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Abstract

Traditionally, argument mining research has ap-
proached the task of automatic identification
of argument structures by using existing defi-
nitions of what constitutes an argument, while
leaving the equally important matter of what
does not qualify as an argument unaddressed.
With the ability to distinguish between what
is and what is not a natural language argu-
ment being at the core of argument mining as a
field, it is interesting that no previous work has
explored approaches to effectively select non-
related propositions (i.e., propositions that are
not connected through an argumentative rela-
tion, such as support or attack) that improve the
data for learning argument mining tasks better.
In this paper, we address the question of how
to effectively sample non-related propositions
from six different argument mining corpora be-
longing to different domains and encompassing
both monologue and dialogue forms of argu-
mentation. To that end, in addition to consid-
ering undersampling baselines from previous
work, we propose three new sampling strate-
gies relying on context (i.e., short/long) and
the semantic similarity between propositions.
Our results indicate that using more informed
sampling strategies improves the performance,
not only when evaluating models on their re-
spective test splits, but also in the case of cross-
domain evaluation.

1 Introduction

Argument mining is the Natural Language Pro-
cessing (NLP) task of automatically identifying
argumentative structures in natural language doc-
uments (Lawrence and Reed, 2020). In order to
identify these structures, we need to analyse the
existing argumentative relations between the previ-
ously segmented argument propositions (Ruiz-Dolz
et al., 2021). For that purpose, it is fundamental to
be able to distinguish between argumentatively re-
lated and non-related pairs of propositions. While

the argumentative relations are well defined and
represented in most of the work as supports and
attacks (Cocarascu and Toni, 2017a; Chakrabarty
et al., 2019a; Mayer et al., 2020; Morio et al., 2022;
Kawarada et al., 2024), the question of how to
effectively sample non-related propositions (i.e.,
propositions that are not linked by an argumenta-
tive relation of support or attack) has never been
addressed before. This question is, however, highly
relevant for argument mining for many reasons
including such issues as class imbalance, the in-
troduction of unwanted biases in the training data,
or the addition of redundant information and noise
to the training process. Without thoroughly con-
sidering this issue, previous work has commonly
addressed the sampling of non-related propositions
by either including all the possible combinations
of propositions without relational labels into the
training dataset (Chakrabarty et al., 2019a), or by
randomly undersampling this large set in an at-
tempt to prevent the class imbalance from being
too strong (Ruiz-Dolz et al., 2021). In both cases,
no additional aspects such as context or similar-
ity are brought into consideration when sampling
non-related propositions, which may result in the
loss of features relevant to distinguishing argument
propositions from non-related ones.

Recent findings highlight the limitations of argu-
ment mining systems in terms of generalisability
(Gemechu et al., 2024). This issue can be directly
related to the limitations described above, which
add difficulty to the task of argument detection
(Kikteva et al., 2023). Randomly sampling non-
related propositions can lead to biased models that
fail to learn features that are highly relevant to dis-
tinguishing between argumentatively related and
non-related components. Instead, such models fo-
cus on often misleading features such as semantic
similarity which can be indicative of either an ar-
gumentative relation or discourse proximity. In
contrast, an informed sampling approach allows
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us to better account for issues like this by allow-
ing models to assign higher importance to more
discriminative features. Furthermore, as observed
in Ruiz-Dolz et al. (2024), argument mining sys-
tems’ performance drops even when evaluated in
a different scenario belonging to the same domain
as the training data, meaning that even very mi-
nor changes in the nature of the data have a no-
table impact on the results. Given these factors,
we maintain that developing effective strategies for
sampling representative non-related propositions
to enhance the learning process of argument min-
ing systems by minimising biases and highlighting
more representative features in the training data is
of utmost importance.

In this paper, we address the research question
of how to effectively sample non-related pairs of
argumentative propositions for mining argument
structures in natural language. With that in mind,
we propose three different sampling strategies and
compare them with a baseline that includes a set
of non-related propositions. With the proposed
sampling strategies, it is our objective to investi-
gate the effect of undersampling, long-term and
short-term argumentative contexts, and the seman-
tic similarity of argument propositions in the learn-
ing process of the argument mining task. In our
analysis, we include six different standard corpora
for argument mining and carry out in-dataset and
cross-dataset evaluations to examine whether dif-
ferent non-related proposition sampling strategies
enhance the models’ generalization abilities. Our
contribution is therefore threefold: (i) we propose
and evaluate three different sampling strategies for
non-related argument propositions; (ii) we investi-
gate the impact of the different strategies in the ar-
gument mining learning process; and (iii) we anal-
yse how these three strategies can help the trained
models to generalise across different domains.

2 Related Work

A significant amount of research in the field of argu-
ment mining focuses on distinguishing argumenta-
tive units from non-argumentative content followed
by identifying the types of argumentative relations
between said units. There are a few ways of go-
ing about the tasks: some works focus solely on
the identification of the argumentative components
such as claims and premises (or evidence) (Lippi
and Torroni, 2016; Haddadan et al., 2019), while
others address both tasks by first identifying the

argument components and then predicting the argu-
mentative relation, most frequently of support and
attack (Stab and Gurevych, 2014; Persing and Ng,
2016; Eger et al., 2017; Habernal and Gurevych,
2017; Morio and Fujita, 2018; Chakrabarty et al.,
2019a; Mancini et al., 2022). Finally, some pro-
ceed directly to the argument relation identification
task with an additional category for the not argu-
mentative elements instead of a two-step approach
with first identifying the components (Cocarascu
and Toni, 2017b; Stab et al., 2018; Mestre et al.,
2021; Ruiz-Dolz et al., 2021; Kikteva et al., 2023).

When it comes to the identification of the non-
argumentative components, there are a few ap-
proaches to sampling them, mainly by either an-
notating them along with the related components
at the data collection stage or annotating only
the related components and using the rest as non-
related. For example in the case of the first ap-
proach, Menini et al. (2018) defined non-related
components as “arguments ... neither supporting,
nor attacking each other, tackling different issues
of the same topic"; Mestre et al. (2021) annotated
“unrelated" and “related, but not in an argumenta-
tive manner" components for this category; Morio
and Fujita (2018) considered components to be not
related if the type of relation could not be decided
by majority vote. Alternatively, Ruiz-Dolz et al.
(2021) extracted a random sample of components
not annotated with a relation for the non-related
category while Persing and Ng (2016) and Kikteva
et al. (2023) used adjacent and dialogically adjacent
components without a relation respectively.

When it comes to the matter of different ap-
proaches to sampling, it has long been a subject
of investigation in the field of machine learning
given its impact on the outcomes of the experi-
ments. Some studies explored a variety of under-
and oversampling techniques such as random sam-
pling and more complex approaches like one-sided
selection (Kubat et al., 1997) and SMOTE (Chawla
et al., 2002) to address data imbalance (Batista
et al., 2004; Junsomboon and Phienthrakul, 2017;
Mohammed et al., 2020; Johnson and Khoshgof-
taar, 2020). Others addressed the increasing size
of the datasets and explored various strategies for
scaling down experiments such as active learning
(Settles, 2009) with more recent efforts focused on
identifying and scoring samples of higher impor-
tance or complexity for training (Paul et al., 2021;
Agarwal et al., 2022).
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Dataset Domain Format Supports Attacks

MTC Structured Argumentation Monologue 272 108
AAEC Essay Monologue 4,841 497
ACSP Scientific Monologue 8,069 697
ABSTRCT Medical Monologue 2,290 344
US2016 Political Dialogue 3,083 650
QT30 Question Answering Dialogue 7,501 737

Table 1: Summary of the six corpora included in our experiments.

3 Data

Aimed at providing solid results and making our
findings easy to compare and relativise with pre-
vious work, we include six widely used datasets
for argument mining: MTC (Peldszus and Stede,
2015), AAEC (Stab and Gurevych, 2017), ACSP
(Lauscher et al., 2018), ABSTRCT (Mayer et al.,
2020), US2016 (Visser et al., 2020), and QT30
(Hautli-Janisz et al., 2022). These datasets are also
included in the ARIES benchmark for argument
mining (Gemechu et al., 2024), which provides the
baseline results for our experiments1. We distin-
guish between monologue and dialogue forms of
argumentation, and cover six different argumenta-
tion domains as follows:

MTC. The microtexts corpus consists of 112
short argumentative texts in German and their
professional translations into English. The ar-
gumentative structure of these texts has been
annotated according to Freeman’s theory of
the macro-structure of argumentation, provid-
ing short structured arguments. It contains a
total of 272 supports and 108 attacks between
argumentative propositions.

AAEC. The argumentative essay corpus con-
sists of 402 persuasive essays annotated with
discourse-level argumentation structures. The
annotation process is divided into three steps:
first, the topic and stance of the essay are iden-
tified; second, the argument components (i.e.,
premises and claims) are segmented; and third,
the relations considering supports and attacks
between components are annotated. In the

1Two of the ARIES datasets (AMPERSAND (Chakrabarty
et al., 2019b) and CDCP (Park and Cardie, 2018)) are not
included in our experiments because, unlike the other datasets,
they are not divided into distinct structural formats such as
essays and abstracts, making it challenging to differentiate be-
tween long and short contexts in comparable to other datasets
manner.

end, this corpus contains 4,841 supports and
497 attacks between propositions.

ACSP. This argumentative corpus of scien-
tific publications consists of 40 publications
from the field of computer graphics. The rela-
tional annotation captures three types of rela-
tions: supports, contradictions, and semantic
equivalence. For our work, we focus on the
two former types. This corpus contains 8,069
support and 697 attack (i.e., contradiction) re-
lations between propositions.

ABSTRCT. This corpus consists of 500 ab-
stracts from randomised controlled trials cov-
ering five different diseases. These abstracts
were annotated with argumentative informa-
tion in a process involving the identification
of argument components and the annotation
of argumentative relations. It contains a total
of 2,290 supports and 344 attacks between
argument propositions.

US2016. The US2016 corpus comprises tran-
scripts of the debates for the 2016 US presi-
dential elections (Democratic primary, Repub-
lic primary, and general election debates) and
related Reddit conversations. The transcripts
are annotated using Inference Anchoring The-
ory (IAT) (Budzynska et al., 2014, 2016), a
framework that captures how argumentation
unfolds and is reacted to in dialogue, anchor-
ing argument structure in dialogue structure
by way of illocutionary connections. The cor-
pus contains 3,083 support (referred to in the
corpus as inferences and rephrases) and 650
attack (or conflict) relations between proposi-
tions.

QT30. The QT30 corpus consists of tran-
scripts of 30 episodes of the UK’s topical de-
bate program ‘Question Time’ (QT) where a
panel of political and other prominent figures
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Strategy Non-related propositions

Long Context 2,940,943
Short Context 1,745,314
Semantic Similarity 3,362,934

Table 2: Summary of the distribution of Non-related
propositions for each sampling strategy.

in the UK respond to the audience’s questions
on a range of societal issues. Similarly to
US2016, it is annotated with IAT and contains
7,501 support (referred to in the corpus as
inferences and rephrases) and 737 attack (or
conflict) relations between argument proposi-
tions.

This way, MTC, AAEC, ACSP, and ABSTRCT
contain argumentation in a monological format,
while US2016 and QT30 annotate argumentation
in spoken dialogues. We emphasise this distinction
because argumentation is sensitive to the medium,
presenting significant differences between mono-
logue and dialogue (O’Keefe, 1977), thus affecting
in some cases results from our sampling strategies.
A comprehensive summary of the most relevant
features from the six corpora included in our exper-
iments and analysis is included in Table 1.

4 Strategies

In this paper, we explore three different strategies
plus an undersampling baseline for extracting non-
related argument proposition pairs from the previ-
ously described corpora. Aimed at having more bal-
anced training data, we analyse a common strategy
of undersampling the complete set of all possible
pairs of non-related propositions. Furthermore, we
also investigate how context can be leveraged for
sampling non-related propositions. We specifically
compare short context sampling for propositions
close in the discourse, and long context sampling
for propositions distributed farther apart within the
discourse. Finally, our last proposed sampling strat-
egy consists of looking at the semantic similarity
of the propositions. To achieve this, we select the
pairs of propositions with higher semantic similar-
ity found across different datasets. Figure 1 depicts
the three strategies we are proposing. A summary
of the differences between sampling strategies can
be found in Table 2.

Corpus Non-related propositions Ratio

MTC 2,976 0.88
AAEC 92,581 0.95
ACSP 2,230,313 0.99
ABSTRCT 18,093 0.87
US2016 149,642 0.97
QT30 447,338 0.98

Table 3: Results of LCS in each corpora.

4.1 Undersampling Baseline (UB)

In order to have a more balanced class distribution,
previous work (Ruiz-Dolz et al., 2021; Gemechu
et al., 2024) addresses sampling by randomly under-
sampling non-related propositions from a complete
set of all possible combinations. As our baseline,
we adopt this strategy, and to ensure comparison
with the state-of-the-art results available in the lit-
erature, we use the data and results reported in the
ARIES benchmark for argument mining (Gemechu
et al., 2024). In this approach, the complete set
of non-related propositions is randomly undersam-
pled from the dataset which accounts for around
65% of the total distribution of samples included
in it.

4.2 Long Context Sampling (LCS)

In this approach, non-related propositions are sam-
pled by pairing propositions from one argument
map with those from different argument maps
within the same dataset. In monologue datasets,
an argument map represents a self-contained text,
such as an essay in the AAEC, scientific publication
in the ACSP, or medical abstracts in the AbstRCT.
In dialogue datasets, each argument map corre-
sponds to a segment of a larger piece of discourse
(e.g., a debate transcript), which has been divided
into smaller segments to facilitate annotation. To
avoid generating an excessively high number of
non-related pairs, which would result in a highly
skewed class distribution, we employ a selective
sampling strategy. Specifically, for each argument
map, we randomly select one other argument map
and perform a Cartesian pairing of propositions
between the two maps to generate the non-related
samples. The distribution of the non-related sam-
ples across the corpora is shown in Table 3.

4.3 Short Context Sampling (SCS)

In our next sampling strategy, we consider a more
narrow context window to sample non-related ar-
gument propositions. Specifically, we define short
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Figure 1: Outline of the proposed sampling strategies.

Corpus Non-related propositions Ratio

MTC 852 0.69
AAEC 40,451 0.88
ACSP 1,173,544 0.99
ABSTRCT 6,074 0.69
US2016 172,494 0.98
QT30 351,899 0.98

Table 4: Results of SCS in each corpora.

context in terms of information contained within
a single argument map. For monologue datasets,
each map represents an independently annotated
document, i.e., each argument in MTC, essay in
AAEC, publication in ACSP, and medical abstract
in ABSTRCT. For dialogue data, given the large
size of individual debates, we cannot use an en-
tire debate for the short context window, as doing
so would result in an overwhelming number of
non-related pairs of propositions. Instead, in both
US2016 and QT30, we define the short context by
selecting pre-segmented text chunks (which corre-
spond to argument maps), each ranging from 150
to 400 words.

With this sampling strategy, we generate all pos-
sible combinations of propositions within an ar-
gument map which are not connected through an
argument relation of support or attack. A summary
of the results for the SCS can be found in Table 4,
where, for the most part, we observe significantly
lower number of non-related proposition pairs than
in our baseline and long context approaches. It
is important to note that with the short context
approach, we not only reduce the number of non-
related samples but also capture information with
greater contextual proximity, forcing the models
trained using this sampling approach to discrimi-
nate between non-related and related propositions
which are contextually connected within discourse

Corpus Non-related propositions Ratio

MTC 2,468 0.87
AAEC 161,719 0.97
ACSP 646,965 0.99
ABSTRCT 9,295 0.78
US2016 377,341 0.99
QT30 2,165,146 0.99

Table 5: Results of SSS in each corpora.

to a similar degree.

4.4 Semantic Similarity Sampling (SSS)
Finally, our last sampling strategy considers the
semantic similarity of the propositions so that a
model can learn to differentiate between argumen-
tatively related propositions and semantically simi-
lar non-related propositions. The rationale behind
this strategy is an assumption that distinguishing
between two sparse propositions that are very dis-
similar in terms of discussed topics and used vo-
cabulary may be a trivial task, while doing so when
the propositions are semantically closer can prove
to be much more difficult. While in most of the
previous sampling strategies the non-related propo-
sitions mostly belong to the former case, with the
similarity-based approach we make sure that these
cases are not predominant in our data.

The similarity-based sampling method is de-
signed to identify pairs of propositions that are
either highly similar or entirely unrelated, using
thresholds denoted by α and β, respectively. The
similarity is computed for all possible proposition
pairs, and those with similarity scores above α and
below β that are not related via the relation of ei-
ther support or attack are selected. Table 5 provides
a summary of the semantic similarity sampling pro-
cess.

The similarity thresholds α and β are deter-
mined by tuning the similarity scores that distin-
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guish highly similar from highly unrelated proposi-
tions, as detailed in Appendix A. STSB,2 a standard
sentence similarity dataset annotated with similar-
ity scores indicating the degree of similarity be-
tween sentences, is employed for this purpose. Sen-
tence embeddings are generated using the Sentence-
transformer (Reimers and Gurevych, 2019), and the
cosine similarity between pairs of sentences is cal-
culated. The optimal similarity thresholds, α and
β, which yield the highest F1-scores for identifying
both similar and unrelated sentences, are selected.
The F1-score is computed by evaluating the num-
ber of correctly identified similar and unrelated
sentence pairs out of the total pairs retrieved across
40 different similarity thresholds, ranging from -1
to 1 in increments of 0.05.

5 Experiments

5.1 Experimental Setup

We utilise the Adam optimizer (Kingma and Ba,
2014) to minimize the loss function, with a learn-
ing rate of 1× 10−5 and categorical cross-entropy
loss, using a batch size of 32. The datasets
are randomly partitioned into training, validation,
and testing subsets, allocated as 70%, 10%, and
20%, respectively, ensuring consistency through-
out the dataset. Performance metrics, including
macro precision, recall, and F1-score, are com-
puted, with macro-averaged F1-scores reported
for the test-set. Results are averaged over two
runs with different random seeds to ensure ro-
bustness. The code used for these experiments
is publicly available at https://github.com/
raruidol/COLING25-EffectiveSampling.

5.2 Evaluation Setup

We fine-tune and evaluate two large language
model (LLM) architectures – DialoGPT (Zhang
et al., 2020), and RoBERTa (Liu et al., 2019) –
on standard sequence classification tasks to clas-
sify argument relations into three categories: non-
relation, support, and attack. To unify the annota-
tion schemes across datasets, rephrase and infer-
ence relations are merged into the support class for
the US2016, QT30, and AAEC datasets. For cer-
tain sampling strategies, the number of non-related
propositions is notably high. For example, short-
context sampling on ACSP yields more than 1.3

2https://huggingface.co/datasets/nyu-mll/glue/
viewer/stsb/train

million non-argument relations, while semantic-
similarity sampling on QT30 results in over 2.1
million samples. To address class imbalance dur-
ing model training while ensuring full coverage
of non-relations, we randomly sample a subset of
non-relations for each epoch. Sampling is done
without replacement when the number of unique
non-relations is sufficient to cover an entire epoch;
otherwise, it is performed with replacement. This
approach progressively spans the entire set of non-
relations by the end of the training loop, captur-
ing the necessary variance and diversity. Both in-
dataset and cross-dataset evaluations are performed
to assess the robustness of each sampling strat-
egy: undersampling baseline (UB), short-context
sampling (SCS), long-context sampling (LCS), and
semantic-similarity sampling (SSS).

In-Dataset Evaluation. In the in-dataset (ID)
evaluation, models are trained and evaluated on the
same dataset, enabling the assessment of perfor-
mance within a single dataset. Accordingly, each
model is trained and evaluated on every dataset us-
ing all sampling strategies, resulting in 72 distinct
evaluation configurations (3 models × 6 corpora ×
4 sampling strategies).

Cross-Dataset Evaluation. The cross-dataset
(CD) evaluation entails training each model on one
dataset and evaluating it on the remaining datasets,
providing insights into the models’ generalisation
and domain adaptability. Each model is trained
on an individual dataset for each sampling strategy
and then evaluated on the test-set of the remaining
corpora using an N-1 approach, where N repre-
sents the number of datasets. However, evaluations
are conducted only on test-sets prepared using the
SCS strategy to simulate real-world scenarios. This
method of sampling short context better reflects
argument mining in such scenarios, as both argu-
ment and non-related proposition pairs are drawn
from the same argumentative document (e.g., in
AAEC, proposition pairs are sampled within the
same essay). This setup results in 18 evaluation
configurations (3 models× 6 corpora× 1 sampling
strategy).

5.3 Results
Table 6 presents the macro F1-scores obtained for
both ID and CD evaluations. As shown in the table,
the models’ performance varies significantly de-
pending on the sampling strategy, with differences
in F1-score reaching up to 26%. The effectiveness
of each sampling strategy is discussed in relation

https://github.com/raruidol/COLING25-EffectiveSampling
https://github.com/raruidol/COLING25-EffectiveSampling
https://huggingface.co/datasets/nyu-mll/glue/viewer/stsb/train
https://huggingface.co/datasets/nyu-mll/glue/viewer/stsb/train
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Sampling Model Eval. Dataset Avg.MTC AAEC ACSP AbstRCT US2016 QT30

UB
RoBERTa ID 63 75 82 84 76 83 77.17
DialoGPT ID 66 78 84 82 79 85 79.00

SCS RoBERTa ID 47 52 51 69 57 61 56.17
CD 41 42 45 40 43 47 43.00

DialoGPT ID 31 45 70 60 64 62 55.33
CD 30 40 51 35 48 50 42.33

LCS RoBERTa ID 67 67 75 87 87 91 79.00
CD 38 37 44 41 40 50 41.67

DialoGPT ID 49 79 75 76 81 86 74.33
CD 29 30 40 32 34 39 34.00

SSS RoBERTa ID 71 90 70 84 81 94 81.67
CD 35 29 36 29 33 36 33.00

DialoGPT ID 52 84 59 78 81 83 72.83
CD 31 30 43 33 38 40 35.83

Table 6: Macro-averaged F1-score results for in-dataset (ID) and cross-dataset (CD) evaluations across various
sampling strategies on each dataset. Numbers in bold represent best scores in ID and numbers underlined highlight
the best scores in CD.

to each evaluation method. We use the results re-
ported by ARIES (Gemechu et al., 2024) as a base-
line. However, direct comparison is only made for
the ID evaluation using the RoBERTa-based config-
uration. A direct comparison for the CD evaluation
is not possible due to differences in the dataset sam-
pling. Specifically, ARIES does not use a realistic
evaluation setup where argumentation is analysed
within an atomic argumentative document similar
to our SCS strategy but rather considers a large pool
of samples extracted from the complete corpora
more similar to the LCS strategy. Furthermore, we
also could not directly compare the DialoGPT mod-
els. This is due to the fact that in this paper we use
DialoGPT-small for computational reasons, while
ARIES reports results using DialoGPT-medium,
having an important advantage.

5.3.1 ID Evaluation

As shown in Table 6, in the ID evaluation, the
RoBERTa-based configurations employing the
LCS and SSS strategies achieve an average macro
F1-score of 79.00% and 81.67% respectively, re-
flecting around a 2% and 4% improvement over
the baseline considering the same model. On the
other hand, with regard to the DialoGPT-based con-
figurations, none of our approaches could beat the
baseline results. This is, however, most likely due
to the difference in size of the two models. While
the baseline reported in ARIES corresponds to a
DialoGPT-medium model, in our experiments we
could only use a DialoGPT-small model for com-

putational reasons. This points out the important
margin of improvement that model size can have
in this task.

To facilitate a direct comparison among the three
sampling strategies, we calculate the average per-
formance across the different datasets included in
our experiments. The SCS strategy yields an aver-
age F1-score of 56.17% with RoBERTa, reflecting
a 21% decrease compared to the baseline. This de-
crease underscores the increased challenge of SCS
sampling, where both argumentatively related and
non-related propositions are drawn from the same
document. This difficulty stems from the need
to accurately distinguish between argument rela-
tions within a consistent contextual environment,
which can increase the likelihood of confusion and
lead to comparatively lower performance. This
setup is particularly relevant to the identification
of the relations in a real-world scenario, where the
propositions are in contextual proximity to each
other, a setting that we attempt to model with the
SCS approach. While LCS outperforms SCS with
an average F1-score of 79.00% for RoBERTa and
74.33% for DialoGPT, this performance gain can
be a bit tricky to interpret. The LCS strategy, which
samples non-related propositions belonging to dif-
ferent argumentative contexts (i.e., different essays,
debates, etc.), may result in the model relying on
superficial cues and context regularities rather than
learning robust underlying argumentative mecha-
nisms. This shortcut learning approach, exploit-
ing topical and contextual similarities, might not
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generalise well to real-world scenarios, potentially
limiting the model’s robustness and effectiveness
across diverse datasets.

The SSS strategy surpasses both SCS and LCS,
achieving an average F1-score of 81.67% for
RoBERTa and 72.83% for DialoGPT. This out-
come indicates that SSS effectively harnesses the
advantages of the other two strategies while min-
imising their drawbacks. By sampling proposition
pairs from the entire corpus, SSS naturally inte-
grates a blend of both within-document and cross-
document examples. Moreover, the approach en-
hances the model’s ability to distinguish between
semantically similar proposition pairs that involve
argument relations and those that do not. Addition-
ally, it improves the model’s capacity to differen-
tiate semantically dissimilar proposition pairs that
exhibit argument relations from those that do not.

5.3.2 CD Evaluation
In the CD evaluation, where models are trained on
one dataset and evaluated on others, we observe
a significant drop of macro F1-scores throughout
all the experimental configurations. This decrease
highlights the challenge of generalising across di-
verse datasets with potentially varying argumenta-
tive styles, domain and contexts, aligned with the
findings reported in Gemechu et al. (2024).

The best results in this evaluation setup have
been consistently achieved by the models trained
under the SCS strategy with 43.00% and 42.33%
for RoBERTa and DialoGPT respectively. The rea-
son behind improved performance can be attributed
to the fact that models trained with SCS data are
modelling a closer version of the argument min-
ing problem that we would find in real-world sce-
narios (i.e., like the test data we use for CD eval-
uation). This modelling approach allows for an
improved generalisation by sacrificing the perfor-
mance on the dataset-specific evaluation (see ID
evaluation), pointing out the relevance of select-
ing adequate data sampling to evaluate argument
models on. This phenomenon can be perfectly
observed with our other two sampling strategies,
which consistently outperform the baseline, but ex-
hibit a significant drop in performance in the CD
evaluation experiments. The LCS shows an aver-
age F1-score of 41.67% for RoBERTa and 34.00%
for DialoGPT, highlighting an issue with generalis-
ing to other datasets. This issue can be attributed to
the fact that models trained on LCS data learn what
is not an argument (i.e., non-related propositions)

from sparse propositions belonging to different con-
texts (e.g., different essays or debates). Therefore,
when evaluated in a real-world scenario with data
belonging to different domains, the models can not
generalise well. It is also worth noting that the SSS
strategy results in the worst performance scores in
the CD evaluation setting while being the best strat-
egy in our ID experiments. This further supports
our previous claim that, that depending on the data
sampling method, the difficulty of the argument
mining task might be reduced (or increased it in the
case of SCS strategy), which is directly reflected
with higher scores for easier task configurations
and lower for the harder ones in the CD evaluation
setting. This is why, without an evaluation that
considers a broad range of argumentation domains
and takes into account how argumentation is pro-
cessed in real-world scenarios, excellent results in
a specific instance of the task may hold little value
when applied beyond the test data.

Several studies in natural language inference
(NLI), a task closely related to argument relation
prediction, reveal that models struggle to learn ro-
bust, generalisable features due to shortcut learning
and the adoption of invalid, shallow heuristics by
exploiting dataset-specific artefacts instead of un-
derstanding discourse-level context (McCoy et al.,
2019; Wu et al., 2023; McCoy et al., 2023; Naik
et al., 2018; Poliak et al., 2018; Nie et al., 2019).
The more challenging and realistic sampling of
SCS helps models avoid over-fitting to specific reg-
ularities in the data and instead encourages them
to focus on features relevant to argumentation (a
point that requires further investigation).

6 Discussion

From our analysis, we draw two key observations.
First, the method used to sample non-related propo-
sitions has a considerable impact on the models’
performance. In fact, our results indicate that se-
lecting a carefully designed and appropriate sam-
pling strategy can have a substantial effect on both
corpus-specific performance and the generalisa-
tion ability of the trained models across differ-
ent corpora. We observe how the random under-
sampling baseline reported in the ARIES bench-
mark is beaten by our SSS-based RoBERTa model.
In fact, looking exclusively at the RoBERTa archi-
tecture, both LCS and SSS outperform the results
reported in ARIES. We note that the higher perfor-
mance of DialoGPT model in the baseline scenario
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can be attributed to the use of a larger model for
the ARIES benchmark.

The second observation concerns the CD evalua-
tion of the SCS strategy. We note that the highest-
performing model is not always the optimal choice.
In some cases, the highest-performing model is
determined by the way we sample or pre-process
our data. We observe that the same model with a
specific sampling strategy may not consistently sur-
pass the baseline across all datasets. As discussed
in the previous sections, the effectiveness of sam-
pling strategies often depends on the evaluation set-
ting - whether it is CD or ID. For instance, when av-
eraging across the datasets, RoBERTa-based mod-
els using LCS and SSS demonstrate improvements
of 2% and 4% over the baseline, respectively. More-
over, the SSS generally achieves stronger perfor-
mance in ID settings. In CD evaluation, however,
SCS strategy excels by achieving F1-scores of 43%
for RoBERTa and 42.33% for DialoGPT.

7 Conclusion

This paper lays the foundations for a previously un-
explored aspect of argument mining: data sampling.
We specifically investigate how to sample non-
related pairs of propositions to develop datasets.
We find that different sampling strategies can im-
pact the results in diverse ways, emphasizing the
need for a thorough evaluation to identify mislead-
ing outcomes. For instance, while SCS may be
the most challenging strategy for in-dataset evalua-
tion, it allows for better generalisation compared to
other strategies that achieve higher performance in
dataset-specific evaluations.The results and discus-
sion presented in this paper point towards a need
for a more robust evaluation of argument mining
systems, considering the sampling of the data used
for training as an important part of the process.
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Limitations

Despite positive results, our paper presents two
main limitations. First, we have exclusively fo-
cused on the three proposed strategies and the un-

dersampling baseline, which we evaluated inde-
pendently. It might be the case that certain com-
binations of strategies may lead to better results.
Second, despite having covered a wide set of cor-
pora belonging to different domains and genres,
natural language argumentation is very sensitive
and our experimental analysis would benefit from
expanding its scope and including additional argu-
ment contexts to improve the robustness of exper-
iments. Complex tasks such as argument mining
require a careful evaluation process that reinforces
the significance of the reported results and findings.
Otherwise, there is a risk of reporting results of a
model that excels in one specific setting but fails to
generalize effectively.
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A Similarity Thresholds

We leverage embeddings derived from Sentence-
Transformers, particularly the all-roberta-large-
v13 variant, to determine similarity thresholds α
and β. These thresholds are used to identify highly
similar and highly unrelated propositions, respec-
tively. To set these thresholds, we conduct experi-
ments using a standard sentence similarity dataset,
the STSB dataset4, which is annotated with simi-
larity scores ranging from 0 to 5.

The original 5-class labels are transformed into
binary labels to refine the criteria for determining
similarity and dissimilarity. Sentences with labels
4 and above are categorized as highly related, while
those with labels 1 and below are considered highly
unrelated. This stricter criterion helps to establish
more precise thresholds for identifying similar and
dissimilar pairs.

We then calculate the cosine similarity between
sentence pairs in the training dataset and identify
the optimal thresholds α (for similarity) and β (for
dissimilarity) that maximize the F1-scores. This is
achieved by computing F1-scores across 40 differ-
ent similarity threshold points, ranging from -1 to
1 in increments of 0.05, as described in Algorithm
1. The thresholds α and β are selected based on
the maximum F1-scores obtained for identifying
similar and unrelated sentence pairs, respectively.

3https://huggingface.co/sentence-transformers/
all-roberta-large-v1

4https://huggingface.co/datasets/nyu-mll/glue/
viewer/stsb/train

https://huggingface.co/sentence-transformers/all-roberta-large-v1
https://huggingface.co/sentence-transformers/all-roberta-large-v1
https://huggingface.co/datasets/nyu-mll/glue/viewer/stsb/train
https://huggingface.co/datasets/nyu-mll/glue/viewer/stsb/train
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Algorithm 1 Find Optimal Similarity Thresholds α and β

Require: List of sentence pairs (s1, s2), similarity scores
Ensure: Thresholds α, β
best_alpha← min_thr
best_beta← min_thr
max_f_score_alpha← 0
max_f_score_beta← 0
for thr ← −1 to 1 by 0.05 do

tp_alpha← 0
fp_alpha← 0
fn_alpha← 0
tp_beta← 0
fp_beta← 0
fn_beta← 0
for each sentence pair (s1, s2) in data do

sim_score← cosinesimilarity(s1, s2)
if sim_score ≥ thr then

if pairissimilar then
tp_alpha← tp_alpha+ 1

else
fp_alpha← fp_alpha+ 1

end if
else

if pairisdissimilar then
tp_beta← tp_beta+ 1

else
fn_beta← fn_beta+ 1

end if
end if

end for
precision_alpha← tp_alpha

tp_alpha+fp_alpha
recall_alpha← tp_alpha

tp_alpha+fn_alpha
f1_score_alpha← 2× precision_alpha×recall_alpha

precision_alpha+recall_alpha
precision_beta← tp_beta

tp_beta+fp_beta
recall_beta← tp_beta

tp_beta+fn_beta
f1_score_beta← 2× precision_beta×recall_beta

precision_beta+recall_beta
if f1_score_alpha > max_f_score_alpha then

max_f_score_alpha← f1_score_alpha
best_alpha← thr

end if
if f1_score_beta > max_f_score_beta then

max_f_score_beta← f1_score_beta
best_beta← thr

end if
end for
return best_alpha, best_beta
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