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Abstract
Large Language Models (LLMs) have
achieved outstanding performance across
various NLP tasks. Grammatical Error Correc-
tion (GEC) is a task aiming at automatically
correcting grammatical errors in text, but it
encounters a severe shortage of annotated
data. Researchers have tried to make full
use of the generalization capabilities of
LLMs and prompt them to correct erroneous
sentences, which however results in unex-
pected over-correction issues. In this paper,
we rethink the role of LLMs in GEC tasks
and propose a method, namely TypeDA,
considering LLMs as the annotators for
type-aware data augmentation in GEC tasks.
Different from the existing data augmentation
methods, our method prevents in-distribution
corruption and is able to generate sentences
with multi-granularity error types. Our
experiments verify that our method can
generally improve the GEC performance of
different backbone models with only a small
amount of augmented data. Further analyses
verify the high consistency and diversity of the
pseudo data generated via our method. Our
code can be accessed via the provided URL1.

1 Introduction

Large Language Models (LLMs) have demon-
strated superior performance in many downstream
tasks (Liu et al., 2023; Moslem et al., 2023) due
to their emergent and in-context learning abilities.
As a fundamental NLP downstream task (Ma et al.,
2022), Grammatical Error Correction (GEC) aims
to automatically identify and correct grammatical
errors in text (Bryant et al., 2023a; Wang et al.,
2020), which is challenging due to the unrestricted
mutability of language and a lack of abundant an-
notated data. Intuitively, some researchers (Fang

*Yunshi is the corresponding author and she is also affili-
ated with Shanghai Engineering Research Center of Big Data
Management.

1https://github.com/LiXinyuan1015/TypeDA
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Figure 1: Performance of GEC on CoNLL-14 Test set
with GPT-4.

et al., 2023; Wu et al., 2023) attempt to utilize
LLMs to solve GEC tasks. However, the results
are unsatisfactory, as LLMs suffer from the over-
correction issue, which indicates that they may
dramatically change the semantics of the original
sentences (Bryant et al., 2023b). This invokes our
reflection on the role of LLMs in GEC tasks. There-
fore, we raise the question: Are LLMs good correc-
tors in GEC tasks?

Motivated by this, we conduct a preliminary
study. We prompt GPT-42 to directly correct an
erroneous sentence and request GPT-4 to gener-
ate more erroneous sentences and fine-tune a T5-
large model. Figure 1 reveals that even with a
small model and small data size (18K), it outper-
forms GPT-4, which showcases the potentials of
LLMs as a tool to augment the data instead of cor-
recting3. Nevertheless, it is not trivial to directly
prompt LLMs to augment data. We investigate the
augmented data and find that LLMs may generate
some unexpected pseudo data. For example, given
the text “Captain at sports is what I did in high
school .”, GPT-4 generates “I was the captain of
the sports team in high school.”, which changes the
syntactic structure of the original sentence. There-

2https://chatgpt.com
3We describe the details of the preliminary study in Ap-

pendix A

https://github.com/LiXinyuan1015/TypeDA
https://chatgpt.com


200

fore, it is imperative to design a framework involv-
ing LLMs as a good annotator to augment data in
a controllable manner.

To this end, we propose a Type-aware method
based on LLMs for Data Augmentation (TypeDA)
in GEC tasks, which is able to produce erroneous
sentences with a certain error type given a sen-
tence. Comparing with the existing methods (Zhao
et al., 2019; Choe et al., 2019a; Wan et al., 2020;
Xie et al., 2018) for data augmentation of GEC
tasks, which either rely on the manually crafted
rules to edit text spans or Seq2seq model to sequen-
tially generate an erroneous sentence, our method
has advantages in preventing in-distribution cor-
ruption (Choe et al., 2019b) and being aware of the
error types. Specifically, we decompose the aug-
mentation process into mask modeling and error
filling. In the mask modeling step, a multi-decoder
aims to detect the errors in a sentence that are
likely to be distributed within the realistic dataset
and replace them with masks. In the error filling
step, a type-aware prompting strategy is used to re-
quest LLMs to fill in the masks with various errors
derived from a type set. Experiments on BEA-
19 Test set and CoNLL-14 Test set showcase that
our method is able to surpass other augmentation
methods on different GEC models with varying ar-
chitectures and parameter scales. Additionally, our
method can be applied to solve long-tail errors and
improve the robustness of general GEC models.

Our contributions of this paper can be summa-
rized as follows:

• We initially convert the role of LLMs from
corrector to augmenter in GEC tasks and pro-
pose TypeDA, which leverages LLMs as a
good annotator to augment data for GEC tasks
in a controllable way.

• TypeDA introduces a novel framework to gen-
erate pseudo data with the intervention of
LLMs. A multi-decoder is first proposed to
detect the error markers in a sentence, then
the type-aware prompting is leveraged to gen-
erate an error for the marker.

• Experiments verify the generalization of
TypeDA and analyses reveal the consistency
and type compliance of the generated data.

2 Related Work

Data Augmentation for GEC Tasks. In GEC
tasks, the scarcity of high-quality annotated data

leads to a data sparsity problem (Bryant et al.,
2023b). To address this, researchers use data aug-
mentation to reduce the need for labor-intensive
manual annotation and enhance model generaliza-
tion (Feng et al., 2021). From the perspectives
of the patterns to augment, we categorize GEC
data augmentation methods into edit-based and
sequence-based. (1) Edit-based augmentation cre-
ates new data samples by editing (e.g., modify-
ing, replacing and deleting) text spans randomly or
based on certain rules, such as direct noise (Zhao
et al., 2019), error patterns (Choe et al., 2019a; Ye
et al., 2023b) and some rule-based methods (Wan
et al., 2020; Wang and Zheng, 2020; Tang et al.,
2021). (2) Sequence-based augmentation utilizes
Seq2seq models to take the entire source sentence
as input to generate the entire target text, such
as round-translation (Zhou et al., 2019) and back-
translation (Xie et al., 2018; Kiyono et al., 2019).
For our method, we combine the characteristics
of edit-based augmentation and sequence-based
augmentation, proposing mask modeling to extract
possible text spans to be edited and forward the
masked sequence to the LLMs for augmentation.
GEC with Large Language Models. Some
studies have explored the potential of LLMs in
GEC (Penteado and Perez, 2023; Wu et al., 2023).
However, results show that LLMs have a tendency
to over-correct for fluency (Bryant et al., 2023b),
which leads to the low precision. Research (Fang
et al., 2023; Zhang et al., 2023) has managed to per-
form supervised fine-tuning to address this issue
but still got unsatisfactory results. Therefore, some
studies propose to change the role of LLMs from
correctors to evaluators (Kobayashi et al., 2024;
Li et al., 2024) and explainers (Li et al., 2024) to
make full use of large language models in the train-
ing and evaluation process of GEC small models.
In comparison, we consider the role of LLMs in
GEC as data annotators. By leveraging the general-
ization capabilities of LLMs, we can perform data
augmentation to help improve the performance of
smaller GEC models.

3 Background

Formally, given a dataset Dr = {(Xi, Yi)}|Dr|
i=1 ,

where X = {x1, x2, ..., xn} denotes a source se-
quence of tokens with grammatical errors and
Y = {y1, y2, ..., ym} denotes its target corrected
sequence. Generally, a GEC(X) model learns to
translate X to Y , which can have various model
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architectures such as Seq2seq (Ge et al., 2019) and
Seq2edit (Stahlberg and Kumar, 2020).

Data augmentation for GEC tasks aims to gen-
erate extra data for supervised training, which is
denoted as Dp = {(X̂i, Yi)}

|Dp|
i=1 . In this paper, we

highlight two key aspects of augmentation:

• Consistent. The augmented data should
demonstrate less distribution shift in the per-
spectives of semantics as well as syntax and
maintain in-distribution grammatical errors
when compared to the real-world data.

• Type-aware. The augmentation procedure
should be controllable to generate the ex-
pected types of grammatical errors. Hence,
we can manipulate the augmentation and im-
prove the capability to solve long-tail gram-
matical errors. For simplicity, we denote the
type set for augmentation as A.

We identify some representative existing data
augmentation techniques for GEC tasks as follows:
Direct Noise randomly applies span-based edit-
ing operations (Lichtarge et al., 2019; Kiyono
et al., 2020) to the source sequence DA(X) =
NOISE(X → X̂). However, the distribution of
these data deviates significantly from real data, and
excessive noises can dramatically alter the seman-
tics of sentences.
Back Translation reverses the GEC tasks, which
treats the source sequence as the target and the
target sequence as the source via building a pa-
rameterized model DA(Y ) = Pϕ(X̂|Y ) (Kiyono
et al., 2019; Yuan et al., 2019; Koyama et al., 2021).
However, this method only covers the grammati-
cal errors present in the training data resulting in
limited error types.
Round Translation augments data with a bridge
language (e.g., English-Chinese-English) via an
off-the-shelf translation tool (Zhou et al., 2019;
Bryant et al., 2023b) , that is DA(X) = MT(X →
Z → X̂). However, it relies heavily on the perfor-
mance of the machine translation and is limited to
uncontrollable sentence variances.
Rule-based Method injects errors into a sentence
following a pre-defined rules or patterns (Xu et al.,
2019; Wang and Zheng, 2020; Tang et al., 2021),
formally DA(X) = RULE(X → X̂). Neverthe-
less, this method depends on human annotations
and handcrafted rules, which cannot be scaled up
easily.

As we can see, existing data augmentation meth-
ods exclude the error types and have a lack of
controllability to the augmentation. In contrast,
TypeDA is a type-aware augmentation method that
is able to generate in-distributed pseudo data with
pre-defined error types.

4 Methods

4.1 Overview

To ensure the consistency and type compliance of
the augmentation methods. We design TypeDA
for GEC tasks, which contains a two-stage proce-
dure of Mask Modeling and Error Filling. For
mask modeling, we mask the erroneous text span
of the source sequence, which results in a set of
in-distribution markers indicating where people are
likely to make grammatical errors. We first extract
pseudo error markers from the original data set Dr.
Then we train a Seq2seq model with direct noise
and multi-decoders to predict mask markers for a
sequence. For error filling, we replace the mask
markers with the erroneous content with the hints
of error types. We first identify the possible error
types. Then we prompt LLMs with the pre-defined
error types and filter out the bad cases. As a re-
sult, we obtain a set of augmented sentence pairs
to form Dp. The overall architecture of our method
is shown in Figure 2.

4.2 Mask Modeling via Multi-decoder

For in-distributed masking modeling, we learn the
error pattern with a Seq2seq model. Specifically,
we formulate the mask modeling task as a binary
classification problem, where the target is to pre-
dict if we need to mask the token or not.
Extracting pseudo error markers. Given Dr, we
compare the source sentence X with the target sen-
tence Y and obtain the edit positions. For example,
“{I, wants, to, be, a, math, teach}” is the source se-
quence and its corresponding target is “{I, want, to,
be, a, math, teacher}”. Hence, we locate the edit
spans and replace them as [MASK] and obtain “{I,
[MASK], to, be, a, math, [MASK]}” as error markers.
We denote the pseudo error markers as M .
Learning the error distributions via multi-
decoders. After we obtain a set of sentence pairs
(X,M), we train a Seq2seq model to learn the
translation. Specifically, this model has an encoder-
decoder architecture, where X is first encoded via
Transformer. Next, the Transformer is deployed
as the decoder to generate the error markers. We
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Figure 2: The overall architecture of TypeDA.

denote the procedure as:

H = Encoder(X)

Pϕ(M |X) = Decoder(H)

Lmask = − logPϕ(M |X)

However, if we simply perform a one-way trans-
lation from source text to target text, we may learn
limited error patterns. To increase the diversity
of the generation, inspired by multiple decoder
networks in machine translation and math word
problem solving (Zhang et al., 2020), we include
multi-decoders to perturb the output of the input
to increase the possibility of getting diverse error
markers. In detail, given the output of an encoder
H , we first define a mask rate β, then we sample
a pperturb percent region for masking in H from
a Gaussian distribution. As a result, we compute
another cross entropy as follows:

Pϕ(M |X; pperturb) = Decoder(H ⊙ pperturb)

Lperturb = − logPϕ(M |X; pperturb).

As we can see, we add perturbation to the input
in a hidden dense space, which can not only make
the mask modeling more stable under different con-
texts, but also to some extent increase the variety
of the generated masks during inference. Besides,
we increase the differences between the outputs of
the original decoder and the perturbed decoder by
maximizing the distance between them:

Ldiv = −∥Pϕ(M |X)− Pϕ(M |X; pperturb)∥p,

where p is the p-norm, which measures the distance
of two distributions (De Cao et al., 2021). Thus,
the comprehensive loss is formulated as:

Ltotal = α(Lmask + Lperturb) + βLdiv,

where α and β are two hyper-parameters to denote
the importance of the factors. During inference, we
randomly sample perturbation for multiple times
and generate multiple outputs as candidates M̂ .

4.3 Error Filling via Type-aware Prompting

Next, we fill in the masks with the possible er-
rors belonging to a certain type. Considering the
strong generalization capability of LLMs, we re-
quest LLMs to fill in the masks with type-aware
prompts. Compared with the naive augmentation
of LLMs as shown in Figure 1, it is more control-
lable to achieve error filling via LLMs. For each
mask, we first sample an error type according to
their occurrence probabilities. We then prompt
LLMs with type-aware templates and filter out the
bad cases, which results in a set of high-quality
augmented data.
Identifying multi-granularity error types. We
follow the error types defined in prior stud-
ies (Bryant et al., 2017) to identify 51 categories4.
These error types includes three levels of gran-
ularity. (1) Edit operation is the operations to
edit the erroneous sentences, including Missing,
Replacement and Unnecessary. (2) Main type
is the object types to edit, including NOUN, ADJ and
etc,. (3) Full type is the fine-grained error types
to edit, including Missing Noun, Replacement
Noun and so on.

Nevertheless, given a mask, it is not rationale
to sample an error type with uniform distribution.
As we know, certain error types are more com-
mon than the other error types. For example, the
error of Missing Determiner is more frequent
than Missing Conjunction in real data. To this

4Error types such as OTHER and UNK, which are not suitable
for prompt template construction, are filtered out. The detailed
error types are displayed in Appendix B.3.
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It was funnied because we learn a new hip hop dance .

Task Description: Fill in or delete the [mask] in the given
sentence to create a sentence with the specified grammatical
error.
Input:
source_text: "It was fun because we learn a new hip hop dance."
target_text: "It was fun because we learnt a new hip hop dance."
masked_text: "It was [mask] because we [mask] a new hip hop
[mask]."
error_type: "R:ADJ"
Reference Examples:
masked_text: "Save some nature for the earth, and leave [mask]
air for our kids."
filled_text: "Save some nature for the earth, and leave clear air
for our kids."
explanation: "From the context, it should be 'clean' air, so we
use a similar but incorrect adjective 'clear' to create an adjective
error."

Figure 3: An example of the prompt template and the
output of LLMs.

end, we sample the error type based on its occur-
rence probabilities in Dr. These probabilities are
calculated using the square root of the frequency
of each error type to perverse the variance of the
distribution while maintaining relative priority.
Prompting LLMs with type-aware templates.
Once we sample an error type a ∈ A, we request
an LLM to produce an erroneous sentence with
this error type by filling the masks. To further con-
trol the outputs, we manually craft demonstrations
for each error type5 and apply in-context learn-
ing (Dong et al., 2022) to encourage LLMs to gen-
erate similar sentences satisfying the error types.
Simply, we denote this procedure as:

X̂ = LLM(X,Y, M̂, a).

We display an example in Figure 3. For each
masked sentence and error type, we may obtain
multiple erroneous sentences as outputs.
Filtering out ill-posed augmentation. Due to
hallucination issue (Ye et al., 2023a) in LLMs,
some of the augmented data may be meaningless
or fail to meet the requirements. Therefore, we
simply filter out the bad cases: 1) There still ex-
ists [MASK] symbols in the output; 2) The LLMs
generate more errors. For this case, we employ
ERRANT toolkit (Bryant et al., 2017), which is
a rule-based framework to extract the error type
given a data pair, to parse the edit and check if the
generated errors meet the required error types. 3)
Due to the over-correction issue of LLMs (Bryant
et al., 2023b), we measure the Levenshtein dis-
tance between the pseudo data sequence and the

5The detailed demonstrations are displayed in Ap-
pendix B.3.

Dataset Usage Sentences Tokens

W&I+LOCNESS Training 34, 308 628, 720
FCE Training 17, 714 346, 924

BEA-19 Dev Validation 4, 384 86, 973
BEA-19 Test Testing 4, 477 85, 668

CoNLL-14 Test Testing 1, 312 30, 144

Table 1: Statistics of GEC datasets in our experiments.

source sequence to prevent the unexpected changes.
Eventually, we obtain a set of augmented data, de-
noted as Dp = {(X̂, Y )}. It is merged with Dr for
fine-tuning a GEC model.

5 Experimental Settings

Datasets and Evaluation. We use the data sets
of W&I+LOCNESS (Bryant et al., 2019) (collec-
tively referred to as BEA-train) and FCE (Yan-
nakoudakis et al., 2011) as the training data for
all test sets. BEA-19 Dev serves as the valida-
tion dataset for all model training, while BEA-19
Test and CoNLL-14 Test (Ng et al., 2014) are
used as the test datasets. The BEA-19 Test is
evaluated through the official evaluation channel6,
whereas the CoNLL-14 Test is evaluated using the
M2Scorer (Dahlmeier and Ng, 2012). The statisti-
cal results of the datasets are shown in Table 1. We
choose Precision (P), Recall (R), and F0.5 score as
our basic evaluation metrics.
GEC Backbone Models. Our GEC backbone
models include Seq2seq-based methods (i.e., Bart-
base (Lewis et al., 2019), T5-base, and T5-
large (Raffel et al., 2020)) and Seq2edit-based
method (i.e., GECToR (Omelianchuk et al.,
2020)), allowing us to explore the generalization
of our data augmentation methods under differ-
ent architectures and parameter scales. The above
methods are recognized as effective methods for
GEC tasks (Qorib and Ng, 2022) and their hyper-
parameter settings are provided in Appendix B.
Comparable Methods. To comprehensively eval-
uate TypeDA, we compare TypeDA with a range
of augmentation techniques described in Section 3.
For Direct Noise, we follow the study (Lichtarge
et al., 2019). Specifically, we randomly sample
multiple spans in each sentence as well as an edit
from Deletion, Insertion, Replacement, and
Transposition with uniform distribution to aug-
ment the data. For Back Translation, we follow
the implementation of (Yuan et al., 2019), treat-
ing grammatically correct sentences as inputs of
T5 model and erroneous sentences as outputs. We

6https://codalab.lisn.upsaclay.fr/competitions/4057

https://codalab.lisn.upsaclay.fr/competitions/4057
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Model Augmentation Data Size BEA-19 Test CoNLL-14 Test
P R F0.5 P R F0.5

T5-base

- 36K 65.64 55.19 63.25 64.53 40.15 57.54
Direct Noise 52K 63.91 57.09 62.42 64.28 41.16 57.79
Back Translation 52K 65.95 58.56 64.33 67.61 42.26 60.37
Round Translation 52K 65.38 56.38 63.35 47.23 51.03 47.94
Rule-based 52K 64.90 58.89 63.60 65.17 42.49 58.88
TypeDA 52K 66.04 59.80 64.69 65.99 43.09 59.65

BART-base

- 36K 52.84 50.61 52.38 49.56 38.83 46.96
Direct Noise 52K 53.14 50.11 52.50 53.72 35.50 48.72
Back Translation 52K 49.79 51.39 50.10 55.46 38.91 51.11
Round Translation 52K 58.51 40.20 53.63 46.85 41.61 45.70
Rule-based 52K 52.01 46.75 50.86 53.90 35.61 48.88
TypeDA 52K 56.02 50.22 54.76 53.98 36.54 49.28

GECToR

- 36K 56.46 34.36 50.20 53.61 24.56 43.36
Direct Noise 52K 53.61 34.02 48.07 48.26 30.83 43.36
Back Translation 52K 52.14 33.56 46.94 57.09 20.35 41.94
Round Translation 52K 56.60 4.62 17.41 20.82 5.69 13.59
Rule-based 52K 54.17 39.00 50.26 53.77 24.60 43.46
TypeDA 52K 57.25 36.20 51.29 51.12 28.12 43.93

T5-large

- 55K 65.08 61.48 64.33 65.17 43.21 59.16
Direct Noise 76K 67.43 58.53 65.44 68.84 42.42 61.21
Back Translation 76K 66.12 63.97 65.68 66.72 47.43 61.70
Round Translation 76K 68.00 59.07 66.01 47.94 54.97 49.20
Rule-based 76K 67.35 60.43 65.85 66.65 43.41 60.20
TypeDA 76K 69.13 59.16 66.87 68.24 45.60 62.08

Table 2: Performance comparison of different models with various augmentation methods on BEA-19 Test and
CoNLL-14 Test datasets. Data size represents the amount of Dr

⋃
Dp.

further control the quality of the generated sen-
tences by measuring their perplexity via a language
model. For Round Translation, we refer to the
implementation of (Lichtarge et al., 2019) and em-
ploy a well-trained T5 model as the translator to
first translate the source sentence from English
to Chinese, then translate it back to English. For
Rule-based method, we follow the implementa-
tion of (Wang and Zheng, 2020) to first analyze
the erroneous sentence and apply their pre-defined
rules (e.g., Singular → Plural, Adjectives →
Adverbs) to generate erroneous sentences.

6 Results and Analyses

6.1 Main Results

Table 2 showcases the results of data augmentation.
We have the following observations: (1) TypeDA
achieves better performance across different pa-
rameters, different GEC models and various evalu-
ation datasets, with precision and F0.5 scores being
higher than those of other data augmentation meth-
ods in most cases. T5-large model achieves the best
performance with F0.5 scores of 66.87 on the BEA-
19 Test and 62.08 on the CoNLL-14 Test, yielding
satisfactory results given the relatively smaller data
size. (2) The pre-trained Seq2seq models (i.e., T5-
base, BART-base, T5-large) show a high tolerance

to the augmented data, and various data augmenta-
tion methods generally improve the performance
of GEC models. This improvement is typically
reflected in increased precision, indicating that the
augmented data helps the language models adjust
to the GEC tasks. (3) In contrast, augmented data
can easily degrade the performance of a Seq2edit
model (i.e., GECToR). Particularly, we observe a
dramatic decrease with the augmented data from
the round translation method. This may be because
the Seq2edit model are more sensitive to the noisy
augmented data of low-quality. The consistency of
improvement brought by TypeDA further verifies
the high quality of our generated sentences.

Additionally, we use the Affinity and Diversity
coefficients proposed by MixEdit (Ye et al., 2023b)
as an intrinsic evaluation of the data augmentation,
which measures the in-distribution degree and vari-
ety of the generated data, respectively. Since our
data augmentation method filters out sentences that
do not meet the requirements, we calculate Affinity
and Diversity using the subset of the original data
that is aligned with the augmented data. As we can
see from Table 3, TypeDA achieves higher Affinity
and Diversity compared to MixEdit, indicating that
the distribution of our augmented data is more con-
sistent with the original data and exhibits greater
variety. Additionally, while we observe an increase
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Augmentation A D BEA-19 Dev
P R F0.5

- - 7.79 53.65 38.57 49.76
Direct Noise 0.41 10.70 53.89 39.72 50.30
Round Translation 0.75 10.54 50.32 39.82 47.80
Back Translation 1.57 8.22 54.94 42.87 52.01

MixEdit(Static) 2.33 8.52 57.98 37.78 52.38
TypeDA 2.45 8.60 57.79 38.31 52.45

Table 3: Results of affinity (denoted as A) and diver-
sity (denoted as D) on BEA-train data sets of various
augmentation methods. The results of other methods
are copied from MixEdit (Ye et al., 2023b) and all the
methods are built upon BART-large.

in precision and a decrease in recall compared to
other baselines, TypeDA achieves a higher F0.5

score on the BEA-19 Dev set.

6.2 Analyses

We conducted more analyses and the findings re-
vealed:
TypeDA can be applied to solve long-tail er-
rors and balance the distribution of error types.
Since TypeDA has the advantages of producing
type-aware erroneous sentences, we identify the
proportion of certain type errors generated via
TypeDA. Table 4 presents the results of BEA-19
Test set on several error types, which includes long-
tail errors such as CONJ, NOUN:POSS, and ADV. As
we can see, our augmentation method could boost
the performance of certain errors. We also compute
the proportion of error types in original data set and
our augmented data, which indicates that TypeDA
could generate type-aware erroneous sentences as
we expected. This is also helpful in balancing the
error types in a dataset.
TypeDA is able to improve the robustness of
GEC systems. We apply the well-trained model
for masking to BEA-19 Test set and fill in the
errors via our type-aware prompting. We control
the ratio of the augmented data as 5%, 10%, and
20% in test set. This simulates the adversarial
attacks and we test the gain of robustness brought
by different augmentation methods. The results
are shown in Figure 4. The model trained with our
data augmentation method consistently achieves
the highest F0.5 score. In addition, amongst all the
augmentation methods, the decrease of F0.5 score
caused by the increasing adversarial ratio is the
lowest. This experiment demonstrates that our data
augmentation method is superior on encountering
adversarial attacks in GEC.
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Figure 4: Results of adversarial attacks on BEA-19 Test
set. The GEC backbone model is T5-base.
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Figure 5: Results of affinity and diversity of data gener-
ated by decoders with or without perturbation.

TypeDA could generate the error distribution
closer to real-world. To investigate how augmen-
tation shifts data with respect to the error patterns
in real-world, on BEA-19 Dev set, we first treat
the source sentences to the target sentences as the
ground truth transition and consider the source
sentences to the masked sentences produced via
error markers as the oracle transition for error po-
sitions. Then we measure the affinity and diversity
between the ground truth and oracle. After that,
we consider the outputs produced by decoders with
or without perturbation as the prediction transition
in turn and compare their affinity and diversity
with reference. The results shown in Figure 5, we
find that the decoders trained via TypeDA have the
similar affinity to the error markers, which can be
deemed as an oracle of the error positions. Particu-
larly, the decoders with perturbation demonstrate
some variance but it is still distributed within the
realistic dataset and it has a higher diversity value
compared to the decoders without perturbation.

6.3 Case Study

We provide an example of different augmented sen-
tences corresponding to a specific target sentence
in Table 5. As we specify R:SPELL, R:WO, M:ADV
errors, LLMs fill the different mask sentences into
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Type Prop. w/o DA Prop. of DA T5-large w/o DA T5-large w/ DA
P R F0.5 P R F0.5

M 27.16% 21.50% 57.44 59.46 57.83 68.97 55.85 65.88
R 60.30% 58.43% 68.82 61.33 67.18 69.56 59.76 67.35
U 12.55% 20.07% 63.36 67.18 64.09 67.09 63.10 66.25

CONJ 0.68% 0.90% 38.46 18.52 31.65 61.54 28.57 50.00
NOUN:POSS 0.78% 1.27% 82.50 51.56 73.66 81.82 57.14 75.31
PUNCT 18.10% 13.83% 56.75 64.34 58.12 72.24 61.54 69.82

M:ADV 0.52% 0.76% 53.33 40.00 50.00 64.71 50.00 61.11
R:ADV 0.97% 0.85% 56.67 58.62 57.05 59.09 54.17 58.04
U:ADV 0.51% 1.65% 40.00 43.48 40.65 54.55 52.17 54.05
M:NOUN 0.65% 1.55% 14.81 36.36 16.81 16.00 30.77 17.70
R:NOUN 4.25% 4.13% 39.83 43.12 40.45 47.25 41.75 46.04
U:NOUN 0.61% 1.60% 0.00 0.00 0.00 7.69 16.67 8.62

Table 4: Results of BEA-19 Test set on breakdown error types. Prop. denotes the proportion of certain error types
we identified in Section 4.3. DA is the abbreviation of data augmentation.

Target The possible reason is these international students can not speak English fluently.
Source The possible reason is these international students can not speak English flowing.
Direct Noise The possible reason is these international students can not speak a English flowing.
Back Translation The possible reason is these international students could not speak English fluently .
Round Translation Perhaps the reason is these international students can’t speak English fluently.
Rule-based The possible reason is these international students can not speak English flowingly.

R:SPELL The possible reason is these international students can not speak English fluntly.
TypeDA R:WO The possible reason is international these students can not speak flowing English.

M:ADV The possible reason is these international students can not speak English fluently.

Table 5: Case Study.

the expected augmented sentences. For other data
augmentation methods, Direct Noise modifies se-
mantics of the sentence. Back Translation and
Rule-based methods generate limited errors, while
Round Translation produces unnecessary revision
to the sentences. In contrast, TypeDA clearly fol-
lows the demand of error types and generates de-
sired sentence as data augmentation, which verifies
the advantages of TypeDA.

6.4 Ablation Study
We evaluate the effect of the individual modules
in our proposed approach. (1) Effect of error
marker. To assess the effectiveness of the er-
ror marker, we compared model performance on
data generated with error marker to data generated
with random masking. As shown in Table 6, error
marker outperforms random masking in all met-
rics. (2) Effect of prompt template. The prompt
template can guide LLMs to more appropriately
fill masked sentences. We provide two different
ways as input to the LLMs: only the masked sen-
tence and sampled error types as input (as zero-
shot) vs. our prompt templates as input. The re-
sults in Table 6 verify the effect of our prompt
template. (3) Effect of encoder-decoder. We
evaluated encoder-decoder structure by comparing
sentences generated using only the encoder (with

perturbations) against those generated with the full
encoder-decoder structure. The encoder-decoder
structure leads to higher diversity in Table 7.

BEA-19 Test
P R F0.5

Random Masking 54.43 54.49 54.44
Error Marker 57.45 55.64 57.08
Zero-Shot 54.29 50.03 53.38
Prompt Template 56.22 56.09 56.19

Table 6: Ablation study for error marker and prompt
template on the BEA-19 Test set using the T5-base
model with a data size of 11K. The number of masked
positions in random masking matches the number of
grammatical errors.

Affinity Diversity
Encoder-only 2.94 5.73
Encoder-Decoder 2.94 6.02

Table 7: Diversity comparison of masked sentences
generated by encoder-only versus encoder-decoder on
the BEA-19 Train set using the T5-base model with a
data size of 11K.

7 Conclusions

In this paper, we propose a grammatical error type-
aware data augmentation method, decomposing



207

the augmentation process into mask modeling and
error filling. Experiments show that our data aug-
mentation method can generate consistent and type-
aware data, which could effectively improve the
performance of GEC models.

Ethics Statement

In our study on Grammatical Error Correction, no
personal information was collected, ensuring the
ethical integrity of our research. We emphasize that
this endeavor involved no risk. Our commitment
to ethical standards is unwavering.

Limitations

The limitations of our study may be from two
aspects. First, the GEC task is challenging for
other languages in practice but we have not yet ex-
plored the possibility of TypeDA on non-English
datasets, especially low-resource languages. Sec-
ond, TypeDA maybe under the influence of dif-
ferent design of error types, which still relies on
the annotation from the experts. In the future, we
will investigate the automatic construction of error
types to bridge the gap.
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A Details of preliminary study

We employed a very naive method to require
the GPT-4 to augment data with the instruc-
tion "Grammar error correction data
augmentation and return only the
augmented sentence.". Using this method, we
augmented a total of 18K augmented sentences and
performed supervised fine-tuning on a T5-large
model, using the CoNLL-14 Test as the evaluation
data. The results in Figure 1 indicate that using the
LLMs for data augmentation, even with a simple
augmentation method and a small amount of aug-
mented data, can outperform the method directly
using the LLMs for grammar correction.

Model CoNLL-14 Test
P R F0.5

GPT-4 43.15 55.65 45.18
Augmentation 48.30 39.63 46.28

Table 8: Comparison of using GPT-4 to error correction
and data augmentation.

B Implementation Details

Configuration Value

Mask Modeling

Backbone T5-base (Raffel et al., 2020)
Devices NVIDIA GeForce RTX 4090 (24GB)
Epochs early stopping(threshold=0.2, patience=3)
Batch size 8
Weights of Loss α = 1.0, β = 1.0
Optimizer AdamW (Loshchilov and Hutter, 2017)
Learning rate 3× 10−5

Warmup 500
Max length 1024
Dropout 0.4
Mask rate threshold 0.5

Error Filling

Large Language Model GPT-4 (Achiam et al., 2023)
Levenshtein distance threshold 25

Training & Inference

Devices Tesla A800 GPU (80GB)
Epochs early stopping(threshold=0.2, patience=3)
Transformer of GECToR BERT (Devlin et al., 2018)
Batch size 4
Optimizer AdamW (Loshchilov and Hutter, 2017)
Learning rate 3× 10−5, 1× 10−4

Warmup 500
Max length 1024
Dropout 0.3
Beam size 5

Table 9: Hyper-parameter Settings

B.1 Hyper-parameter Settings

Our hyper-parameter settings in Table 9 are based
on some configurations from (Ye et al., 2023b)
and (Omelianchuk et al., 2020), and we adjust
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certain parameters (such as mask rate threshold)
through greedy search on validation set.

B.2 Mask Modeling
In GEC tasks, some sentences may encounter ex-
tensive number of error markers, leading to severe
semantic loss and unreadability after masking with
error markers. When we calculate the masking ra-
tio of a sentence (the ratio of the number of masked
tokens to the total number of tokens) and it reaches
our specified masking ratio threshold (set at 0.5),
we consider this sentence to have semantic loss.
At this point, we will apply the Semantic Role
Labeling (SRL) (Palmer et al., 2010) task to re-
cover the masked sentence. By applying SRL with
spacy(en_core_web_sm), we identify the spans of
predicate and agent roles in the sentence, which
can be considered important components of the
sentence’s semantics. If these spans are masked,
we restore them to ensure semantic consistency.

Due to the involvement of perturbations, the de-
coders’ output of masked sentences may contain
a large number of uncontrollable [MASK]. There-
fore, after completing the mask modeling, we filter
out masked sentences that exceed the masking rate
threshold and those that are identical to the output
of the error markers. By combining the output of
error makers, a single source sentence can corre-
spond to 1-3 different masked sentences, which
helps the LLMs to fill in various grammatical er-
rors, thereby enhancing the diversity.

B.3 Error Filling
Error Types for error filling. We removed
some grammatical error types specified by Er-
rant (Bryant et al., 2017) that were not suitable for
designing prompt templates, such as R:OTHER, UNK,
NOOP, etc,. The remaining grammatical error types,
totaling 51, were mapped to natural language de-
scriptions to help the LLMs better understand them.
The error types are shown in Table 10.

Besides, we counted the original proportions of
51 fine-grained error types in BEA-Train and the
proportions of augmented data, which are shown in
Table 11. TypeDA achieves a relatively balanced
distribution of grammatical error types due to the
use of a customized error type sampling probability
distribution and a certain degree of controllability.
The variance in the proportion of each grammatical
error type in the dataset was reduced from 0.0598
to 0.0384, which benefit GEC model performance
on long-tail error types and prevent over-fitting.

Examples of Prompt Reference. We have listed
some examples of prompt references in Table 12.
The controllability of this method highly depends
on the quality and quantity of these prompt refer-
ences.
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Error Type Description Error Type Description
M:ADJ Adjective is missing R:ADJ Incorrect adjective used
U:ADJ Adjective is not needed R:ADJ:FORM Adjective form is incorrect
M:ADV Adverb is missing R:ADV Incorrect adverb used
U:ADV Adverb is not needed M:CONJ Conjunction is missing
R:CONJ Incorrect conjunction used U:CONJ Conjunction is not needed
M:CONTR Contraction is missing R:CONTR Incorrect contraction used
U:CONTR Contraction is not needed M:DET Determiner is missing
R:DET Incorrect determiner used U:DET Determiner is not needed
R:MORPH Morphological form is in-

correct
M:NOUN Noun is missing

R:NOUN Incorrect noun used U:NOUN Noun is not needed
R:NOUN:INFL Noun inflection is incor-

rect
R:NOUN:NUM Noun number is incorrect

M:NOUN:POSS Noun possessive is miss-
ing

R:NOUN:POSS Noun possessive is incor-
rect

U:NOUN:POSS Noun possessive is not
needed

R:ORTH Spelling is incorrect

M:PART Particle is missing R:PART Incorrect particle used
U:PART Particle is not needed M:PREP Preposition is missing
R:PREP Incorrect preposition used U:PREP Preposition is not needed
M:PRON Pronoun is missing R:PRON Incorrect pronoun used
U:PRON Pronoun is not needed M:PUNCT Punctuation is missing
R:PUNCT Incorrect punctuation used U:PUNCT Punctuation is not needed
R:SPELL Spelling is incorrect M:VERB Verb is missing
R:VERB Incorrect verb used U:VERB Verb is not needed
M:VERB:FORM Verb form is missing R:VERB:FORM Verb form is incorrect
U:VERB:FORM Verb form is not needed R:VERB:INFL Verb inflection is incorrect
R:VERB:SVA Subject-verb agreement is

incorrect
M:VERB:TENSE Verb tense is missing

R:VERB:TENSE Verb tense is incorrect U:VERB:TENSE Verb tense is not needed
R:WO Word order is incorrect

Table 10: Error types and their corresponding descriptions.
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Error Type Prop.(BA) Prop.(DA) Error Type Prop.(BA) Prop.(AA)
M:ADJ 0.21% 0.54% R:ADJ 1.57% 1.32%
U:ADJ 0.20% 0.66% R:ADJ:FORM 0.32% 0.18%
M:ADV 0.52% 0.76% R:ADV 0.97% 0.85%
U:ADV 0.51% 1.65% M:CONJ 0.42% 0.25%
R:CONJ 0.13% 0.12% U:CONJ 0.13% 0.53%
M:CONTR 0.03% 0.06% R:CONTR 0.23% 0.37%
U:CONTR 0.14% 0.31% M:DET 5.69% 3.81%
R:DET 2.75% 2.68% U:DET 5.00% 4.72%
R:MORPH 2.33% 2.63% M:NOUN 0.65% 1.55%
R:NOUN 4.25% 4.13% U:NOUN 0.61% 1.60%
R:NOUN:INFL 0.16% 0.14% R:NOUN:NUM 4.78% 4.69%
M:NOUN:POSS 0.39% 0.21% R:NOUN:POSS 0.23% 0.40%
U:NOUN:POSS 0.16% 0.66% R:ORTH 4.89% 3.11%
M:PART 0.14% 0.14% R:PART 0.80% 0.62%
U:PART 0.17% 0.33% M:PREP 2.49% 2.07%
R:PREP 7.68% 6.06% U:PREP 1.90% 3.71%
M:PRON 1.47% 1.26% R:PRON 1.30% 1.34%
U:PRON 0.62% 0.54% M:PUNCT 12.64% 7.91%
R:PUNCT 3.91% 3.42% U:PUNCT 1.55% 2.50%
R:SPELL 4.26% 6.26% M:VERB 1.00% 1.83%
R:VERB 5.84% 5.97% U:VERB 0.55% 1.73%
M:VERB:FORM 0.42% 0.25% R:VERB:FORM 3.61% 3.94%
U:VERB:FORM 0.30% 0.25% R:VERB:INFL 0.06% 0.13%
R:VERB:SVA 2.76% 2.99% M:VERB:TENSE 1.09% 0.86%
R:VERB:TENSE 5.36% 5.49% U:VERB:TENSE 0.72% 0.89%
R:WO 2.13% 1.60%

Table 11: The proportions of error types before and after data augmentation. Prop.(BA) represents the proportions
of error types before augmentation and Prop.(DA) represents the proportions of error types in augmented data.
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Error Type Masking Modelling Error Filling Explanation
M:ADJ Local transportation is

one of the most [mask]
problem in our area .

Local transporta-
tion is one of the
most problem in
our area .

An adjective should be used after
"most" and before a noun, so we
can delete the [mask] to make a
missing adjective error.

R:ADJ I enjoyed the best
breathing [mask] air
and taking pleasure the
countryside .

I enjoyed the best
breathing pure air
and taking pleasure
the countryside .

Air should be described as fresh
instead of pure, so we can replace
the [mask] with adjective "pure"
to make a wrong adjective error.

R:ADJ:FORM I feel really [mask] to
see this movie .

I feel really boring
to see this movie .

We use "boring" to describe
something that causes boredom
and "bored" to describe the
speaker’s feeling of uninterest,
thus fill "bor" with "ing" instead
of "ed" can cause a wrong adjec-
tive form error.

R:ADV My friends have
bought tickets to Sochi
[mask] .

My friends have
bought tickets to
Sochi yet .

Yet should be used in negative
sentences so we can use it in
a positive sentence to make a
wrong adverb error.

U:CONJ [mask] [mask] you are
smart, [mask] you still
need to study hard .

Even though you
are smart, but you
still need to study
hard .

"Even though" and "but" can not
be used together in one sentence,
so we can use them together to
make an unnecessary conjunc-
tion error.

U:CONTR I [mask] [mask] do my
homework tomorrow .

I will ’ll do my
homework tomor-
row .

"’ll" is the contraction of "will"
so we can repetitively use them to
make an unnecessary contraction
error.

Table 12: Examples of prompt reference.
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