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Abstract

Word Sense Disambiguation (WSD) is a fun-
damental task critical for accurate semantic
understanding. Conventional training strate-
gies usually only consider predefined senses
for target words and learn each of them from
relatively limited instances, neglecting the in-
fluence of similar ones. To address these prob-
lems, we propose the method of Learning to
Rank Senses (LTRS) to enhance the task. This
method helps a model learn to represent and
disambiguate senses from a broadened range of
instances via ranking an expanded list of sense
definitions. By employing LTRS, our model
achieves a SOTA F1 score of 79.6% in Chinese
WSD and exhibits robustness in low-resource
settings. Moreover, it shows excellent training
efficiency, achieving faster convergence than
previous methods. This provides a new tech-
nical approach to WSD and may also apply to
the task for other languages1.

1 Introduction

Word Sense Disambiguation (WSD) aims to iden-
tify the sense of words in context(Navigli, 2009),
which is critical for accurate semantic understand-
ing and beneficial to multiple downstream appli-
cations, such as Information Retrieval (Blloshmi
et al., 2021), Text Summarization (Kouris et al.,
2021), Machine Translation (Emelin et al., 2020).
In recent years, integrating lexical knowledge, such
as sense definitions, within neural architectures has
successfully enhanced the performance of super-
vised WSD methods (Huang et al., 2019; Blevins
and Zettlemoyer, 2020; Barba et al., 2021a,b).

Although these methods have achieved decent
results, a significant performance drop remains be-
tween the most frequent senses (MFS) and the less
frequent senses (LFS). This can be attributed to the
imbalance in training data, where LFS are seldom

1The Code for this paper is available at https://github.
com/COOLPKU/LTRS.

represented as positive senses, hindering effective
learning for them. Some methods have attempted
to tackle this problem by specifically annotating
more instances for LFS (Blevins et al., 2021) or
balancing the learning between MFS and LFS by
loss reweighting (Su et al., 2022). However, it is
labor-intensive and time-consuming to acquire in-
stances for rare senses, while loss reweighting may
lead to overfitting due to insufficient data for LFS.

We observe that, from a linguistic perspective,
words holding similar senses tend to appear in sim-
ilar contexts, indicating that instances for a sense
may benefit the learning of similar senses. For
example, as shown in Table 1, the sense "宽阔1

((area) wide)" and "坦荡1 (wide and flat)", "宽
阔2 (not narrow-minded)" and "坦荡2 (pure and
open-hearted)" are close with similar contexts for
exploration. This phenomenon is also evident in
other languages, such as "wide" and "broad" in En-
glish, as shown in Table 2. This again suggests that
leveraging sense similarity may enhance WSD.

However, conventional training strategies may
neglect the influence of similar senses (Erk et al.,
2013), as they usually only consider predefined
senses for target words and treat all of them equally.
To address these problems, Learning to Rank (LTR)
methods, widely applied in fields such as Rec-
ommendation Systems (Karatzoglou et al., 2013)
and Information Retrieval (Liu et al., 2009), may
be helpful. By employing LTR, models can ef-
fectively distinguish among highly similar, mod-
erately similar, and dissimilar objects to a given
query. Compared to query-object pairs used in
the above-mentioned fields, this may also apply to
word-definition pairs needed in WSD scenarios.

Based on these considerations, we are motivated
to enhance WSD by adjusting the learning pro-
cess and propose the method of Learning to Rank
Senses (LTRS). At training time, the model is en-
couraged to rank sense definitions according to
their semantic similarity with the target word. Ad-

https://github.com/COOLPKU/LTRS
https://github.com/COOLPKU/LTRS
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Word Sense ID Sense Definition Context

宽阔
宽阔1

面积广 ～的河面在阳光下闪闪发光。
(area) wide The ~ river surface sparkled in the sunlight.

宽阔2
心地开阔不狭隘 他有着～的胸襟，能容纳不同的意见。
not narrow-minded He has a ~ mind that can accommodate different opinions.

坦荡
坦荡1

宽广平坦 ～的大路在阳光的照耀下延伸到远方。
wide and flat The ~ road stretches into the distance under the shining sun.

坦荡2
心地纯洁宽畅 他的心胸～，能够包容别人的过错。
pure and open-hearted His mind is ~, capable of forgiving others’ mistakes.

Table 1: Senses for "宽阔" and "坦荡", from the sense inventory WrdInv of MiCLS (Wang et al., 2024).

Word Sense ID Sense Definition Context

wide wide1 measuring a lot from one side to the other The river was so ~ that it took an hour to row across it.
wide2 including a large number or variety of things The store offers a ~ range of goods.

broad broad1 wide The ~ street was lined with trees.
broad2 including a great variety of things The company has a ~ range of products.

Table 2: Senses for "wide" and "broad", from Oxford English Dictionary (Dictionary, 1989).

ditionally, the candidate definition list is expanded
by including definitions from other words. In this
way, the model can learn to represent and disam-
biguate senses from a broadened range of instances,
which is especially helpful for LFS.

By employing LTRS, our model outperforms pre-
vious top-performing models in Chinese WSD and
exhibits robustness in low-resource settings. Fur-
thermore, it also achieves better training efficiency
than the previous. Considering the generality of
these linguistic issues, this method may also apply
to the task for other languages.

2 Related Works

WSD Methods: Recent supervised neural WSD
methods have achieved decent performance by
leveraging lexical knowledge bases (Bevilac-
qua et al., 2021), with incorporating defini-
tional (Huang et al., 2019; Blevins and Zettlemoyer,
2020; Barba et al., 2021a,b), relational (Vial et al.,
2019; Bevilacqua and Navigli, 2020; Wang and
Wang, 2020; Song et al., 2021; Zhang et al., 2022),
and morphological (Zheng et al., 2021; Wang et al.,
2024) knowledge. Some methods have further im-
proved the performance on LFS by annotating more
instances for them (Blevins et al., 2021) or adopt-
ing Z-reweighting (Su et al., 2022). However, these
methods only consider predefined senses for tar-
get words and learn each from relatively limited
instances, potentially preventing models from fully
leveraging sense similarity.
LTR Methods: Existing methods fall into three cat-
egories: Pointwise methods (Crammer and Singer,

2001; Li et al., 2007) independently optimize the
similarity score of each query-object pair ignor-
ing relationships between objects; Pairwise meth-
ods (Burges et al., 2005; Cao et al., 2006) improve
it by modeling preferences between two objects
but overlook their global positions; Listwise meth-
ods (Cao et al., 2007; Xia et al., 2008) focus on the
overall order of all objects rather than individual
objects or pairs. Listwise methods are more ap-
propriate for WSD than the others, since the most
suitable sense needs to be identified while ensuring
similar ones with relatively high global positions.

3 Methodology

3.1 Task Formulation
We frame WSD as a multi-class classification task.
Given a polysemous word w in context cw, a WSD
system needs to identify the most suitable sense
definition from Dw = {di}li=1, the sense definition
set for w. To find this targeting definition, our
method requires a function f for mapping a (w, d)
pair to a similarity score s. At prediction time, the
most suitable definition for w is determined as:

d̂ = argmax
d

f (w, d) , where d ∈ Dw. (1)

3.2 WSD Enhanced by LTRS
The general idea of LTRS is to help a model learn to
rank definitions based on their semantic similarity
with the target word. The overall architecture of our
method is shown in Figure 1. Specifically, given a
mini-batch of target words W = {wi}mi=1 and cor-
responding contexts CW = {cwi}mi=1, we devise a



1936

cw1:他的心胸坦荡，
能够包容别人的过错。
His mind is ~, capable of 
forgiving others' mistakes.

Ec Ed

Dw1

DW

Sw1

STw1

LTRCW

Dw2

cw2:宽阔的河面在阳
光下闪闪发光。
 The ~ river surface 
sparkled in the sunlight.

d3:面积广
(area) wide

d2:心地纯洁宽畅
pure and open-hearted

d4:心地开阔不狭隘
not narrow-minded

d1:宽广平坦
wide and flat

rw1

rd1

rd2

rd3

rd4

Figure 1: Illustration of the proposed LTRS: the model is required to rank an expanded list of sense definitions
according to their semantic similarity with the target word (shown in bold). In this way, it learns to represent and
disambiguate senses of target words from instances for similar senses, such as "宽阔" and "他的心胸～，能够包
容别人的过错 (His mind is ~, capable of forgiving others’ mistakes)".

unified definition set DW =
⋃m

i=1Dwi . A context
encoder Ec and a definition encoder Ed are used to
get the representation rw for each w ∈ W and rd
for each d ∈ DW , respectively. Both encoders are
initialized with the pre-trained model BERT (De-
vlin et al., 2019). Their inputs are padded with the
BERT-specific classification token [CLS] and sepa-
rator token [SEP]. In addition, the target word in
context inputs is replaced by a [MASK] to enhance
generalization. We obtain rw from the output em-
bedding of [MASK] and rd from that of [CLS].

For each w ∈ W , the predicted score list
of candidate definitions is defined as Sw =
[ϕ(rw, rdi)]

|DW |
i=1 , where ϕ(rw, rdi) =

rw·rdi
∥rw∥∥rdi∥

and di ∈ DW .
To evaluate Sw, we compare it with the ground

truth score list ST
w . Based on the semantic equiv-

alence between w and the correct definition d∗,
the ground truth score for (w, d) can be mea-
sured by the similarity score between d∗ and d.
To compute the similarity score, we apply a sen-
tence embedding model BGE (Xiao et al., 2024),
which has achieved SOTA performance on many
Semantic Textual Similarity (STS) tasks. Formally,
ST
w = [ϕ(E(d∗), E(di))]

|DW |
i=1 , where E is a BGE

encoder.
To help the model learn ranking knowledge from

the ground truth scores, two listwise LTR methods
ListNet (Cao et al., 2007) and ListMLE (Xia et al.,
2008) are utilized:

ListNet aims to minimize the cross entropy be-
tween the top one probability2 distribution and the

2ListNet can be based on either permutation probability
or top one probability. We adopt the top one probability for

ground truth. Given the score list of all definitions
S = [si]

n
i=1, the top one probability of definition

i represents the probability of its being ranked at
top-1, calculated as: PS(i) =

esi/τ∑n
j=1 e

sj/τ
, where τ

is a temperature hyperparameter for smoothing the
distribution. The objective of ListNet is defined as:

LListNet = −
|Sw|∑
i=1

PST
w
(i) logPSw(i). (2)

We use different temperature hyperparameters for
Sw and ST

w , denoted by τ1 and τ2.
ListMLE aims to maximize the log-likelihood

of the ground truth permutation for the definition
indexes πT = [πT (i)]

|ST
w |

i=1 , which represents defini-
tion πT (i) is ranked i-th. The objective of ListMLE
is defined as3:

LListMLE = − log
k∏

i=1

e
s
πT (i)

/τ3∑|ST
w |

j=i e
s
πT (j)

/τ3
, (3)

where sπT (·) ∈ Sw, τ3 is a temperature hyperpa-
rameter, k (< |ST

w |) is a hyperparameter for effi-
ciency consideration4.

4 Experiment and Analysis

4.1 Experimental Settings
Datasets: We fuse FiCLS (Zheng et al., 2021) and
MiCLS (Wang et al., 2024) to increase the data vol-
efficiency consideration.

3In practice, in order for the model to place greater empha-
sis on higher-ranked senses, the losses for higher rankings are
assigned higher weights based on ST

w .
4The original permutation probability is calculated with

k = |ST
w |. Since we mainly focus on the top few closest

senses, k is introduced to reduce computational complexity.
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Valid Test
Noun Verb Adj. Adv. ALL

MFS 42.3 46.2 39.9 39.9 32.5 42.1
BERT 73.2 74.7 72.5 74.4 71.1 73.2

GlossBERT 75.8 75.6 76.2 75.6 73.3 75.5
BEM 78.3 78.4 78.7 78.1 73.2 78.1
FormBERT 77.6 77.2 77.4 78.8 75.5 77.4
ESCHER 78.3 76.7 78.9 79.6 75.6 77.9

LTRSListNet 80.2 78.5 80.8 80.6 77.3 79.6
LTRSListMLE 79.7 78.6 80.2 80.0 78.5 79.3

Table 3: Comparison of F1 scores (%) for Chinese WSD.
The best results are shown in bold.

ume and sense coverage, providing more effective
training and validation for our method. The new
dataset contains 96829 instances, covering 88.1%
of polysemous words and 77.9% of their senses in
CCD5. We divide the new dataset into training, val-
idation, and test sets by 7:1:2. More details about
this sourced dataset are shown in Appendix A.
Baselines: Besides MFS and BERT (Devlin et al.,
2019) as default baselines, we compare LTRS with
four recent top-performing systems6, including
GlossBERT (Huang et al., 2019), BEM (Blevins
and Zettlemoyer, 2020), FormBERT (Zheng et al.,
2021) and ESCHER (Barba et al., 2021a), with the
same settings as our model for a fair comparison.
Experimental Configuration: We adopt chinese-
bert-base-wwm-ext (Cui et al., 2020) as the base
model and bge-large-zh-v1.5 (Xiao et al., 2024) for
computing the ground truth scores. The settings of
the two models and other detailed configurations
are shown in Appendix B.

4.2 Evaluation Results
Overall Results: Table 3 shows the overall results
for Chinese WSD across the main parts-of-speech
(PoS). From it, we have the following observations:

(1) By LTRS, our model achieves the best F1
score of the test set and surpasses all competitors
across all PoS. Compared to BEM, LTRSListNet

and LTRSListMLE outperforms it by 1.5 and 1.2
F1 points respectively with the same bi-encoder
architecture. This can be attributed to the enhanced
learning of sense representation and disambigua-
tion from a broadened range of instances via rank-
ing an expanded list of sense definitions.

5CCD is the abbreviation of the Contemporary Chinese
Dictionary, the most authoritative Chinese dictionary.

6Other top-performing WSD methods, such as
EWISER (Bevilacqua and Navigli, 2020) and Con-
SeC (Barba et al., 2021b), require special word features that
are unavailable in existing Chinese WSD datasets.

MFS LFS Zero-shot

BEM 86.3 71.6 62.3
ESCHER 87.1 70.8 57.6

LTRSListNet 85.6 75.3 70.0
LTRSListMLE 85.9 74.6 69.3

Table 4: Comparison of LTRS against its competitors
on MFS, LFS, and Zero-shot subsets of the test set.

t Instances

1 19277
3 43844
5 55883
unlimited 67780

Table 5: Number of training instances at different values
of t.

(2) LTRSListNet and LTRSListMLE achieve rel-
atively consistent results across all sets and PoS,
validating the effectiveness of both LTR methods.
Results in Low-resource Settings: To better un-
derstand the overall results, we also consider three
subsets of the test set: (i) instances for MFS, (ii)
instances for LFS, and (iii) zero-shot instances for
unseen senses during training. As shown in Table 4,
LTRS introduces significant improvements over its
competitors on LFS and Zero-shot, validating the
robustness of our method in low-resource settings.
This is also due to our method’s ability of learn-
ing senses from other instances in the mini-batch.
Despite slightly lower performance on MFS, its
exceptional capability in low-resource scenarios
contributes to the improvements on the whole.
Separate Results on FiCLS and MiCLS: To ad-
dress the problem of reproducibility and compari-
son with other papers, we conduct separate training
and evaluation on MiCLS and FiCLS. Detailed re-
sults are shown in Appendix C, which indicate that
LTRS still outperforms its competitors and demon-
strate the effectiveness of our method.
Case Study: A case study (detailed in Appendix D)
is conducted to further explore the reasons for
the promising performance of LTRS, which shows
that it can leverage definitional knowledge and in-
stances more fully and effectively.

4.3 Few-Shot Evaluation

We compare LTRS and BEM in a few-shot scenario
with t ∈ {1, 3, 5, unlimited} training instances per
sense. The number of instances during training for
each t is shown in Tabel 5.

As shown in Figure 2, all models achieve better
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Figure 2: F1 scores (%) of BEM and LTRS on the test
set, when varying t.

Test

BEM w/ BERT-base 78.1
BEM w/ BGE-base 78.7
BEM w/ BGE-large 79.8

LTRSListNet w/ BERT-base 79.6
LTRSListMLE w/ BERT-base 79.3

Table 6: F1 scores (%) of LTRS and BEM based on
different pre-trained models.

F1 scores as t increases. However, LTRS makes
more efficient use of training data and achieves
similar results to the strongest BEM with only 3
instances per sense.

4.4 Analysis on the Contribution of BGE

To analyze the contribution of BGE apart from
LTRS, we conduct additional experiments to evalu-
ate the performance of BGE-based BEM. Two BGE
models with different sizes are employed: bge-
base-zh-v1.5 and bge-large-zh-v1.5 (Xiao et al.,
2024). Detailed settings of them are provided in
Table 10. As shown in Table 6, LTRS significantly
outperforms BEM based on BGE-base, indicating
that the performance gains are primarily due to
the LTR strategy. Notably, LTRS achieves perfor-
mance comparable to BEM based on BGE-large
while using only approximately one-third of its
fine-tuned parameter quantity.

4.5 Analysis on Batch Size

We conduct additional experiments to investigate
the impact of the definition batch size. Results on
the test set for various batch sizes are presented
in Table 7, showing that the larger the batch size,
the better LTRS performs. A possible reason for
this is that with a larger batch size, the model can
learn more similarity knowledge between senses.
However, its setting is constrained by memory.

Batch Size
64 128 256

LTRSListNet 79.2 79.5 79.6
LTRSListMLE 78.7 79.3 79.3

Table 7: Comparison of different batch sizes for LTRS.

Figure 3: Training curves of BEM and LTRS. The best
performance of each model is denoted by a star.

4.6 Analysis on Training Efficiency
We further compare LTRS and BEM on training
efficiency, with the same experimental settings in-
troduced in Appendix B. Figure 3 shows that our
model achieves the best validation performance
within 100 minutes, noticeably faster than BEM.
This can be attributed to the varying number of
senses for each word, which limits BEM’s par-
allel processing. In our method, a unified sense
definition set is devised to effectively tackle this
issue. Compared to BEM’s 24.2 minutes per epoch,
LTRSListNet and LTRSListMLE need only 9.6 and
9.8 minutes, respectively. In addition, LTRS pro-
vides more learning opportunities per epoch for the
senses, which helps to accelerate convergence.

5 Conclusion

In this paper, we propose the LTRS method to en-
hance WSD. By ranking an expanded list of sense
definitions, the model can learn to represent and
disambiguate senses from a broadened range of
instances. Our model achieves a SOTA F1 score of
79.6% in Chinese and exhibits robustness in low-
resource settings. Moreover, it shows excellent
training efficiency, achieving faster convergence
than previous methods.

This method provides a novel technical approach
to WSD. In the near future, we will go further to
evaluate it in more languages, particularly focusing
on low-resource settings such as LFS, few-shot,
and zero-shot, considering that manually annotated
data may be relatively scarce in some low-resource
languages.
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6 Limitations

Despite achieving promising results, there remain
some limitations of our method as follows:

(1) The superior performance of LTRS is related
to the lexical sample WSD datasets we employed,
which include a relatively high proportion of LFS
and zero-shot senses. Our method evidently excels
in disambiguating these types of senses, resulting in
significant performance gains on the whole. How-
ever, in other benchmarks where the proportions of
lower frequent senses are comparatively lower, the
advantage of LTRS may be less pronounced.

(2) Our method relies on an extra top-performing
sentence embedding model, BGE (Xiao et al.,
2024) for example, to compute the similarity scores
between sense definitions. In low-resource lan-
guages, this kind of sentence embedding model
may be less accurate for measuring the similarity
between definitions, thereby weakening the effec-
tiveness of LTRS.

(3) Similar to previous methods, our method
also fails to achieve significant performance gain
on words with fine-grained sense categorization.
For this scenario, we conduct a detailed case study
in Appendix D. To achieve accurate sense disam-
biguation at this level of granularity, supplementary
lexical semantic and syntactic knowledge may be
required.
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A Data Statistics

FiCLS (Zheng et al., 2021) and MiCLS (Wang
et al., 2024) are currently the two largest available
Chinese lexical sample WSD datasets. Both of
them use the CCD-origined sense inventory for
annotation. However, FiCLS covers limited disyl-
labic words while MiCLS only covers disyllabic
words. So we combine all data targeting polyse-
mous words7 into a new dataset. To unify the sense
definitions, all of them are retrieved from WrdInv
and MorInv provided by MiCLS.

The data statistics for each source are shown
in Table 8. The sourced dataset covers 88.1% of
polysemous words and 77.9% of their senses in
CCD. We divide it into training, validation, and
test sets by 7:1:2. The statistics of these sets are
shown in Table 9.

Source Words Senses Instances

FiCLS 1888 5997 36698
MiCLS 8126 14948 60131

ALL 10014 20945 96829

Table 8: The data statistics for different sources.

Split Words Senses Instances Context Definition
Length Length

Train 9812 19277 67780 27.5 11.6
Valid 4883 6323 9683 27.3 11.4
Test 6906 10217 19366 27.6 11.6

Table 9: Statistics of the training, validation, and test
sets. The length is calculated as the average number of
Chinese characters.

B Experimental Configuration

The settings of the pre-trained models involved
in the experiments are shown in Table 10. All
of them adopt an architecture based on the Trans-
former (Vaswani et al., 2017) encoder.

7MiCLS covers both monosemous and polysemous words.
Although LTRS can leverage monosemous lexical examples
during training, we only use polysemous word data for a fair
comparison with other methods.

Model Encoder Attention Hidden
Size Layers Heads Size

chinese-bert- 110M 12 12 768base-wwm-ext

bge-base-zh- 102M 12 12 768v1.5

bge-large-zh- 326M 24 16 1024v1.5

Table 10: The settings of BERT and BGE we employ.

We carry out grid search of temperatures
τ1, τ2, τ3 ∈ {0.01, 0.05, 0.1, 0.2}, k ∈ {3, 5, 10},
definition batch size ∈ {64, 128, 256}, and select
the best combination based on the validation perfor-
mance. Finally, we set τ1, τ2, τ3 to 0.05, and k to
5. The model is finetuned by AdamW (Loshchilov
and Hutter, 2017) optimizer for up to 20 epochs
with a learning rate of 5e-5. Before the beginning
of each epoch, we randomly shuffle the training
data. We evaluate the model every 250 training
steps on the valid set and keep the best checkpoint
for evaluation on the test set.

For the BERT baseline, we finetune a linear clas-
sifier on the hidden states of the target word output
by a frozen BERT. For BEM, the same settings as
our model are adopted. For the other baselines,
we uniformly adopt the same pre-trained model as
LTRS, and directly follow the experimental config-
urations described in their original papers for the
other settings.

All experiments are conducted with the deep
learning framework PyTorch on a single NVIDIA
RTX 3090 GPU (43GB memory).

C Separate Results on FiCLS and MiCLS

The separate results on FiCLS and MiCLS are
shown in Table 11. The results appear to be higher
than the fusion results because MiCLS intention-
ally includes some monosemous word data, which
may actually be polysemous in the real corpus. In
the fusion, we filter out these data to ensure a fair
comparison with other models.

D Case Study

LTRS achieves remarkable performance compared
to previous methods, particularly on LFS. To bet-
ter understand the underlying reasons, we conduct
case studies as below:

Take the word "花红" in the context "春节这
天，老板要发放年终～ (On the Spring Festival,

https://doi.org/10.18653/v1/2021.findings-emnlp.78
https://doi.org/10.18653/v1/2021.findings-emnlp.78
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FiCLS MiCLS
Noun Verb Adj. Adv. ALL Noun Verb Adj. Adv. ALL

MFS 35.2 34.5 33.3 36.7 35.0 80.6 76.5 71.7 66.0 77.6
BERT 74.7 71.1 72.1 64.3 71.8 - - - - -

GlossBERT 82.9 82.0 82.6 81.9 84.5 - - - - -
BEM 73.2 72.6 74.6 66.2 72.2 88.4 87.9 85.1 76.3 87.4
FormBERT 88.7 87.7 88.5 83.1 87.6 93.0 92.1 88.2 83.5 91.9
MorBERT - - - - - 93.2 92.5 88.9 84.0 92.2

LTRSListNet 88.9 89.4 89.3 85.1 88.2 93.7 93.8 90.2 84.9 93.1
LTRSListMLE 88.8 89.0 89.5 83.9 88.0 93.8 93.6 90.6 85.8 93.2

Table 11: Separate results on the test set of FiCLS and MiCLS. The results of baselines are sourced from the original
papers for the two datasets.

Word Sense ID Sense Definition Context

观览
观览1

参观观看 我们前往美术馆～展览，欣赏各种风格迥异的艺术作品。
visit and view We went to the gallery to ~ the exhibition, admiring a variety of

diverse art pieces.

观览2
参观游览 游客纷至沓来，～景点，流连忘返。
visit and tour Tourists flock to ~ attractions, reluctant to leave.

重利

重利1
很高的利息 贷款公司因～盘剥而受到广泛批评。
very high interest The loan company has been widely criticized for charging ~.

重利2

很高的利润 该公司被指控利用不公平竞争手段牟取～。
very high profit The company has been accused of using unfair competition tactics

to reap ~.

原装

原装1

原来包装好的 在新年宴会上，老板特别准备了几瓶～名酒。
originally packaged At the New Year’s banquet, the boss specially prepared several

bottles of ~ brand liquor.

原装2

原来装配好的 我们购买了～彩电，以享受更清晰的画质和更稳定的功能。
originally assembled We purchased an ~ television to enjoy clearer picture quality and

more stable features.

Table 12: Fine-grained sense categorization for "观览", "重利", and "原装", with extra lexical knowledge and
contexts needed for accurate sense disambiguation.

the boss will distribute the year-end ~)" as an ex-
ample. Our model properly identifies the sense "花
红3 (bonus)" for it, while there are no instances
for "花红3 (bonus)" in the training set. The reason
for this is that the model can learn to represent "花
红3(bonus)" from instances for senses similar to
it, such as "红利2 (rewards given to employees by
the company)" and "奖金1 (money as rewards)".
Moreover, when training on these instances, it also
learns to differentiate "花红3 (bonus)" from the
other senses, including "花红1 (a holiday gift)" and
"花红2 (a kind of plant)". This explicit learning
helps our model achieve more performance gain.
A similar case can also be seen on "解1 (send away
under escort)" and its similar sense "监押2 (escort
under supervision)".

However, similar to previous methods, our
method also fails to achieve significant perfor-
mance gain on words with fine-grained sense cat-
egorization. For example, the model misclassifies
an instance annotated with the sense "观览1 (visit

and view)" and assigns "观览2 (visit and tour)" to
it. This is because the two senses are too similar
and difficult to distinguish, as shown in Table 12.
In this scenario, BGE tends to output very close
ground truth scores for both senses, thereby hin-
dering models’ learning. Similar cases can also be
seen on "重利" and "原装" shown in Table 12. To
address this problem, extra lexical knowledge and
contexts may be needed for accurate sense disam-
biguation.
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