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Abstract

Large Language Models (LLMs) have shown
impressive performance on various bench-
marks, yet their ability to engage in delib-
erate reasoning remains questionable. We
present NYT-CONNECTIONS, a collection of
358 simple word classification puzzles de-
rived from the New York Times Connections
game. This benchmark is designed to penalize
quick, intuitive “System 1” thinking, isolating
fundamental reasoning skills. We evaluated
six recent LLMs, a simple machine learning
heuristic, and humans across three configura-
tions: single-attempt, multiple attempts with-
out hints, and multiple attempts with contex-
tual hints. Our findings reveal a significant
performance gap: even top-performing LLMs
like GPT-4 fall short of human performance
by nearly 30%. Notably, advanced prompt-
ing techniques such as Chain-of-Thought and
Self-Consistency show diminishing returns as
task difficulty increases. NYT-CONNECTIONS
uniquely combines linguistic isolation, resis-
tance to intuitive shortcuts, and regular updates
to mitigate data leakage, offering a novel tool
for assessing LLM reasoning capabilities.1

1 Introduction

As Large Language Models (LLMs) continue to
advance, the need for effective benchmarks to as-
sess their true capabilities has become increasingly
important. While numerous natural language tasks
and datasets have been developed across domains
such as text summarization, commonsense rea-
soning, and question answering (Hendrycks et al.,
2021a; Cobbe et al., 2021; Hendrycks et al., 2021b),
these benchmarks often fall short in isolating and
evaluating specific cognitive abilities.

One major challenge is the difficulty in assess-
ing individual model capabilities independently.
Many existing tasks combine multiple cognitive

1The NYT-CONNECTIONS dataset is publicly available
here, with updates to include 28-31 new puzzles monthly.

processes, making it challenging to evaluate dis-
tinct abilities (Gema et al., 2024; Gautam et al.,
2024). For instance, tasks that simultaneously re-
quire mathematical reasoning, natural language un-
derstanding, and contextual disambiguation (Patel
et al., 2021) can obscure a model’s true proficiency
in any single area.

Furthermore, many current benchmarks are vul-
nerable to shortcuts or heuristics. Models may ex-
ploit statistical regularities or superficial cues rather
than demonstrating genuine understanding, a phe-
nomenon known as ‘shortcut learning’ (Geirhos
et al., 2020; Trichelair et al., 2019). This issue is
closely related to the distinction between System 1
and System 2 thinking, as described by Hagendorff
et al. (2023):

“System 1 processes are fast, automatic and in-
stinctual. They often involve heuristics, or men-
tal shortcuts, which enable quick judgments and
decisions without conscious effort. [...] System
2 processes, on the other hand, are deliberate
and require conscious effort.”

Consequently, many current benchmarks inad-
vertently reward System 1-style thinking, allowing
models to achieve high scores without demonstrat-
ing the deliberate reasoning we aim to evaluate.

Finally, as LLMs are trained on increasingly vast
amounts of data, the risk of test set leakage into
training data grows, potentially leading to inflated
performance metrics that do not reflect true gener-
alization capabilities (Balloccu et al., 2024; Huang
et al., 2024).

To address these challenges, we introduce NYT-
CONNECTIONS, a novel benchmark of 358 puzzles
derived from the New York Times’ Connections
game. This task requires grouping 16 interrelated
terms into 4 sets of 4 closely related words, de-
liberately tempting incorrect System 1 responses
while requiring System 2 thinking for correct so-
lutions. NYT-CONNECTIONS offers several key

https://huggingface.co/datasets/tm21cy/NYT-Connections
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(a) Sample instance of Connections showing a grid with
various terms; each is marked to indicate its category.

(b) 2D t-SNE visualization of term embeddings color-
coded by category, illustrating clustering patterns.

Figure 1: Overview of Connections game instance and its embeddings visualization.

advantages:
• Linguistic Isolation: It focuses purely on word

relationships, minimizing confounding factors.
• System 2 Emphasis: It penalizes quick, intuitive

responses and requires deliberate reasoning.
• Continual Novelty: With daily updates, it pro-

vides a stream of novel instances, mitigating data
leakage concerns.
In this paper, we contribute the following:

1. We present NYT-Connections, a benchmark de-
signed to isolate and evaluate deliberate reason-
ing in LLMs.

2. We provide a comprehensive evaluation of six re-
cent LLMs, a simple machine learning heuristic,
and human performance on NYT-Connections.

3. We analyze various prompting techniques and
their effectiveness in promoting System 2 “rea-
soning” in LLMs.

4. We demonstrate a substantial performance gap
between LLMs and humans, with even the most
advanced models falling short by nearly 30%.

2 NYT-CONNECTIONS

2.1 The Task

NYT-CONNECTIONS is based on Connections, a
word classification game by the New York Times
(The New York Times, 2024). This daily puzzle
challenges players to group 16 terms into 4 sets
of 4 related words. Its design intentionally tempts
quick, obvious associations but requires careful,
deliberate reasoning to solve correctly (Liu, 2023).

Figure 1a illustrates this design. The correct
“Skin Types” group includes “Normal”, “Dry”,
“Combination”, and “Oily". However, “Normal”,
“Standard”, and “Benchmark” temptingly form a
“Status Quo” group of three. This misdirection is
crucial: the apparent “Status Quo” grouping leaves

only three “Skin Types” terms, making it impossi-
ble to form four complete groups.

To demonstrate the challenge for machine learn-
ing approaches, we applied k-means clustering to
Multilingual-E5-Large-Instruct word embeddings
(Wang et al., 2024). As shown in Figure 1b, this
method fails to correctly classify the terms, instead
grouping semantically related words from different
categories.

2.2 Dataset Construction
We constructed the NYT-CONNECTIONS dataset
through the following process:

Dataset Collection: We compiled the complete
set of 358 Connections puzzles from an archive
covering daily offerings from the game’s debut on
June 12, 2023, to June 3rd, 20242.

Difficulty Assessment: To gauge the perceived
difficulty of each puzzle, we cross-referenced our
dataset with an existing difficulty chart3, providing
ratings from 1 (easiest) to 5 (most challenging) by
independent testers.

The resulting distribution of difficulty ratings for
our dataset is provided in Appendix Figure 9.

2.3 Sample Heuristic
To establish a baseline and demonstrate the chal-
lenge of the task, we designed a heuristic that
mimics a player’s initial, intuitive approach to the
puzzles. It evaluates 4-word groups using a score
S = G− P , where G is group similarity and P is
a penalty for similarity to other words.

Group Similarity Score For a candidate group
C = {c1, c2, c3, c4}, we compute G as follows:
1. Obtain word embeddings E using a pre-trained

language model.
2Connections Puzzles Archive
3Connections Difficulty Chart

https://tryhardguides.com/nyt-connections-answers/
https://www.connections-answer.com/connections-difficulty-chart/


1954

Method Performance

I , s and V 13.25
I only 13.25
s and V 9.25

Table 1: Ablation study for factors comprising our
Group Similarity Score over 100 median difficulty NYT-
CONNECTIONS matches on the Multiple Tries configu-
ration. I is shown to be the most influential factor when
choosing the best candidate solutions.

2. Compute a clustering score I = −K(E), where
K is the inertia (sum of squared distances to the
centroid) of a k-means cluster (k=1).

3. Calculate the minimum pairwise cosine similar-
ity s among words in the group.

4. Compute a variance-based score V = mean(P )
1+var(P ) ,

where P is the set of all pairwise similarities.
The final score is a weighted sum: G = 0.4 · I +

0.3·s+0.3·V . These weights were chosen based on
ablation studies as depicted in Table 1, giving slight
preference to the strongest contributing factor, I .

This formulation captures cluster tightness (I),
minimum relatedness (s), and similarity consis-
tency (V ), mirroring intuitive judgments about
word relationships typical of System 1 thinking.

Penalty Score To prevent overly generic group-
ings, we compute a penalty P that measures how
similar a candidate group is to remaining words:

P =
1

|R|
∑
r∈R

cos(µC , r)

where µC is the mean embedding of the candi-
date group C, and R is the set of remaining words.
A lower P indicates a more distinct group.

Beam Search To balance between finding seem-
ingly good initial groupings and maintaining some
flexibility, we employ a beam search algorithm
with a width of 10:
1. Initialize with an empty solution.
2. For each step (up to 4 groups):

(a) Form all possible groups of 4 from remain-
ing words.

(b) Compute S = G− P for each new group.
(c) Retain the top 10 partial solutions based on

cumulative score.
3. Return the highest-scoring complete solution.

This approach balances exploration of alterna-
tive groupings with a preference for high-scoring,
seemingly obvious solutions. By design, it’s prone

to the misdirections built into the puzzles, serving
as an effective baseline for comparison with more
advanced reasoning methods.

3 Experimental Setup

Experiments We analyzed 100 puzzles from our
corpus, centered around the median difficulty rat-
ing of 3.0. This selection ensures consistent chal-
lenge across subjects and enables fair comparisons
between LLMs and humans. Our full difficulty
distribution is depicted in Appendix Figure 9.

Evaluation Settings We tested under three con-
ditions: (1) One Try: single attempt, scored 100
for success or 0 for failure; (2) No Hints: up
to four re-tries; and (3) Full Hints: up to four
re-tries with “one away” hints. For (2) and (3),
scores represent the percentage of correct groups
(A = {0, 25, 50, 75, 100}). Detailed examples are
in Appendix Figures 4 and 5.

Models We evaluated six recent LLMs: Claude
3.5 Sonnet, GPT-4, GPT-4o, Gemini 1.5 Pro,
LLaMA 3 70B Instruct, and LLaMA 3.1 405B
Instruct (Anthropic, 2024; OpenAI, 2023, 2024;
Team et al., 2023; Touvron et al., 2023). LLaMA
models were used with the default temperature of
0.6; all others were used with a temperature of 0.5.
Our heuristic used Multilingual-E5-Large-Instruct
embeddings (Wang et al., 2024).

Prompts Models received detailed background,
instructions, and an example game, mirroring hu-
man participants’ information. We used three
prompting methods: Input-Output (IO), Chain-of-
Thought (CoT) (Wei et al., 2022), and CoT with
Self-Consistency (CoT-SC) (Wang et al., 2023).
Detailed prompts are in Appendix Figures 6,7 & 8.

Random Guess We implemented a random
guess baseline. The probability of correct ran-
dom guessing is approximately 3.81 × 10−7

(0.0000381%)4.

Human Evaluation Three human evaluators
completed 50 One Try, 25 No Hints, and 25 Full
Hints instances via a custom application. Perfor-
mance was averaged across evaluators for each
configuration.

4 Results

LLMs Significantly Underperform Humans
As shown in Table 2, there is a substantial perfor-

4Calculated as the inverse of (164 )×(
12
4 )×(

8
4)×(

4
4)

4!
.
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Player One Try No Hints Full Hints

GPT-4 4.0 35.5 32.5
Claude 3.5 11.0 36.75 40.25
GPT-4o 8.0 45.0 33.75
LLaMA 3.1 405b 7.0 35.5 34.75
Gemini 1.5 Pro 5.0 30.5 31.5
LLaMA 3 70b 1.0 23.75 28.5

Random 0.0 0.0 0.0
Heuristic 1.0 13.25 13.25
Humans 39.33* 56.0* 60.67*

Table 2: Performance (%) of the models, baselines, and
humans across our three setups, using IO prompting. *
indicates statistical significance (p < 0.05) of human
performance compared to the top-performing model.
See Appendix A.1 for statistical test methodology.

mance gap between LLMs and human participants
across all testing configurations. Even in the most
favorable scenario (Full Hints), the best-performing
model, Claude 3.5, achieves only 40.25% accuracy
compared to humans’ 60.67%. This disparity be-
comes even more pronounced in more challenging
setups. In the One Try configuration, the top LLM
(Claude 3.5) manages only 11% accuracy, while
humans achieve 39.33%.

Chain-of-Thought-Based Prompting Tech-
niques Are Limited by Shallow Thinking
Figure 2 depicts two model outputs that illustrate
the limited reasoning ability of Chain-of-Thought-
based approaches. In this case, GPT-4 fails to
consider multiple factors that may lead to better
results — such as when the remaining words
outside of the chosen group contain strong matches
— the discovery of which requires more deliberate
and specialized reasoning. This demonstrates the
fundamental limitations of System 1 thinkers when
performing non-symbolic reasoning tasks, even
when endowed with complex methodology such as
Chain-of-Thought, an issue that has been further
explored in recent work (Sprague et al., 2024).

Advanced Prompting Techniques Show Dimin-
ishing Returns Figure 3 illustrates how prompt-
ing methods such as Chain-of-Thought (CoT) and
Self-Consistency (CoT-SC) do not consistently im-
prove in performance as task difficulty increases.
Surprisingly, simpler Input-Output (IO) prompting
often outperforms these approaches, especially on
harder puzzles. This suggests that current prompt-
ing techniques may be insufficient to simulate true
System 2 reasoning in LLMs, and might even hin-
der performance by introducing unnecessary com-
plexity.

Figure 2: An example of GPT-4’s output demonstrat-
ing the shallow reasoning of Chain-of-Thought-based
approaches. The model first latches on to words in
a laundry category, while in the second example, the
model correctly identifies the group but fails to produce
effective word groupings.

Figure 3: Average performance vs difficulty level for
GPT-4 with various prompting techniques on Full Hints

Simple Heuristic is Comparable to Some LLMs
As shown in Table 2, our baseline heuristic,
designed to mimic intuitive System 1 thinking,
achieves 13.25% accuracy in both No Hints and
Full Hints configurations. Notably, this perfor-
mance is not far behind some of the tested LLMs,
such as LLaMA 3 70b (23.75% in No Hints, 28.5%
in Full Hints). This relatively small gap between a
simple heuristic and more complex language mod-
els suggests that current LLMs demonstrate ca-
pabilities that fall between System 1-like pattern-
matching and System 2-like deliberation, without
fully achieving consistent, deliberate reasoning.

Contextual Hints of Limited Benefit to LLMs
Referring again to Table 2, while human perfor-
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mance improves significantly with the addition of
hints (from 56% in No Hints to 60.67% in Full
Hints), few LLMs show meaningful improvements.
Some models, like GPT-4o, paradoxically perform
worse with full hints (33.75%) compared to no
hints (45%). This suggests a fundamental differ-
ence in how LLMs and humans process and utilize
contextual information in problem-solving tasks.

Performance Consistency Across Top LLMs
Our evaluation reveals surprisingly consistent per-
formance among top LLMs. Claude 3.5, GPT-
4, and GPT-4o show no statistically significant
differences from each other, a pattern that holds
across all configurations. This suggests that NYT-
CONNECTIONS presents a unified challenge, expos-
ing similar limitations in even the most advanced
LLMs for tasks requiring System 2 thinking.

5 Related Work

Recent research has focused on developing bench-
marks that address key challenges in evaluating
language models’ reasoning capabilities. Several
works propose tasks that isolate specific cognitive
processes, such as code reasoning, mathematical
problem-solving, and logic (Liu et al., 2024; Mao
et al., 2024; Wu et al., 2024), aiming to disen-
tangle task-specific knowledge from broader rea-
soning abilities. Researchers have also created
benchmarks for deliberate, multi-step reasoning,
including tasks designed to challenge System 1-
style heuristics (Suzgun et al., 2023; McKenzie
et al., 2024). To combat data leakage, evolving
datasets have been introduced, continuously updat-
ing with new problems from real-world sources
(Sun and Emami, 2024; Li et al., 2024; Jain et al.,
2024). NYT-CONNECTIONS uniquely combines
these three aspects: isolating word relationship un-
derstanding, resisting simple heuristics, and main-
taining novelty through regular updates.

6 Conclusion

We introduced NYT-CONNECTIONS, a benchmark
that isolates word relationship understanding, pe-
nalizes heuristic-based thinking, and resists data
leakage. Our evaluation of six LLMs, a simple
heuristic, and human performance revealed sig-
nificant gaps, with top models like GPT-4 falling
nearly 30% short of humans. This highlights the
ongoing challenges in developing AI systems capa-
ble of deliberate reasoning. Future work should
explore techniques to bridge this performance

gap and investigate how improvements on NYT-
CONNECTIONS translate to other reasoning tasks.

Limitations

Embedding Model Scale Our heuristic uses a
relatively small model due to hardware constraints.
While this provides a baseline, it’s possible that
larger embedding models could yield different re-
sults. Future work should explore the scalability
of our heuristic approach using more advanced
embedding models to fully understand the rela-
tionship between model size and performance on
NYT-CONNECTIONS.

Prompt Engineering Scope Cost constraints
limited our ability to test an extensive range of
prompting techniques. While we focused on
standard, Chain-of-Thought, and Self-Consistency
methods, future studies could explore a broader
spectrum of prompting strategies, including more
recent innovations. However, we intentionally ex-
cluded complex, long-context methods like Tree of
Thoughts (Yao et al., 2023), as these fall outside the
scope of our focus on core reasoning capabilities.

Human Baseline Limitations Our human per-
formance data is derived from a small sample of
three evaluators, which may not fully represent the
broader population’s problem-solving abilities. A
larger-scale study with a diverse group of partici-
pants would provide a more robust human baseline
and could reveal interesting patterns in human ap-
proaches to solving Connections puzzles.

Temporal Limitations of the Dataset While
we commit to monthly updates of NYT-
CONNECTIONS, the dataset inherently represents
a snapshot of puzzles from a specific time period.
This could potentially limit its long-term relevance
as language use and cultural references evolve.
Regular assessments of the dataset’s contemporary
relevance may be necessary to maintain its effec-
tiveness as a benchmark.

Cross-Cultural Applicability The Connections
puzzles are primarily designed for an English-
speaking, Western audience. This may limit the
benchmark’s applicability across different cultures
and languages. Future work could explore cre-
ating multilingual versions or culturally adapted
variants of NYT-CONNECTIONS to assess LLM
performance in more diverse contexts.
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A Appendix

A.1 Statistical Testing Procedure
We used different statistical tests for the One Try setup versus the No Hints and Full Hints setups due to
the nature of the data in each case:

One Try Setup: We used a two-proportion z-test because the outcomes in this setup are binary (success
or failure), making it appropriate for comparing two proportions.

No Hints and Full Hints Setups: For these setups, we used the Mann-Whitney U test because
the outcomes are ordinal categorical data (number of correct groups, A = {0, 1, 2, 3, 4}). This non-
parametric test is suitable for comparing the distribution of scores between two independent groups when
the dependent variable is ordinal.

All tests were conducted at a 95% confidence interval (p < 0.05). We performed tests between the
human evaluators and the top-performing model, as well as between the top two performing models, to
assess the statistical significance of performance differences.

A.2 Game Setup & Prompting Details

Figure 4: Demonstration of our three setups. One Try: Players have one chance to classify the words into the four
groups. No Hints: Players have 4 chances to get the correct groups, where at each chance they are tasked to find a
correct grouping. Full Hints: Same as No Hints, but players are told when they are one word away from a correct
grouping.
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Figure 5: Example output from GPT-4 for Full Hints configuration, showing the “One Away” hint being given to
the player.

Figure 6: Prompts used for testing IO performance on the One Try setup, with GPT-4 example output.
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Figure 7: Prompts used for testing IO performance on the No Hints and Full Hints setups, with GPT-4 example
output.
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Figure 8: Prompts used for testing CoT performance on the No Hints and Full Hints setups, with GPT-4 example
output.
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A.3 Dataset Difficulty Composition

Figure 9: Difficulty distribution for our 100 median NYT-CONNECTIONS instances.
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