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Abstract

Large Language Models (LLMs) have demon-
strated exceptional performance across a broad
spectrum of cross-lingual Natural Language
Processing (NLP) tasks. However, previous
methods predominantly focus on leveraging
parallel corpus to conduct instruction data for
continuing pre-training or fine-tuning. They
ignored the state of parallel data on the hidden
layers of LLMs. In this paper, we demonstrate
Word-level Cross-lingual Structure (WCS) of
LLM which proves that the word-level embed-
ding on the hidden layers are isomorphic be-
tween languages. We find that the hidden states
of different languages’ input on the LLMs hid-
den layers can be aligned with an orthogonal
matrix on word-level. We prove this conclu-
sion in both mathematical and downstream
task ways on two representative LLM foun-
dations, LLaMA2 and BLOOM. Besides, we
propose an Isomorphism-based Data Augmen-
tation (IDA) method to apply the WCS on a
downstream cross-lingual task, Bilingual Lexi-
con Induction (BLI), in both supervised and
unsupervised ways. The experiment shows
the significant improvement of our proposed
method over all the baselines, especially on
low-resource languages.

1 Introduction

The development of large language models (LLMs)
has shown excellent emergence capabilities on di-
verse Natural Language Processing (NLP) tasks
across languages (Wei et al., 2022; Li et al., 2023;
Shanahan, 2024). Parallel corpora have emerged as
crucial resources to enhance LLMs for both specific
tasks (e.g., machine translation (Xu et al., 2023;
Alves et al., 2024; Guo et al., 2024)), and general-
purpose tasks (Zhu et al., 2023; Cahyawijaya et al.,
2023).

Current work primarily focuses on leveraging
parallel corpora for prompt tuning (Zhang et al.,
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2023), instruction tuning (Xu et al., 2024), and con-
tinual pre-training (Zhao et al., 2024a). They create
refined instruction data for special purpose such as
contrastive translation pairs (Zeng et al., 2023; Yun-
jie Ji, 2023). However, these methods mainly focus
on the influence on the generated results by parallel
corpora, ignoring implied information for parallel
corpora in LLMs’ latent spaces. Besides, it has
been demonstrated that leveraging extensive par-
allel data for fine-tuning LLMs can impair their
inherent translation capabilities (Xu et al., 2023).

Motivated by this, we use the parallel corpora to
explore the structural information of LLMs’ hidden
layers. We demonstrate that LLMs’ hidden layers
are isomorphic across languages. Specifically, we
input the source language’s word set and the target
language’s based on a parallel dictionary to LLMs,
respectively. We find that the hidden spaces of the
source and the target embedding spaces encoded by
a certain hidden layer of LLM can be aligned with
an orthogonal mapping, which we call Word-level
Cross-lingual Structure (WCS). We demonstrate
this finding in mathematical, downstream task and
graphical ways. This result closely mirrors the
widely observed that the word embeddings are iso-
morphic across languages (Mikolov et al., 2013),
even in the hidden spaces.

Based on our finding, we propose Isomorphism-
based Data Augmentation (IDA) method to gen-
erate a high-confidence dictionary and mapping
matrix iteratively. Specifically, we initialize an or-
thogonal mapping between word embedding spaces
by a closed-form solution called Procrutes (Lample
et al., 2018) in both supervised and unsupervised
ways. Then, we generate a new dictionary with
this mapping and then update the mapping in an
iterative way. Finally, we leverage the mapping
for inference. Experiments show that our proposed
method outperforms all the baselines on both high-
resource and low-resource language pairs.

This paper offers the following contributions:
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• We provide a detailed study on Word Level
Cross-lingual Structure (WCS) of LLMs. We
demonstrate that the hidden spaces of different
languages in LLMs are isomorphic. They can
be mapped by an orthogonal mapping.

• We propose an Isomorphism-based Data Aug-
mentation (IDA) method to leverage WCS
for word translation task. We learn an other-
language-to-English mapping and iteratively
enhance it to help LLMs better understand
the input sentence of both high-resource and
low-resource language pairs in supervised and
unsupervised ways.

• We conducted extensive experiments to
demonstrate the isomorphism of all hidden
layers of LLaMA2 and BLOOM and show
the effectiveness of our approach.

2 Background

2.1 Cross-lingual Methods for Large
Language Model

To enhance the multilingual and downstream capa-
bilities of LLMs, parallel data is used as a pivot in
both analysis and enhancement (Yang et al., 2023;
Xu et al., 2023; Alves et al., 2024). It is con-
structed as instruction data and thrown at LLMs
for supervised fine-tuning (Zhu et al., 2023). How-
ever, obtaining high quality parallel data in low-
resource languages remains challenging for multi-
lingual tasks (Ali et al., 2024). Therefore, there are
some cross-lingual methods for LLMs.

Cross-lingual transfer aims to acquire language
capability from supervised data in one language
and apply it to another without or with few addi-
tional training data (Etxaniz et al., 2024; Huang
et al., 2023; Winata et al., 2021). This has been ap-
proached by designing prompts that leverage LLMs
to self-translate questions into resource-rich lan-
guages (Qin et al., 2023), or by utilizing external
machine translation systems for assistance (Zhao
et al., 2024a). Besides, some works leverage the
similarity between languages to stimulate capabil-
ities in others (Shaham et al., 2024). Researchers
also made efforts on distilling the high-quality hu-
man made data from high-resource languages to
low-resource languages (Chai et al., 2024).

Cross-lingual alignment, the meaningful similar-
ity of representations across languages in multilin-
gual language models, has been an active field of
research in recent years. This includes alignment

of word embeddings (Wen-Yi and Mimno, 2023;
Miao et al., 2024), the construction of pre-training
tasks using multilingual aligned lexicons (Chi et al.,
2021), using aligned data on one side of a problem
to improve mathematical reasoning processes (Zhu
et al., 2024), and encouraging LLMs to display
information explicitly in chain-of-thought (COT)
(Chai et al., 2024). Besides, there are other works
focusing on generating the aligned data based on
LLMs’ owns capabilities (Mao and Yu, 2024).

Current researches mostly focus on data perspec-
tive for multilingual LLM tasks. However, we
leverage parallel data to explore the cross-lingual
structure of LLMs’ hidden spaces.

2.2 Word Embedding Alignment

Researchers working on word embeddings have
pointed out that word embeddings spaces are iso-
morphic across languages (Mikolov et al., 2013).
Based on this assumption, many works experiment
on Bilingual Lexicon Induction (BLI) task which
induces word translation pairs by aligning word
embeddings trained independently from monolin-
gual corpora with an orthogonal mapping. Math-
ematically, BLI aims to learn a linear transfor-
mation W ∗ to map two monolingual embeddings,
X∗, Y ∗ ∈ Rk×d, to a shared space:

W ∗ = argmin
W∈Rd×d

∥X∗W − Y ∗∥2F (1)

Where k denotes the word number and d the dimen-
sion of word embedding. Current works initialize
the mapping W ∗ in a semi-supervised way (which
only required a very small seed dictionary (Artetxe
et al., 2017)) or a fully unsupervised way (Lample
et al., 2018; Zhang et al., 2017). Due to the isomor-
phic assumption, there is a closed-form solution to
this problem called Procrutes: W ∗ = UV ⊤, where
U and V are defined by the Singular Value De-
composition (SVD) decomposition of Y ⊤X . The
initial step calculates W ∗ on a small-scale word set.
Then, we iteratively extend W ∗ to the entire word
set.

Other researchers who suggest that monolingual
spaces, especially those of etymologically and typo-
logically distant languages, are far from isomorphic
(Søgaard et al., 2018; Vulić et al., 2019; Patra et al.,
2019; Feng et al., 2022). They leverage the joint
training method (Wang et al., 2019) or mapping in
a non-linear way (Mohiuddin et al., 2020).
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Figure 1: The main framework of our proposed method. Our method contains two parts. First, we demonstrate the
Word-level Cross-lingual Structure (WCS) method in the left part. We demonstrate the word embedding spaces of a
parallel dictionary encoded with LLM’s hidden layers are isomorphic. We can learn an orthogonal matrix to map
them. Then we leverage the mapping to map source language hidden states to target on a specific hidden layer, and
then do the following inference in the right part.

3 Word-level Cross-lingual Structure

In this section, we introduce the details of the Word-
level Cross-lingual Structure of LLMs’ hidden lay-
ers. We aim to prove the hidden states of differ-
ent languages’ word embedding spaces are isomor-
phic at each hidden layer. We first formally define
the symbolic representation of the proof method.
Then, we demonstrate the WCS in mathematical
and downstream task ways.

We define X,Y as the word embedding matrix
of a parallel bilingual dictionary. For a specific
LLM, we define layerXi , layerYi as the i-th hid-
den states at the LLM’s i-th layer of X and Y
respectively. We measure their structure in a math-
ematical way (Gromov-Hausdorff distance) and a
downstream task (Bilingual Lexicon Induction).

3.1 Gromov-Hausdorff Distance
The Gromov-Hausdorff (GH) distance can be lever-
aged to calculate the structure of embedding spaces.
First we calculate Hausdorff distance which mea-
sures the worst case between spaces. Intuitively, it
measures the farthest distance among the distances
between each point with its closest neighbour:

h(X,Y ) = max
x∈X

min
y∈Y

d(x, y) (2)

H(X,Y ) = max {h(X,Y ), h(Y,X)} (3)

Where d denotes the distance function between
word embeddings. The Gromov-Hausdorff dis-
tance first transforms X and Y into a common

space using different orthogonal methods. Then
the method chooses the minimum distance among
Hausdorff distance of each transform. Therefore, it
provides a quantitative estimate of the isometry of
two spaces:

GH(X,Y ) = min
f,g

H(f(X), g(Y )) (4)

where f and g represent the isometric transform.
We calculate GH(layerXi , layerYi ) at each layer
and compare them with the original embeddings.

3.2 Bilingual Lexicon Induction
Bilingual Lexicon Induction aims to map embed-
dings of different languages to a common space.
This task is under the assumption that the two em-
bedding spaces are isomorphic. So, we regard each
hidden states of LLMs as embedding matrix and
map them to measure their isomorphism, respec-
tively. We use the MUSE benchmark (Lample et al.,
2018), a bilingual dictionary induction dataset for
alignment supervision and evaluate the alignment
on word translation retrieval. Specifically, we en-
code the source and target word with LLM’s hidden
layer of MUSE dictionary. Then, we calculate the
mapping matrix W ∗ based on Procrutes between
hidden states which is shown in the left part of
Figure 1. As for inference process, we encode the
source word with the mapped source hidden layer
and map it to the target hidden layer, then we do the
following generating process, which is shown in
the right part of Figure 1. In this way, we leverage
the BLI task to validate the WCS of LLMs.
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4 Isomorphism-based Data Augmentation
Method for Bilingual Lexicon Induction

In this section, we propose an Isomorphism-based
Data Augmentation (IDA) method to apply WCS
to the optimization of Bilingual Lexicon Induc-
tion task based on LLMs. We leverage the isomor-
phism of LLMs to map the hidden states from low-
resource languages to target which can be leveraged
to generate high-confidence parallel data for low-
resource languages. In this way, we can leverage
the good capability on high-resource languages of
LLM to enhance the understanding ability of other
languages, especially low-resource languages.

Specifically, we learn the alignment W ∗ of other
language to English on the first several layers of
LLM. There are researches prove that, LLMs un-
derstand the user input and convert the diverse lin-
guistic features into a unified representation in the
first several layers, and think in English in the fol-
lowing layers (Zhao et al., 2024b). So, we map
other languages’ input to English aiming to help
LLM to better understand them.

After obtaining the alignment matrix of the i-th
layer, we can inference in a new way. Just as shown
in Figure 1, we encode the input with first i layers,
map the i-th hidden state to the English space, and
then pass it to the (i + 1)-th layer for following
inference.

However, the supervised W ∗ is only based
on a small-scale parallel dictionary D. To im-
prove the quality of the mapping W ∗, we propose
an Isomorphism-based Data Augmentation (IDA)
method for W ∗. Before the inference process, we
iteratively enlarge D with high-confidence word
pairs in an unsupervised way. For the i-th iteration,
we translate the more frequent words in the source
language with the original inference method and
our WCS method to generate pseudo-parallel word
pairs Di

ori and Di
WCS . The word pair is a high-

confidence pair only if it occurs in both Di
ori and

Di
WCS . Finally we enlarge the original dictionary

with Di = Di−1 ∪ (Di
ori ∩ Di

WCS).
The framework is outlined in Algorithm 1, where

Pr represents the Procrutes method and threshold
represents the settings of the generated dictionary
size.

5 Experimental Settings

5.1 Setup
We use the ground-truth bilingual dictionaries,
MUSE (Lample et al., 2018), to assess the effective-

Algorithm 1: IDA method for BLI
Input: A parallel dictionary D, source word

set Xword, test set X
Output: Inferenced word set

1 W ∗ = Pr(LLMhiden(Layeri,D));
2 i = 1, Di = D;
3 while len(Di) != threshold do
4 i = i+ 1 Di

ori = LLM(Xword) ;
5 Di

WCS = LLMWCS(Xword,W
∗) ;

6 Di = Di−1 ∪ (Di
ori ∩ Di

WCS) ;
7 W ∗ = Pr(LLMhiden(Layeri,Di));
8 end

ness of our the Word-level Cross-lingual Structure
evaluation. These dictionaries were built using
Meta’s internal translation tool and were designed
to handle polysemy of words. MUSE contains
110 large-scale ground-truth bilingual dictionaries
with three different sizes for training and test. We
select two representative and mostly used open
source large language models as our foundation
model for study, LLaMA2 (Touvron et al., 2023)
and BLOOMZ (Muennighoff et al., 2022). The de-
tail of our training setting is appended in Appendix
A.

5.2 Baselines

For the Word-level Cross-lingual Structure, we
leverage the FASTTEXT embeddings (Bojanowski
et al., 2017) to compare with LLM hidden states on
Gromov-Hausdorff distance. Besides, we leverage
the 1500 parallel dictionary of MUSE to train two
foundation LLMs as the base models. We compare
the performance between the prompt-based method
and WCS-based on fine-tuned models. For the
Isomorphism-based Data Augmentation method,
we first leverage the prompt-based method as the
supervised and unsupervised baselines. We choose
two traditional Bilingual Lexicon Induction meth-
ods as our baselines: MUSE (Lample et al., 2018)
is a typical unsupervised method; CLBLI(Li et al.,
2022) is a simple yet extremely effective and ro-
bust two-stage contrastive learning framework for
improving BLI. Meanwhile, we evaluate the fine-
tuned foundation LLMs. Finally, we compare our
method with some large-scale LLMs: BigTrans-
late (Yang et al., 2023), a multilingual translation
model that enhances the LLaMA with multilingual
translation capability on more than 100 languages;
We evaluate the performance of ChatGPT (OpenAI,
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Gromov-Hausdorff Distance ↓ FR-EN ES-EN IT-EN ZH-EN RU-EN VI-EN TH-EN AVG

FASTTEXT Embedding 0.232 0.215 0.362 0.536 0.501 0.604 0.648 0.443
LLaMA2-7B Hidden Embedding 0.241 0.245 0.265 0.278 0.283 0.270 0.292 0.268
BLOOMZ-7B Hidden Embedding 0.213 0.207 0.218 0.220 0.235 0.221 0.272 0.227

Table 1: Results of Gromov-Hausdorff Distance between all the low-resource and high-resource language pairs.
(’EN’ is English, ’FR’ is French, ’ES’ is Spanish, ’IT’ is Italian, ’ZH’ is classical Chinese, ’RU’ is Russian, ’VI’ is
’Vietnamese’ and ’TH’ is ’Thai’)
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Figure 2: The Gromov-Hausdorff distance for both
LLaMA and BLOOM hidden layers on ZH-EN lan-
guage pair. The red line represents the Gromov-
Hausdorff distance of FASTTEXT embedding.

2022) (we use the gpt-3.5-turbo API).

6 Experiments

In this section, we first demonstrate the isomor-
phism of LLMs’ hidden layers between languages
in three ways in Section 6.1. Then we evaluate the
IDA method based on WCS on Bilingual Lexicon
Induction task in both supervised and unsupervised
ways in Section 6.2.

6.1 Word-level Cross-lingual Structure
In this section, we evaluate the WCS on the hid-
den layers of LLaMA and BLOOM in three ways.
We first leverage the Gromov-Hausdorff distance
to evaluate in a mathematical way. Then choose
a downstream task, Bilingual Lexicon Induction,
to evaluate. Finally, we use PCA method for di-
mensionality reduction in two-dimensional space
to evaluate the WCS in a graphical way.

6.1.1 Gromov-Hausdorff Evaluation
We first present the results on Gromov-Hausdorff
distance to evaluate the Word-level Cross-lingual
Structure. The decrease of Gromov-Hausdorff dis-
tance indicates a higher isomorphism of two word
embedding spaces. We first evaluate the isomor-
phism of the 9-th hidden layer of LLaMA and 9-
th layer of BLOOM. As shown in Table 1, both
LLaMA and BLOOM perform better isomorphism
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Figure 3: The accuracies of WCS-based Bilingual Lexi-
con Induction on all the LLaMA and BLOOM hidden
layers on ZH-EN language pair. The horizontal lines
represent the prompt-based accuracies.

results on 5 of 7 language pairs and achieve im-
provements of 0.175 and 0.216 on the average
score.

As we can see, compared with traditional word
embedding spaces, LLMs shows better isomor-
phism in low-resource languages. Besides, the iso-
morphism achieves more average performance be-
tween all the hidden layers for both high-resource
and low-resource languages, which means they
have better robustness. This can be leveraged
for the downstream tasks, especially on the low-
resource condition.

Moreover, we evaluate the Gromov-Hausdorff
distance for all the 32 hidden layers of both LLaMA
and BLOOM. We experiment on EN-ZH language
pair. As we can see in Figure 2, with the exception
of the 0-th hidden layer, all the other hidden states
are isomorphic in different languages, respectively.
The hidden layers of bloom model perform better
isomorphism than LLaMA. As for the 0-th layer,
the label after word segmentation is first passed
into the 0-th hidden layer, which leads to the weak
isomorphism of word hidden embedding in this
layer. Besides, We find that the isomorphism of the
hidden states changes greatly in the 10-th and 20-th
hidden layers. We think this is because the two lay-
ers are at the boundaries between understand, solve
task and generate processes (Zhao et al., 2024b).
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BLI Task ↑ FR-EN ES-EN IT-EN ZH-EN RU-EN VI-EN TH-EN AVG

LLaMA2-7B 90.00 89.53 87.60 85.87 84.87 92.33 76.42 86.66
LLaMA2-7B+WCS 89.33 89.67 87.33 86.67 84.93 92.00 76.87 86.69

BLOOMZ-7B 84.47 83.07 66.07 65.33 44.33 91.13 56.92 70.19
BLOOMZ-7B+WCS 84.00 83.87 65.73 65.40 44.20 90.27 58.23 70.24

Table 2: Results of one-shot prompt-based method and our Word-level Cross-lingual Structure (WCS) method. We
report the score of the accuracies (%). The "underline" signifies the better score between the models with the same
foundation model. The "bold" indicates the best score among all the systems of each language pairs.
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Figure 4: The hidden embedding space of 1k parallel
dictionary on Chinese.

We will continue to explore it in future work.

6.1.2 Bilingual Lexicon Induction Evaluation

In this section, we evaluate the Word-level Cross-
lingual Structure of the LLMs’ hidden layer on a
downstream task, Bilingual Lexicon Induction. We
leverage a 1k-words parallel dictionary to calculate
the source-English mapping W ∗ on the 9-th hidden
layer for both LLaMA and BLOOM. As shown in
Table 2, compared with the original prompt-based
method, Our isomorphism-based WCS method
maintains the accuracies of the LLMs. The results
proves the isomorphism of LLaMA and BLOOM
on high-resource and low-resource languages.

As we can see in Table 2, the WCS method has
better performance on low-resource language pairs.
For both LLaMA and BLOOM are English-centric,
We leverage the good isomorphism of LLMs to
map the source languages’ hidden states to English
on the understand layer. In this way, our WCS
method can help better understand the low-resource
distant languages.

We evaluate the accuracies of Bilingual Lex-
icon Induction task for all the 31 hidden layers
of both LLaMA and BLOOM. Because our WCS
method aligns the i-th layer and then transforms
to (i+ 1)-th layer, we do not evaluate 32-th layer.
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Figure 5: The hidden embedding space of 1k parallel
dictionary on English.

As shown in Figure 3, with the exception of the
first several layers of LLaMA, our WCS-based
method performers well on most hidden layers of
LLaMA and BLOOM. Compared to the prompt-
based method, the WCS-based achieves a better
average score on the BLOOM foundation model.
Moreover, we find that there has a slight decline of
the performances on the 10-th and 20-th layers of
WCS-based LLaMA model, which is corresponds
to the isomorphism change in Figure 2. Besides,
the LLaMA model performs bad on the first several
model, we think that the problem is caused by the
difference in the model at the word segmentation
stage.

6.1.3 Graphical Evaluation

In this section, we visualize the structure of the
hidden state to show its isomorphism more intu-
itively. We choose the 9-th hidden layer of LLaMA
on English-Chinese languange pair. We leverage
the Principal Components Analysis (PCA) method
to reduces the hidden embedding from 4090 to 2
dimensions. As shown in Figure 4 and 5, the range
and distribution of the two two-dimensional hid-
den embeddings are highly consistent in the two
dimensions. There are only a few embeddings that
are not in the cluster. Besides, these two hidden
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BLI Task ↑ FR-EN ES-EN IT-EN ZH-EN RU-EN VI-EN TH-EN AVG

MUSE 81.87 83.33 60.22 16.80 60.60 60.13 14.99 54.00
CLBLI 83.47 85.63 63.06 48.40 62.20 64.87 21.54 61.31

BigTranslate-13B 50.93 52.40 53.00 32.47 29.53 38.07 31.74 41.16
ChatGPT 73.00 72.47 71.07 70.93 70.13 70.60 68.20 70.91

LLaMA2-7B 90.00 89.53 87.60 85.87 84.87 92.33 76.42 86.66
LLaMA2-7B+IDA 91.00 90.07 87.87 88.20 88.87 93.33 80.47 88.54

BLOOMZ-7B 84.47 83.07 66.07 65.33 44.33 91.13 56.92 70.19
BLOOMZ-7B+IDA 84.13 84.00 66.73 66.20 49.27 90.93 61.13 71.77

Table 3: Results of prompt-based method and our Isomorphism-based Data Augmentation (IDA) method on the
supervised (1k parallel dictionary) Bilingual Lexicon Induction task. We report the score of the accuracies (%).

states can be aligned in two-dimensional space with
uncomplicated mapping. We also evaluate all the
language pairs and obtain the same results.

6.2 Isomorphism-based Data Augmentation
In this section, we evaluate the performance of
Isomorphism-based Data Augmentation (IDA) on
Bilingual Lexicon Induction task. We first present
the result of IDA in a supervised way. Then, we
show the performance of the unsupervised IDA
method. Finally, we show the relationship between
the dictionary size and the quality of the mapping
matrix. In this section, all the experiments are done
on the 9-th hidden layer for LLaMA and BLOOM.

6.2.1 Results of Semi-supervised Method
We present the results of Bilingual Lexicon Induc-
tion task for both traditional methods and LLM
methods on 7 source languages to English in Table
3. The semi-supervised IDA method leverages 1K
parallel dictionary to initialize the mapping matrix
W ∗. We first experiment in a semi-supervised way,
which leverages a 1k parallel dictionary for super-
vision. We experiment on the 9-th layer for both
LLaMA and BLOOM which has the best average
performance among all the hidden layers. Com-
pared with all the baselines, the results show that
our IDA method achieves better results among all
the language pairs, and the improvement is more
significant on low-resource language pairs.

As shown in Table 3, the performance of all the
baseline performance has decreased significantly in
low-resource scenarios. However our IDA method
has a good improvement on the low-resource lan-
guages (ZH, RU, VI and TH). The IDA method
makes the LLaMA achieve an accuracy of over
80% on all language pairs. For BLOOM model
that performs poorly compared with LLaMA, our

proposed method leverage the better isomorphism
to achieve a better improvement on the average
score of all language pairs.

As depicted in Table 3, compared with the large
scale language models, our method on the 7B
model achieves better results, even outperforms
ChatGPT. We found it difficult to make ChatGPT
output single word, so we performed some post-
processing to avoid it, the details are in Appendix
B. This section proves that our proposed method
can make better use of multilingual information
of LLM, and improve the ability of the model on
multilingual tasks through its multilingual isomor-
phism.

6.2.2 Results of Unsupervised Method
For the unsupervised method, we first leverage the
prompt-based method on fine-tuned LLMs to gen-
erate a pseudo-parallel dictionary with 1k size. We
initialize the mapping matrix W ∗ with the gener-
ated dictionary. Then, we empty the dictionary
and use our IDA method to iteratively optimize
the mapping matrix W ∗ with the threshold of 6k
dictionary size, which is shown in Algorithm 1.

We present the results of unsupervised meth-
ods in Table 4. For the CSBLI is a supervised
method, BigTranslate and ChatGPT we evaluate in
the same way with Table 3, we only present MUSE
and the foundation model results. The results show
that our unsupervised method also performs better
on average among all the baselines (achieving im-
provements of 1.01% and 0.68% on LLaMA and
BLOOM, respectively).

Compared with the supervised method, the un-
supervised method has a similar performance in
high-resources and languages with high scores (FR,
ES, IT and VI). The foundation models have a good
performance on these languages, which makes the
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BLI Task ↑ FR-EN ES-EN IT-EN ZH-EN RU-EN VI-EN TH-EN AVG

MUSE 81.53 83.33 60.34 31.00 59.00 61.07 0.00 53.75
LLaMA2-7B 90.00 89.53 87.60 85.87 84.87 92.33 76.42 86.66

LLaMA2-7B+uIDA 90.54 90.00 87.63 87.84 86.53 92.18 79.00 87.67
BLOOMZ-7B 84.47 83.07 66.07 65.33 44.33 91.13 56.92 70.19

BLOOMZ-7B+uIDA 84.20 83.74 68.00 65.64 44.20 92.06 58.23 70.87

Table 4: Results of prompt-based method and our Isomorphism-based Data Augmentation (IDA) method on the
unsupervised Bilingual Lexicon Induction task. The uIDA represents unsupervised IDA method. We report the
score of the accuracies (%).
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(b) The BLOOM foundation model.

Figure 6: The accuracy of IDA method on different size of dictionary.

pseudo-parallel dictionary with a high quality. As
for the low-resource languages, uIDA method can
still take advantage of the model’s weak multilin-
gual capability in low-resource languages to im-
prove the performance. The results prove the ro-
bustness of our proposed method.

6.2.3 Results of Different Threshold on
Dictionary Size

In this section, we evaluate the influence of the dic-
tionary size. We leverage the IDA method to gen-
erate different size of dictionary. We choose three
languages to cover different resource scenarios for
comparison (FR, ZH and TH for high-resource,
medium-resource and low-resource). As we can
see in Table 6, the performance of the IDA method
first increases with the increase of the size of the
dictionary, and then decreases after reaching the
maximum. The results show that 6k size (1k par-
allel dictionary and 5k generated dictionary) per-
forms the best score for both LLaMA and BLOOM.

Moreover, in order to explore the effect of dif-
ferent sizes of dictionaries on different language
pairs, we leverage the supervised IDA method to
generate differently sized dictionaries and show the
performance in Figure 6. The X-axis represents the
total size of the dictionary, including 1k parallel

dictionaries and generated dictionaries of different
sizes. The figure show that the accuracies of all
language pairs show a trend of first increasing and
then decreasing as the dictionary size increases.

We can conclude from Figure 4 and 5 that the
distribution of word hidden embeddings exhibits
clustering phenomenon. For the lower size of the
dictionary, we think that a small number of words
cannot completely cover the distribution of the
word hidden embedding space which makes the
accuracies increases with the size of the dictionary.
However, since our dictionary is expanded in or-
der of word frequency, most high-frequency words
can be covered on a small-scale dictionary which
ensures the basic performance of our method on
small-scale dictionary such as WCS method.

As for the large-scale dictionary, they contain
some low-frequency words and proper nouns. Due
to the LLMs’ encoding ability for these words be-
ing weaker than that for high-frequency words,
there will also contain some noises. Just as shown
in Figure 7, we show the hidden embedding space
of words with frequency ranking between 8k and
9k on Chinese. The results show that the distribu-
tion of these points is relatively scattered compared
to high-frequency words in Figure 4. So, the per-
formance declines on the large-scale dictionary,
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especially on the low-resource languages.

7 Conclusion

In this work, we demonstrate the Word-level Cross-
lingual Structure (WCS) which prove the isomor-
phism of LLMs’ hidden layers between different
languages and that they can be aligned with an or-
thogonal matrix. We evaluate the WCS in both
mathematical way (Gromov-Hausdorff distance)
and via a downstream task (Bilingual Lexicon
task). The results prove the correctness and ex-
ploitability of isomorphism. Besides, we propose
an Isomorphism-based Data Augmentation (IDA)
method to apply the WCS to a downstream cross-
lingual task, BLI, in supervised and unsupervised
ways, which enhance the quality of the mapping
matrix. Specifically, we leverage the prompt-based
method and WCS method to iteratively generate
a new dictionary with high confidence for low-
resource languages. The experiments demonstrate
the effectiveness of our proposed method on both
supervised and unsupervised ways. Moreover, we
have conducted detailed experiments on different
parameters and all the hidden layers of LLaMA2
and BLOOM in the experiment.
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B ChatGPT Prompts

We evaluate the performance of ChatGPT using
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process the answers generated by ChatGPT into
single words and then evaluate them. We report the
best score of these prompts in Table 3.

C Influence by Dictionary Size

We show the results of prompt-based method, WCS
method with 1k parallel dictionary, unsupervised
IDA method with 6k generated dictionary and IDA
method with 1k parallel dictionary and 4 different
size of generated dictionary in Table 6.
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ID Prompt Format

1 The word <SRC-word> in <TGT> is:
2 The <SRC> word <SRC-word> in <TGT> is:
3 What is the translation of the word <SRC-word> into <TGT>:
4 The translation of the <SRC> word <SRC-word> into <TGT> is:
5 Translate the following word from <SRC> to <TGT>: <SRC-word>
6 Translate the following word from <SRC> to <TGT> in a single word: <SRC-word>
7 Translate the following <SRC> word into <TGT>: <SRC-word>
8 Provide the <TGT> equivalent for the following <SRC> word: <SRC-word>
9 How do you say <SRC-word> in <TGT>:

Table 5: The prompts used for ChatGPT translation. <SRC> and <TGT> denote source and target languages,
respectively. <SRC-sentence> represents the source language to be translated.

Seed Size
FR-EN ZH-EN TH-EN

LLaMA2-7B BLOOM-7B LLaMA2-7B BLOOM-7B LLaMA2-7B BLOOM-7B

Prompt-based Method 90.00 84.47 85.87 65.33 76.42 56.92
WCS+1k Parallel Dictionary 89.33 84.00 86.67 65.40 76.87 58.23

uIDA+6k Generated Dictionary 90.54 84.20 87.84 65.64 79.00 58.23
IDA+1kPD, 1k GD 89.93 84.07 87.40 66.00 76.20 59.67
IDA+1kPD, 3k GD 90.93 84.07 87.80 66.00 79.87 59.33
IDA+1kPD, 5k GD 91.00 84.13 88.20 66.20 80.47 61.13
IDA+1kPD, 7k GD 90.73 84.07 87.93 66.07 79.73 59.47

Table 6: Results of our proposed method on different dictionary size. The PD represents the Parallel dictionary and
GD represents dictionary generated by our IDA method.
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