
der privacy preservation. Comparisons in Figure 4
show significant improvements of our model to
address the FINER problem over other INER meth-
ods. When continuously recognizing new entity
types, our FSL can effectively solve intra-client
and inter-client forgetting problem.

6 Conclusion

In this paper, we propose a Federated Incremen-
tal Named Entity Recognition (FINER) problem,
and develop a novel Forgetting–Subdued Learning
(FBL) model to address intra-client and inter-client
forgetting problem on old entity types. To tackle
intra-client forgetting problem, we design a proto-
typical relation distillation loss, under the guidance
of prototype-guided adaptive pseudo labeling. At
the same time, we propose a task transfer detector
to overcome inter-client forgetting problem. It can
automatically recognize new entity types and store
the latest old global model for relation distillation.
Comparison results demonstrate the superiority of
our FSL to tackle the FINER problem.

7 Limitations

Our PAP, which employs prototypes to calculate
confidence, necessitates pre-calculation for each
old entity type based on the current training data
and the old model, thus extending training duration.
Furthermore, it still have some mislabeled sam-
ples which will be introduced as noise into PRD.
Furthermore, our PRD needs extra computational
effort to align with the semantic relation between
the new local model and the old model.
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