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Abstract

With the continuous advancement of remote
sensing technology, it is easier to obtain high-
resolution, multi-temporal and multi-spectral
images. The images carry rich information
of ground objects. However, how to effec-
tively extract useful information from the com-
plex image data and convert it into understand-
able semantic descriptions remains a challenge.
To deal with the challenges, we propose a
Scene Graph and Dependency Grammar En-
hanced Remote Sensing Change Caption Net-
work (SGD-RSCCN) to improve the accuracy
and naturalness of extracting and describing
change information from remote sensing im-
ages. By combining advanced visual analy-
sis technology and natural language processing
technology, the network not only optimizes the
problem of insufficient understanding of com-
plex scenes, but also enhances the ability to
capture dynamic changes, thereby generating
more accurate and smooth natural language de-
scription. In addition, we also proposes the de-
coder based on prior knowledge, which further
improves the readability and comprehensibility
of the description. Extensive experiments on
LEVIR-CC and Dubai-CC datasets verify the
advantages of the proposed method in generat-
ing accurate and true descriptions.

1 Introduction

Remote sensing images provide valuable data re-
sources for surface monitoring and environmental
analysis due to the unique perspective and coverage.
With the rapid development of remote sensing tech-
nology, a large number of high-resolution remote
sensing image data have been obtained. Remote
sensing images are not only used in scientific re-
search, but also widely used in disaster assessment
(Xu et al., 2019), urban planning (Chen and Shi,
2020), environmental monitoring (de Bem et al.,
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2020) and other fields. The accurate and seman-
tically rich description of the image changes not
only helps to improve the ability of image inter-
pretation, making remote sensing images easier to
be understood by non-professional users, but also
provides a powerful tool for supporting decision-
making, planning and management, and disaster
response.

The remote sensing image change description
task aims to describe the change content in remote
sensing image pairs in natural language. The task
involves two remote sensing images, usually corre-
sponding to different time points in the same area.
The model needs to understand the differences be-
tween the two images, including feature changes,
new or disappeared elements, and generate text de-
scriptions that can clearly express these changes.
Due to the ability to extract high-level semantic in-
formation about changes in ground objects, change
description has recently received attention in the
field of geosciences and remote sensing.

Automatic analysis and interpretation of remote
sensing images has important application value in
many fields. In recent years, a variety of methods
have been proposed to improve the performance of
image change description models.

(Jhamtani and Berg-Kirkpatrick, 2018) proposed
the first task to describe the difference between sim-
ilar image pairs. To deal with the fact that signifi-
cant differences are usually described at the object
level rather than the pixel level, visual analysis is
first performed to expose different pixel groups as
agents of object-level differences. To emphasize
the importance of using natural language to identify
and describe important scene changes in the pres-
ence of distractions, (Park et al., 2019) proposes
a dual dynamic attention model (DUDA) to learn
to distinguish distractions and semantic changes.
Since there are usually perspective changes in prac-
tice, which may overwhelmingly describe the se-
mantic differences to be described, (Shi et al., 2020)
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proposes a perspective adaptive matching code to
clearly distinguish the perspective changes and
semantic changes in the change description task.
Different from the latest methods that mainly fo-
cus on the image change description task of the
new model architecture, (Hosseinzadeh and Wang,
2021) proposes a new training scheme for the im-
age change description task. In order to describe
multiple changes in complex scenes, (Qiu et al.,
2021) proposes a multi-change title converter (MC-
CFormers), which identifies the change region by
associating different regions in the image pair, and
dynamically determines the change region associ-
ated with the words in the sentence.

Although the above work has made significant
progress, most of the work focuses on learning ac-
curate change representations to generate descrip-
tions, and the grammatical structure of natural lan-
guage is often ignored when visual and linguistic
features are fused, resulting in the generated de-
scriptions may appear unsmooth in grammar al-
though they are semantically correct. In addition,
the lack of understanding of complex scenes and
the difficulty of capturing dynamic changes are also
challenges for existing methods.

To cope with the challenges, we propose a Scene
Graph and Dependency Grammar Enhanced Re-
mote Sensing Change Caption Network (SGD-
RSCCN), which combines visual features and lin-
guistic features by making full use of attention
mechanism and scene graph construction technol-
ogy to generate more accurate and informative im-
age change descriptions. It can not only improve
the interpretability of remote sensing image data,
but also provide support for decision-making in
related fields, which has important research signif-
icance and application value. Through extensive
experiments on LEVIR-CC and Dubai-CC datasets,
we demonstrate that the proposed method can gen-
erate more accurate and realistic descriptions of
changes between remote sensing image pairs, and
achieve superior performance compared with exist-
ing change description methods.

The contributions of the paper are summarized
as follows : (1) Effective sequence selection (ESS):
Aiming at the problem of insufficient understand-
ing of complex scenes, we propose a new scene
graph construction method, which can effectively
deal with various features and complex interrela-
tionships in remote sensing images. In addition, to
capture the dynamic process changing with time,
the method is optimized in the capture and rep-

resentation of dynamic changes, thus improving
the accuracy and practicability of remote sensing
image change description.

(2) Decoder with syntax knowledge (DSK): By
introducing dependency grammar analysis, we en-
hance the application of grammar rules in the train-
ing process. The dependency grammar analysis
reveals the dependency relationship between words
in a sentence and guides the model to generate sen-
tences that conform to grammatical norms. It not
only makes the generated description more natural
and smooth, but also improves the readability and
comprehensibility of the description.

(3) Extensive experiments show that our method
outperforms other state-of-the-art methods on
LEVIR-CC and Dubai-CC datasets.

2 Related work

2.1 Image Caption

In recent years, image captioning in natural lan-
guage has been an active field of artificial intelli-
gence research. Various image description methods
are proposed to improve the latest technology of
image description. In this section, we briefly re-
view the research progress of image captioning in
the field of computer vision and remote sensing.

To capture short-term spatial semantic relations
and long-term transformation dependencies, (Tu
et al., 2022) proposed a long-short term relationship
Transformer (LSRT) to fully mine the relationships
between objects to generate the caption. To cope
with the need to understand video content, caption
semantics, and the relationship between them for
effective caption modeling, (Yu et al., 2022) pro-
poses an internal and relational embedding Trans-
former (I2Transformer), which makes full use of
various modalities and enhances them with cross-
modal information during semantic interaction. (Ji
et al., 2023) uses a dual attention mechanism when
processing image captions, which is applied to
pyramid feature maps. The method fully consid-
ers the context information provided by the hid-
den state, so as to locate the visually and seman-
tically coherent regions in the image more effec-
tively. At the same time, the context information
helps to recalibrate the feature components and
improve the discrimination ability of visual fea-
tures. Although self-attention-based networks have
achieved great success in image captioning, exist-
ing self-attention networks are still plagued by dis-
tance insensitivity and low-rank bottlenecks. (Tu
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Figure 1: Architecture of the proposed SGD-RSCCN.

et al., 2023b) introduced distance-sensitive self-
attention (DSA), considered the original geometric
distance between query key pairs in 2D images,
and proposed multi-branch self-attention (MSA) to
make up for the low-rank bottleneck. Since the tra-
ditional attention mechanism only uses a one-way
flow from vision to language, the visual features of
interest are usually independent of the target word
state. Therefore, (Ariyo et al., 2019a) proposes to
improve the traditional attention mechanism to a
relationship-aware attention mechanism with two
graph learning, namely, visual-to-visual homoge-
neous graph (HMG) and language-to-visual hetero-
geneous graph (HTG), which capture the internal
relationship of visual features and the relationship
between the target word and the visual features
concerned, respectively.

2.2 Change Caption

Compared with the traditional image captioning
task, the change captioning task is more challeng-
ing because it needs to deeply understand the con-
tent of the two images and further describe the
differences.

Pioneer work (Jhamtani and Berg-Kirkpatrick,
2018) describes changes based on monitoring sce-
narios. (Tan et al., 2019) describes in detail the
editing conversion between the two images. (Ariyo
et al., 2019c) proposes a fully convolutional Cap-
tionNet (FCC), which uses an encoder-decoder
architecture to perform visual feature extraction,
calculate feature distance, and generate new sen-
tences describing the measured distance. Combin-
ing a variety of deep learning techniques, (Ariyo
et al., 2019b) proposed a multimodal end-to-end
connection difference captioning model (SDCM)
for capturing, aligning, and calculating the differ-
ences between the two image features. In order to
generate accurate captions, (Chang and Ghamisi,
2023) proposed an attention caption network for

dual-temporal remote sensing images. In order
to improve the model’s ability to perceive various
changes in different scenarios, (Tu et al., 2023a)
proposed a neighborhood comparison converter.
Adjacent feature aggregation is designed to inte-
grate adjacent contexts into each feature. A com-
mon feature distillation is designed to compare two
images at the neighborhood level, and common
attributes are extracted from each image to learn ef-
fective comparison information. (Yue et al., 2023)
proposes an Intra- and Inter-representation Interac-
tion Network (I3N) for learning fine-grained differ-
ence representations that are not affected by view-
point changes. In order to make the change descrip-
tion model capture the actual change while ignor-
ing the influence of perspective change, (Kim et al.,
2021) proposed a view-independent change cap-
tion network (VACC) with circular consistency. In
order to learn stronger visual and linguistic associa-
tions to obtain fine-grained visual differences, (Yao
et al., 2022) proposed a modeling framework that
follows a pre-trained fine-tuning paradigm. Aiming
at the shortcomings of current remote sensing im-
age change description methods in fully extracting
and utilizing multi-scale information, (Liu et al.,
2023a) proposed a progressive scale-aware network
(PSNet) to solve the problem. (Huang et al., 2022)
proposed an instance-level fine-grained differential
captioning (IFDC) model.

3 Model

The proposed method follows the encoder-decoder
architecture and is used for remote sensing image
change description generation. In this section, we
first explain the overview of the model, then de-
scribe the architecture of the visual feature extrac-
tor in detail in Section 3.1, and describe the descrip-
tion generation in Section 3.2.

As shown in Figure 1, our SGD-RSCCN consists
of three main modules: backbone feature extrac-



2124

Caption: 

"bareland", "along", "the", "road", "is", "replaced",

"by", "a", "row","of", "houses"

Syntax Dependency: 

["nsubjpass","prep","det","pobj","auxpass","ROOT",

"agent","det","pobj","prep","pobj","punct"]

I1I0

Figure 2: The syntax-dependent knowledge diagram.

tion module, effective sequence selection module
(ESS) and decoder with syntax knowledge (DSK).
Given the input of the dual-temporal image, we
first use the shared backbone network to extract
the feature map of the given image pair. Next, we
input the features into the effective sequence se-
lection module, that is, each pixel of the feature
map is regarded as a graph node, and the graph
neural network is proposed to model the structured
information and learn the features of the change de-
scription directly from the original remote sensing
data. We can mine the top-K effective sequence
from the graph and use the clustering algorithm to
refine it. Finally, a description generator based on
grammatical prior knowledge is used to obtain a
more accurate description of changes.

3.1 Effective Sequence Selection Module
(ESS)

In remote sensing images, the spatial relationship
between pixels is crucial for understanding the
scene. GNN (Graph Neural Network) can model
the spatial relationship by learning the connection
pattern between nodes, thus providing richer spa-
tial context information. At the same time, through
the information transmission mechanism between
nodes, the feature embedding of each node (or
pixel) can be learned. The embeddings can cap-
ture the complex attributes of objects in remote
sensing images, such as shape, size, and texture,
and they can automatically identify and learn the
features that are most useful for change description
tasks. Specifically, the nodes in the graph represent
the pixels in the image features, and the edges rep-
resent the relationship between them. GNN can ef-
fectively capture the complex relationship between
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Figure 3: Outline of the decoder from visual features to
description sentences.

these nodes and extract structured features.
To better capture the detailed information of

the changing area, the two feature maps are
subtracted and the absolute value is taken to
obtain the difference feature map Xdiff =

|X1 −X2| ϵ ( R)HW∗C . Firstly, we construct an
undirected weight graph G = {V,E} by treating
each feature point as a graph node vi and the spa-
tial relationship between nodes i and j as an edge
ei,j = (vi, vj) ϵ E. Then, our effective sequence
selection task can be regarded as the node selec-
tion in the graph G. We use GCN (Graph Con-
volutional Network) to learn graph-based struc-
tured information and obtain the reliable confi-
dence of graph nodes for effective node selection.
Specifically, we first calculate the adjacency matrix
A ∈ RHW×HW (Equation 1), which is used to
measure the interaction between node pairs in the
graph.

if Ai,j =

{
0

xi.xj , if vi, vj are adjacent
(1)

Among them, xi, xj ∈ X respectively represent
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the characteristics of the node vi and vj . Structured
information can be modeled and propagated in the
graph through the GCN module. For the calculation
defined in each layer of GCN, it can be expressed
as Equation 2:

H(l+1) = σ

((
∼
D

)− 1
2

(I +A)

(
∼
D

)− 1
2

)
H(l)W (l)

(2)

Among them, I is the unit matrix,
∼
D is the diago-

nal matrix,
(

∼
D

)
ij

= (
∑

)j

(
∼
A

)
ij

and
−
A = I+A.

W (l) represents learnable parameters. After the
GCN layer processing, each element in the final
output P = H(L) ∈ RH×W×1 corresponds to a
rough change confidence. Among them, the larger
the value of the feature point, the greater the proba-
bility that the region is a changing region. In order
to select feature sequences with high confidence,
we record their position coordinates in P and ob-
tain the first K minimum values. The valid tokens
come from the features representing the unchanged
region on the original feature map, and the two
feature maps construct two sets of tokens from the
same region. In order to further reduce the number
of tokens, we finally use the K-means algorithm on
X1 and X2 to obtain tokens centered on the class
center L ( L < < K ) for the two branches, that
is, T 1, T 2 ∈ RL×C , L represents the length of
each group of tokens, C representing the channel
dimension. After many experiments and parame-
ter adjustments, in the experiment, we finally used
the initial class center K value of 20, and further
selected the class center with L value of 2 for the
effective sequence.

3.2 Decoder with Syntax Knowledge(DSK)
In the generation of change descriptions, most of
the work focuses on learning accurate change rep-
resentations to generate descriptions, while ignor-
ing the use of syntactic knowledge. In order to
help the model distinguish the changed objects and
their references in the real description during train-
ing, we propose a decoder module based on prior
knowledge to eliminate the grammatical structure
ambiguity in the change description.

First, we briefly introduce the dependencies be-
tween words. In natural language processing, de-
pendency analysis refers to the process of check-
ing the dependency between the linguistic units
(such as words) of a sentence to determine its

grammatical structure. That is to say, grammat-
ical dependency refers to the concept that words
are connected to each other through directed links.
The verb is regarded as the structural center of the
clause structure and is marked as the root “root”.
All other syntactic words are directly or indirectly
connected to the root “root” through directed links.

As shown in Figure 2, the corresponding change
in the image is described as : “bareland along the
road is replaced by a row of houses”. We observe
that change description usually consists of two
parts: semantic change and reference, which makes
it contain complex syntactic structures. However,
the subject “bareland” and its predicate “is re-
placed” are separated by the attribute describing
the object “road”. In the case, the word “road” is
closer to “is replaced” than “bareland”. In the train-
ing process, if the model does not understand the
grammatical relationship between words, it may
learn wrong information from the real caption. Ac-
cording to the literature research, the existing meth-
ods ignore the problem. In fact, if the model no-
tices the direct dependence between “bareland” and
“is replaced”, the above misunderstanding can be
avoided. Therefore, it is necessary to introduce the
grammatical dependency knowledge of text modal-
ity in the training process to help the model under-
stand the grammatical structure of the description
sentence.

Specifically, we load the small English model of
the Spacy library "en_core_web_sm", which con-
tains the language rules and resources required for
syntactic analysis. By reading the existing data
files containing images and their corresponding
sentences, for each sentence of each image, we ex-
tract the original text and use Spacy for syntactic
analysis to extract the dependency of each word
in the sentence. Then the dependency list of each
sentence is added to the annotation data of the corre-
sponding image. Finally, a JSON file containing im-
age description dependencies is output, which will
be used to train the image description generation
model to help the model understand the sentence
structure and generate a more accurate description.
By reading the obtained dependency data files, all
unique dependency labels are extracted and indexes
are assigned to them, and finally a corresponding
dependency vocabulary file is generated.

We use the decoder with syntax knowledge
shown in Figure 3 to generate the change descrip-
tion. Specifically, each decoder consists of N
stacked Transformer decoding blocks. Each block
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Method B-1 B-2 B-3 B-4 M R C
Base 69.11 57.99 50.36 44.08 27.06 57.26 91.51
Base+ESS 74.27 63.25 53.88 45.69 32.96 64.60 110.55
Base+ESS+DSK 77.15 66.80 58.07 50.27 34.07 65.88 118.42

Table 1: Change description results on the Dubai-CC dataset. B-1, B-2, B-3, B-4, M, R and C are short for BLEU-1,
BLEU-2, BLEU-3, BLEU-4, METEOR, ROUGE-L and CIDEr-D. All values are reported as percentage (%).

Method B-1 B-2 B-3 B-4 M R C
Base 77.99 70.67 65.14 61.17 37.47 70.50 125.83
Base+ESS 82.38 72.87 65.25 59.22 38.57 73.06 131.33
Base+ESS+DSK 84.17 75.16 68.05 62.48 39.18 74.24 136.27

Table 2: Change description results on the LEVIR-CC dataset. B-1, B-2, B-3, B-4, M, R and C are short for
BLEU-1, BLEU-2, BLEU-3, BLEU-4, METEOR, ROUGE-L and CIDEr-D. All values are reported as percentage
(%).

consists of a masked multi-head attention layer, an
Encoder-Decoder cross-attention layer and a feed
forward layer. Now we represent the visual se-
quence obtained from the visual encoder as ṼI . We
cannot directly import descriptive sentences into
the model, so each word in the sentence is repre-
sented as a one-hot vector wi. At the same time, the
corresponding syntax dependency is also expressed
as the one-hot vector di. The description decoder
takes the attention fusion features of wi and di as
input, and the masked multi-head attention mecha-
nism embeds the word and grammar dependencies.
And calculate the fusion embedding feature Ê [W ].
Then, through Encoder-Decoder cross-attention,
Ê [W ] is used to query the most relevant hidden
layer feature Ĥ from the visual feature ṼI . Af-
ter that, Ĥ learns the enhanced representation H̃
through the forward propagation network.

After stacking N Transformer decoding blocks,
the hidden layer state output of the last block hN is
used to predict the probability of each output word,
which is expressed as Equation 3.

pi = softmax
(
W ThNi + bi

)
(3)

Where W T is the weight matrix, bi is the bias
term, hNi is the hidden layer state vector representa-
tion (the attention output of the i-th position), and
pi is the probability of the i-th word.

4 Experimental results

4.1 Dataset

We use LEVIR-CC and Dubai-CC datasets. The
former provided in Liu et al. (2022a), which fo-
cuses on multiple changing scenes and objects.

And the latter dataset, introduced in Hoxha et al.
(2022), offers a comprehensive description of urban
transformation within the Dubai region.

4.2 Evaluation indicators

Following the most advanced change description
methods, we use four common indicators to evalu-
ate the accuracy of all methods, namely BLEU-N
(where N = 1,2,3,4), ROUGE-L, METEOR and
CIDEr-D. By comparing the consistency between
the model output and the real ground reference data,
these indicators provide a comprehensive assess-
ment of the effect of the change description model.
The higher the measurement score, the higher the
similarity between the generated sentence and the
reference sentence, that is, the higher the accuracy
of the change description.

4.3 Implementation details

The method based on the PyTorch framework is
trained and evaluated on the NVIDIA A100 or
V100. We use ResNet-101 pre-trained to extract
image features. During training, we use the Adam
optimizer with the initial learning rate of 0.0005.
At the same time, the training batch size is set to
32. After each epoch, the model is evaluated on the
validation set, and the best performance model is
selected according to the highest BLEU-4 score to
evaluate the test set. We evaluate the performance
of the model on the whole test data set.

4.4 Ablation studies

To clarify the contribution of each module of the
proposed network, we conducted ablation exper-
iments. The baseline does not contain any mod-
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Method B-1 B-2 B-3 B-4 M R C
DUDA (2019) 58.82 43.59 33.63 25.39 22.05 48.34 62.78
MCCFormer-S (2021) 52.97 37.02 27.62 22.57 18.64 43.29 53.81
MCCFormer-D (2021) 64.65 50.45 39.36 29.48 25.09 51.27 66.51
PSNet (2023b) - - - - - - -
Prompt-CC (2023c) - - - - - - -
RSICCformer (2022b) 67.92 53.61 41.37 31.28 25.41 51.96 66.54
SGD-RSCCN 77.15 66.80 58.07 50.27 34.07 65.88 118.42
SOTA ↑ 13.59 ↑ 24.60 ↑ 40.37 ↑ 60.71 ↑ 34.08 ↑ 26.79 ↑ 77.97
Average ↑ 16.06 ↑ 20.63 ↑ 22.58 ↑ 23.09 ↑ 11.27 ↑ 17.17 ↑ 56.01

Table 3: Comparisons experiments on the Dubai-CC dataset. B-1, B-2, B-3, B-4, M, R and C are short for BLEU-1,
BLEU-2, BLEU-3, BLEU-4, METEOR, ROUGE-L and CIDEr-D. All values are reported as percentage (%).

Method B-1 B-2 B-3 B-4 M R C
DUDA (2019) 81.44 72.22 64.24 57.79 37.15 71.04 124.32
MCCFormer-S (2021) 79.90 70.26 62.68 56.68 36.17 69.46 120.39
MCCFormer-D (2021) 80.42 70.87 62.86 56.38 37.29 70.32 124.44
PSNet (2023b) 83.86 75.13 67.89 62.11 38.80 73.60 132.62
Prompt-CC (2023c) 83.66 75.73 69.10 63.54 38.82 73.72 136.44
RSICCformer (2022b) 84.72 76.27 68.87 62.77 39.61 74.12 134.12
SGD-RSCCN 84.17 75.16 68.05 62.48 39.18 74.24 136.27
SOTA – – – – – ↑ 0.16 –
Average ↑ 1.84 ↑ 1.75 ↑ 2.11 ↑ 2.60 ↑ 1.21 ↑ 2.20 ↑7.55

Table 4: Comparisons experiments on the LEVIR-CC dataset. B-1, B-2, B-3, B-4, M, R and C are short for BLEU-1,
BLEU-2, BLEU-3, BLEU-4, METEOR, ROUGE-L and CIDEr-D. All values are reported as percentage (%).

Prediction: The area was made of the right of the road.

GT1: Different houses were built near existing ones.

GT2: Some houses were added in the subdivision on 

the right.

Prediction: The area appears the same.

GT1: There is no difference.

GT2: Nothing has changed in this area.

Prediction: A small green area appears in the desert.

GT1: A small park was edified above the road.

GT2: A small green area appeared above the road.

Prediction: A residence was built in the desert.

GT1: The area was urbanized.

GT2: Streets and buildings appeared in the desert.

I1 I2 Ediff

Figure 4: Visualized image embeddings and change
captioning examples generated by SGD-RSCCN in the
Dubai-CC dataset. GT1 and GT2 represent reference
description 1 and reference description 2 respectively.

ules. The experimental results are shown in Table 1
and Table 2, where Table 1 focuses on the Dubai-
CC dataset and Table 2 addresses the LEVIR-CC
dataset.

On the Dubai-CC dataset, it can be seen that
after the introduction of the ESS module, all in-

dicators have been greatly improved. BLEU-1,
BLEU-2, BLEU-3, BLEU-4, METEOR, ROUGE-
L and CIDEr-D increased by 5.16%, 5.26%, 3.52%,
1.61%, 5.9%, 7.34% and 18.99%, respectively. Af-
ter further introducing the DSK module, BLEU-1,
BLEU-2, BLEU-3, BLEU-4, METEOR, ROUGE-
L and CIDEr-D increased by 2.88%, 3.55%, 4.19%,
4.58%, 1.11%, 1.28% and 7.87%, respectively. On
the LEVIR-CC dataset, it can be seen that the in-
troduction of the ESS module increases the BLEU-
1, BLEU-2, BLEU-3, METEOR, ROUGE-L, and
CIDEr-D scores by 4.39%, 2.2%, 0.11%, 1.1%,
2.56%, and 5.5%, respectively. Further introduc-
tion of the DSK module increases each score by
1.79%, 2.29%, 2.8%, 3.26%, 0.61%, 1.18%, and
3.94%, respectively.

4.5 Comparison to State-of-the-Art

Table 3 and Table 4 show the performance eval-
uation of the proposed SGD-RSCCN model with
three natural image change captioning methods and
three remote sensing change captioning methods
using the Dubai-CC and LEVIR-CC datasets. The
results show that the SGD-RSCCN model is su-
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<I1> <I2> <Eimg>

Reference: a row of houses is built by the road.
Prediction: some houses are built along the road.

Reference: there is no difference.
Prediction: the scene is the same as before.

Reference: more buildings show up along the road.
Prediction: some houses are built along the road.

<I1> <I2>

Reference: a villa appears at the bottom left corner of the scene.
Prediction: a villa appears in the lower-left corner of the scene.

<Eimg>

Reference: the scene is the same as before.
Prediction: the scene is the same as before.

Reference: many trees are removed and some houses are constructed beside the road.
Prediction: a road with many houses around is built to replace the forest.

Figure 5: Visualized image embeddings and change captioning examples generated by SGD-RSCCN in the
LEVIR-CC dataset.

perior to the comparison method in terms of key
evaluation indicators on the two datasets. On the
Dubai-CC dataset with a spatial resolution of 30
meters, our SGD-RSCCN model is 8.66% higher
than the best performing RSICCformer method on
METEOR and 51.88% higher on CIDEr-D. In the
LEVIR-CC dataset with higher spatial resolution,
SGD-RSCCN is 1.15% higher than the best per-
forming RSICCformer method on CIDEr-D.

In addition, on the Dubai-CC dataset, our
method improves the value of each indicator by
an average of 11% - 56% among all comparison
methods. The value of CIDEr-D has the largest av-
erage improvement among all comparison methods,
up to 56 %. On the LEVIR-CC dataset, our method
improves the value of each indicator by more than
1% on average in all comparison methods. The
value of CIDEr-D is increased by an average of
7.55% in all comparison methods. It shows that
the change description generated by SGD-RSCCN
is significantly better than other methods in qual-
ity, showing higher language fluency and fit with
image content.

4.6 Qualitative Results

To evaluate the quality of our model, we visualize
the change description and prediction generated
by the description decoder, as shown in Figure 4
and Figure 5, where I1 and I2 represent the images

captured in Time 1 and Time 2, respectively. Eimg

is image embedding, and Ediff is the difference
image embedding extracted by the encoder.

In Figure 4, it can be observed that in the first
image pair, we correctly identify the location of the
change region on the right side of the road, while
in the third image pair, our SGD-RSCCN accu-
rately identifies the number of regional changes. In
addition, as shown in the second image pair, our
SGD-RSCCN shows a significant ability to accu-
rately distinguish scene changes.

In Figure 5, the description generated by SGD-
RSCCN is visualized with the actual reference de-
scription, including the description of the changed
image pair and the actual unchanged image pair. It
can be observed that SGD-RSCCN can effectively
distinguish the actual change from the irrelevant
change, such as the third image pair (horizontal
view) and the last image pair. In the second image
pair, we accurately identify the changed object and
its specific orientation, while in the fourth image
pair (horizontal view), SGD-RSCCN accurately
gives the logical relationship of the change.

It shows that our SGD-RSCCN is excellent in
identifying the location of changing objects, their
attributes and the relationship between objects.



2129

5 Conclusion

The SGD-RSCCN proposed significantly improves
the accuracy of remote sensing image change in-
formation extraction and the naturalness of descrip-
tion by integrating scene graph construction and
dependency syntax analysis. By introducing at-
tention mechanism and scene graph construction
technology, the model can better understand and
represent complex remote sensing image scenes
while capturing dynamic change processes. In ad-
dition, the decoder based on prior knowledge uses
dependency parsing to enhance the model’s compli-
ance with grammatical rules, making the generated
description more in line with the norms of natu-
ral language, and improving the readability and
comprehensibility of the description. Extensive ex-
periments on LEVIR-CC and Dubai-CC datasets
verify the effectiveness of the method, and show
superior performance.

Limitations

Although the study has made significant progress
in the description of remote sensing image changes,
there are still challenges in dealing with complex
and irregular sentence patterns. Future work will
explore the combination of more advanced depen-
dency models and context-aware mechanisms. In
addition, extending the model to multilingual and
cross-domain applications is also an important di-
rection for future research. Through continuous
optimization, the remote sensing image change de-
scription network is expected to play a greater role
in a wider range of application scenarios.
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