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Abstract

Aspect-based Sentiment Analysis (ABSA) eval-
uates sentiments toward specific aspects of enti-
ties within the text. However, attention mecha-
nisms and neural network models struggle with
syntactic constraints. The quadratic complexity
of attention mechanisms also limits their adop-
tion for capturing long-range dependencies be-
tween aspect and opinion words in ABSA.
This complexity can lead to the misinterpreta-
tion of irrelevant contextual words, restricting
their effectiveness to short-range dependencies.
To address the above problem, we present a
novel approach to enhance long-range depen-
dencies between aspect and opinion words in
ABSA (MambaForGCN). This approach incor-
porates syntax-based Graph Convolutional Net-
work (SynGCN) and MambaFormer (Mamba-
Transformer) modules to encode input with de-
pendency relations and semantic information.
The Multihead Attention (MHA) and Selec-
tive State Space model (Mamba) blocks in the
MambaFormer module serve as channels to en-
hance the model with short and long-range de-
pendencies between aspect and opinion words.
We also introduce the Kolmogorov-Arnold Net-
works (KANs) gated fusion, an adaptive feature
representation system that integrates SynGCN
and MambaFormer and captures non-linear,
complex dependencies. Experimental results
on three benchmark datasets demonstrate Mam-
baForGCN’s effectiveness, outperforming state-
of-the-art (SOTA) baseline models.

1 Introduction

In Natural Language Processing (NLP), text clas-
sification is vital for categorizing and extracting
meaningful insights from textual data. A critical
subset of text classification is sentiment analysis,
which identifies the emotional tone or sentiment
expressed within a text. With the growth of online
platforms and the surge of user-generated content,
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sentiment analysis has become increasingly signifi-
cant for applications like customer feedback anal-
ysis and product recommendation systems. How-
ever, traditional sentiment analysis often fails to
capture sentiments about specific aspects or fea-
tures within the text. This shortcoming led to
the advent of Aspect-Based Sentiment Analysis
(ABSA), which determines the overall sentiment
and identifies and analyzes sentiments tied to par-
ticular aspects or features mentioned in the text.
ABSA offers a more detailed and nuanced under-
standing of sentiment, providing valuable insights
for businesses to enhance decision-making and im-
prove user experiences.

Advancements in semantic-based models have
significantly improved ABSA by combining var-
ious attention mechanisms. For instance, Tang
et al. (2016) introduced a deep memory network
that emphasizes the importance of individual con-
text words by integrating neural attention mod-
els over external memory, effectively capturing
complex sentiment expressions. Similarly, Wang
et al. (2016) proposed an attention-based Long
Short-Term Memory Network (LSTM) designed
for ABSA, which uses attention mechanisms to
highlight distinct sentence parts based on differ-
ent aspects. Several researchers have developed
interactive and multiple-attention mechanisms to
enhance sentiment classification precision. Inter-
active Attention Networks (IAN), proposed by Ma
et al. (2017), facilitate interactive learning and gen-
erate distinct representations for targets and con-
texts. Peng et al. (2017) presented a framework
utilizing a multiple-attention mechanism to capture
sentiment features, integrating these attentions with
a recurrent neural network for improved expres-
siveness. Similarly, Fan et al. (2018) introduced a
multi-grained attention network (MGAN) that em-
ploys fine-grained attention mechanisms to capture
word-level interactions between aspects and con-
text. Wang et al. (2021) proposed a model using
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BERT for word embeddings, integrating intra-level
and inter-level attention mechanisms and a feature-
focus attention mechanism to enhance sentiment
identification. Other studies have focused on inte-
grating syntactic information and explicit knowl-
edge into attention mechanisms. He et al. (2018)
worked on better integrating syntactic information
to capture the relationship between aspect terms
and context. Ma et al. (2018) proposed augmenting
LSTM with a stacked attention mechanism for tar-
get and sentence levels, introducing Sentic-LSTM
to integrate explicit and implicit knowledge. Co-
attention mechanisms have also been explored to
enhance sentiment classification. Yang et al. (2019)
introduced a co-attention mechanism alternating
between target-level and context-level attention,
proposing Coattention-LSTM and Coattention-
MemNet networks. Cheng et al. (2022) advanced
the field by presenting a multi-head co-attention
network model with three modules: extended con-
text, component focusing, and multi-headed co-
attention, enhancing transformer-based sentiment
analysis by improving context handling and refin-
ing attention mechanisms for multi-word targets.

In contrast, syntax-based models (Sun et al.,
2019; Zhang et al., 2019; Liang et al., 2022; Gu
et al., 2023a; Wu et al., 2023; Liu et al., 2023;
Li et al., 2023; Zhu et al., 2024) leverage syn-
tactic information and word dependencies to im-
prove ABSA. Sun et al. (2019) and Zhang et al.
(2019) layered a GCN to extract comprehensive
representations from the dependency tree. Liang
et al. (2022); Wu et al. (2023); Gu et al. (2023a)
integrated contextual knowledge into the GCN to
improve ABSA.

Attention mechanisms in neural networks face
notable challenges when addressing syntactic con-
straints, particularly in ABSA. Additionally, the
quadratic complexity of standard attention mecha-
nisms limits their ability to effectively capture long-
range dependencies between aspect and opinion
words. This limitation often leads to the misinter-
pretation of irrelevant contextual words, restricting
the model’s effectiveness to short-range dependen-
cies. While some studies attempt to merge semantic
and syntactic approaches, they often fall short in ef-
fectively integrating these two types of information,
leading to suboptimal performance. Furthermore, a
significant challenge in ABSA is handling implied
opinion words—those that are not explicitly stated
but still contribute to sentiment analysis. These
implicit opinions can complicate aspect sentiment

prediction, as traditional models rely heavily on
explicit aspect-opinion pairs.

To address these challenges, we propose Mam-
baForGCN, a novel framework specifically de-
signed to enhance long-range dependency model-
ing in ABSA. The framework introduces a syntax-
based SynGCN module, which encodes depen-
dency relations to capture syntactic structures effec-
tively. Complementing this, our innovative Mam-
baFormer module enriches the model with seman-
tic information through a combination of Multi-
Head Attention (MHA) and Mamba blocks, en-
abling precise modeling of both short- and long-
range dependencies between aspect and opinion
words. This approach ensures that neither short-
range nor long-range dependency constraints limit
the framework’s ability to capture relevant contex-
tual information.

Moreover, our use of Kolmogorov-Arnold Net-
works (KAN) gated fusion sets this framework
apart. The gated fusion mechanism adaptively in-
tegrates feature representations from the SynGCN
and MambaFormer modules, selectively filtering
critical information for the ABSA task. By lever-
aging the non-linear dependency modeling capa-
bility of KANs, our framework can identify and
infer sentiment even when opinion words are im-
plied. KANs learn complex, non-linear relation-
ships between words and aspects, detecting subtle
sentiment patterns that may not be immediately
obvious in the text’s surface structure. This abil-
ity makes KANs an ideal tool for capturing the
nuanced, contextual sentiment expressed through
implicit opinions, ultimately enhancing the robust-
ness and accuracy of sentiment prediction.

The main contributions of this paper are as fol-
lows:

• To the best of our knowledge, we introduce the
selective state space model into ABSA for the
first time, significantly enhancing the model’s
ability to capture long-range dependencies.

• We leverage KANs to capture complex de-
pendencies within the text. This novel ap-
plication in ABSA enables MambaForGCN
to identify and classify sentiment even when
opinion words are implied.

• The experimental results on three bench-
mark datasets showcase the effectiveness of
the MambaForGCN model, surpassing some
state-of-the-art (SOTA) baselines.
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2 Related Work

Tang et al. (2016) introduced a deep memory net-
work for aspect-level sentiment classification, em-
phasizing the importance of individual context
words by integrating neural attention models over
external memory to capture sentiment nuances ef-
fectively. Ma et al. (2017) proposed Interactive
Attention Networks (IAN) to facilitate interactive
learning and generate distinct representations for
targets and contexts, enhancing sentiment classi-
fication precision. Fan et al. (2018) introduced
a multi-grained attention network (MGAN) that
used fine-grained attention mechanisms to capture
word-level interactions between aspects and con-
text, enhancing classification accuracy. He et al.
(2018) refined target representation and integrated
syntactic information into the attention mechanism
to better capture the relationship between aspect
terms and context. Yang et al. (2019) introduced
an attention mechanism alternating between target-
level and context-level attention to improve senti-
ment classification. Cheng et al. (2022) proposed a
component focusing on a multi-head co-attention
network model, enhancing bidirectional encoder
representations and improving the weighting of ad-
jectives and adverbs.

Sun et al. (2019) proposed merging convolution
over a dependency tree (CDT) with bi-directional
long short-term memory (Bi-LSTM) to analyze sen-
tence structures effectively. Liang et al. (2022) pro-
posed Sentic GCN, a graph convolutional network
based on SenticNet, to leverage affective dependen-
cies specific to aspects. By integrating affective
knowledge from SenticNet, the enhanced depen-
dency graphs considered both the dependencies
of contextual and aspect words and the affective
information between opinion words and aspects.
Wu et al. (2023) introduced KDGN, a knowledge-
aware Dependency Graph Network that integrates
domain knowledge, dependency labels, and syn-
tax paths into the dependency graph framework,
enhancing sentiment polarity prediction in ABSA
tasks. Zhu et al. (2024) introduced a deformable
convolutional network model that leverages phrases
for improved sentiment analysis, using deformable
convolutions with adaptive receptive fields to cap-
ture phrase representations across various contex-
tual distances. The model also integrated a cross-
correlation attention mechanism to capture interde-
pendencies between phrases and words.

A notable area of research involves combining

the Transformer and Mamba for language modeling
(Fathi et al., 2023; Lieber et al., 2024; Park et al.,
2024; Xu et al., 2024). Comparative studies have
shown that Mambaformer is effective in in-context
learning tasks. Jamba (Lieber et al., 2024), the
first production-grade hybrid model of attention
mechanisms and SSMs, features 12 billion active
and 52 billion available parameters, demonstrating
strong performance for long-context data. We are
interested in using Mamba to capture long-term
dependency in ABSA.

3 Preliminaries

3.1 State Space Models (SSM)
SSM-based models (Gu et al., 2020, 2021; Gu and
Dao, 2023) are based on continuous systems that
map a 1-D input sequence x(t) to an output se-
quence y(t) via a hidden state h(t). This system is
defined using parameters A ∈ RN×N , B ∈ RN×1,
and C ∈ R1×N as follows:

h′(t) = Ah(t) +Bx(t) (1)

y(t) = Ch(t) (2)

S4 and Mamba are discrete adaptations of this
continuous system, utilizing a timescale parameter
∆ to convert the constant parameters A and B into
their discrete equivalents Ā, B̄ through a zero-order
hold (ZOH) transformation:

Ā = exp(∆A) (3)

B̄ = (∆A)−1(exp(∆A)− I) ·∆A (4)

The discrete form of the system, with step size
∆, is given by:

ht = Āht−1 + B̄xt (5)

yt = Cht (6)

Finally, these models compute the output using
a global convolution:

K̄ = (CB̄,CĀB̄, . . . , CĀM−1B̄) (7)

y = x ∗K (8)

where M represents the length of the input se-
quence x, and K̄ ∈ RM is a structured convo-
lutional kernel.

3.2 Kolmogorov-Arnold Networks (KANs)
KANs (Liu et al., 2024) feature a distinctive ar-
chitecture that differentiates them from traditional
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Multi-Layer Perceptrons (MLPs). Instead of us-
ing fixed activation functions at nodes, KANs em-
ploy learnable activation functions on the network
edges. This fundamental change involves substitut-
ing conventional linear weight matrices with adap-
tive spline functions. These spline functions are
parameterized and optimized during training, en-
abling a more flexible and responsive model archi-
tecture that dynamically adapts to complex data
patterns.

The Kolmogorov-Arnold representation
theorem asserts that a multivariate function
f(x1, x2, . . . , xn) can be represented as:

f(x1, x2, . . . , xn) =

2n+1∑
q=1

Φq

 n∑
p=1

φq,p(xp)


(9)

In this context, φq,p are univariate functions map-
ping each input variable xp as φq,p : [0, 1] → R,
and Φq : R → R are also univariate functions.

KANs organize each layer into a matrix of these
learnable 1D functions:

Φ = {φq,p} (10)

p = 1, 2, . . . , nin (11)

q = 1, 2, . . . , nout (12)

Each function φq,p is defined as a B-spline, a
spline function created from a linear combination
of basis splines, which enhances the network’s abil-
ity to learn complex data representations. In this
context, nin is the number of input features for a
given layer and nout indicates the number of output
features that the layer generates. The activation
functions φl,i,j within this matrix are implemented
as trainable spline functions, formulated as:

spline(x) =
∑
i

ciBi(x) (13)

This formulation enables each φl,i,j to adjust its
shape according to the data, providing unparalleled
flexibility in how the network captures input inter-
actions.

The overall architecture of a KAN resembles
stacking layers in MLPs, but it goes further by
employing complex functional mappings instead of
fundamental linear transformations and nonlinear
activations:

KAN(x) = (ΦL−1 ◦ ΦL−2 ◦ . . . ◦ Φ0)(x) (14)

4 Proposed MambaForGCN Model

Figure 1 gives an overview of MambaForGCN.
In this section, we describe the MambaForGCN
model, which is mainly composed of four compo-
nents: the input and embedding module, the syntax-
based GCN module, the MambaFormer module,
and the KAN-gated fusion module. Next, compo-
nents of MambaForGCN will be introduced sepa-
rately in the rest of the sections.

4.1 Embedding Module

Given a sentence s and an aspect a as a subset of
s, we use a BiLSTM or BERT model for sentence
encoding. Each word in s is converted into a low-
dimensional vector using an embedding matrix E,
resulting in word embeddings x. These embed-
dings are fed into a BiLSTM to generate hidden
state vectors hi, capturing contextual information.
The subsequence ha, corresponding to the aspect
term, is extracted from the hidden state matrix H
and used as the initial node representation in the
MambaForGCN. For BERT, the input is formatted
as "[CLS] sentence [SEP] aspect [SEP]," allowing
BERT to capture complex relationships between
opinion words and the aspect through its contextual
embeddings.

4.2 Syntax-based GCN Module

The SynGCN module utilizes syntactic information
as its input. Instead of relying on the final discrete
output from a traditional dependency parser, we
encode syntactic information using a probability
matrix that represents all possible dependency arcs
like in (Li et al., 2021). This method captures a
broader range of syntactic structures, providing a
more detailed and flexible understanding of sen-
tence syntax. By considering the likelihood of mul-
tiple dependency arcs, this approach reduces the
impact of potential errors in dependency parsing.
We utilize the (Mrini et al., 2019), a cutting-edge
model in the field of dependency parsing, to gen-
erate this probability matrix. The LAL-Parser’s
output is a probability distribution over all possi-
ble dependency arcs, effectively encapsulating the
latent syntactic relationships within a sentence.

This comprehensive syntactic encoding allows
SynGCN to understand complex grammatical struc-
tures. The SynGCN module uses a syntactic adja-
cency matrix Asyn ∈ Rn×n to process the hidden
state vectors H from the BiLSTM, which act as the
initial node representations in the syntactic graph.
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Figure 1: MambaForGCN complete architecture

Through the SynGCN module, the syntactic graph
representation Hsyn = {hsyn

1 , h
syn
2 , . . . , h

syn
n } is de-

rived using equation (15). In this context, hsyn
i ∈

Rd represents the hidden state of the ith node.

hli = σ

 n∑
j=1

AijW
lh

(l−1)
j + bl

 (15)

4.3 MambaFormer Module
This module consists of two blocks, MHA and
Mamba. They extract textual semantic information
related to the given sentence and aspect. The MHA
block captures short-range dependencies between
aspect and opinion words, while the Mamba block
captures long-range dependencies.

Multihead Attention Block: To extract impor-
tant textual semantic information related to the
given sentence and aspect, specifically for short-
range word dependencies, we employ the MHA
mechanism as shown in Fig. 1. In the MHA
block, computation adheres to the standard process
of transformer architecture (Vaswani et al., 2017).
The first step in computing attention weights score
is to take the dot product of the keys K and queries
Q. Next, another dot product between the score and
the values V yields the output representation Hmha′

of the attention module. The output Hmha repre-
sents a residual connection followed by layer nor-
malization, which stabilizes and improves the train-
ing of the model by combining the output Hmha′

with the original input h, ensuring better gradient
flow and normalized feature scaling. Below is an
outline of this method:

K,Q, V = h
(l−1)
j Wk, h

(l−1)
j Wq, h

(l−1)
j Wv (16)

score =
softmax(QK + Mask)√

dk
(17)

Hmha′ = score · V (18)

Hmha = LayerNorm(Hmha′ + h) (19)

Mamba Block: Although transformers have
proven effective in capturing dependency, their
quadratic complexity of attention mechanism pre-
vents their further adoption in long-range word
dependencies, thus limiting them to the short-range
range. To tackle this problem, we utilize the
Mamba block. This approach ensures that essen-
tial connections and long-range dependencies be-
tween aspect word features and semantic emotional
features are maintained throughout the analysis.
As seen in Fig. 1, the Mamba block is designed
for sequence-to-sequence tasks with consistent in-



2181

put and output dimensions. It expands the input
Hmha through two linear projections. One pro-
jection involves a convolutional layer and SiLU
activation before passing through an SSM mod-
ule, which filters irrelevant information and selects
input-dependent knowledge. Simultaneously, an-
other projection path with SiLU activation serves
as a residual connection, combining its output with
the SSM module’s result via a multiplicative gate.
Ultimately, the Mamba block outputs Hmam in
Hmam ∈ RB×L×D through a final linear projection,
providing enhanced sequence processing capabil-
ities. Finally, Hsem represents the output of the
MambaFormer module after applying layer normal-
ization to the sum of the outputs from the Mamba
and MHA layers.

Hmam1 = SiLU(Conv1D(Linear(Hmha))) (20)

Hmam2 = SiLU(Linear(Hmha)) (21)

Hmam3 = Linear(SSM(Hmam1) ◦Hmam2) (22)

Hmam = Linear(Hmam3) (23)

Hsem = LayerNorm(Hmam +Hmha) (24)

4.4 KAN Gated Fusion Module

Gated fusion has demonstrated effectiveness in lan-
guage modelling tasks (Lawan et al., 2024; Zhao
et al., 2024). To dynamically assimilate valuable
insights from the syntax-based GCN and Mam-
baFormer, we used a KAN-gated fusion module
to reduce interference from unrelated data. Gat-
ing is a potent mechanism for assessing the util-
ity of feature representations and integrating in-
formation aggregation accordingly. This module
uses a simple addition-based fusion mechanism
to achieve gating, which controls the flow of in-
formation through gate maps, as shown in Fig. 1.
Specifically, the representations Hsyn and Hsem are
associated with gate maps Gatesyn and Gatesem, re-
spectively. These gate maps originate from a KANs
using a one-dimensional layer. These gate maps
are used to provide technical specifications for the
gated fusion process:

Gatesyn = σ(KAN(Hsyn)) (25)

Gatesem = σ(KAN(Hsem)) (26)

Hc = GatesynHsyn + (1− Gatesyn)

× GatesemHsem (27)

We utilize mean pooling to condense contextu-
alized embeddings Hc, which assists downstream

classification tasks. Following this, we apply a lin-
ear classifier to generate logits. Finally, softmax
transformation converts logits into probabilities, fa-
cilitating ABSA. Each component is essential in
analyzing input text for ABSA tasks from the em-
bedding layer to the sentiment classification layer.

Hmp = MeanPooling(Hc) (28)

p(a) = softmax(WpH
mp + bp) (29)

4.5 Training
We utilize the standard cross-entropy loss as our
primary objective function:

L(θ) = −
∑

(s,a)∈D

∑
c∈C

log p(a) (30)

Computed over all sentence-aspect pairs in the
dataset D. For each pair (s, a), representing a sen-
tence (s) with aspect (a), we compute the negative
log-likelihood of the predicted sentiment polarity
p(a). Here, θ encompasses all trainable parameters
and C denotes the collection of sentiment polari-
ties.

5 Experiment

5.1 Datasets

Dataset Division Pos Neg Neu
Rest14 Train 2164 807 637

Test 727 196 196
Laptop14 Train 976 851 455

Test 337 128 167
Twitter Train 1507 1528 3016

Test 172 169 336

Table 1: Statistics of three benchmark datasets

Table 1 provides comprehensive statistics for
these datasets. Three publicly available sentiment
analysis datasets are used in our experiments: the
Twitter, the Laptop, and Restaurant 14 review
datasets from the SemEval 2014 Task (Pontiki et al.,
2014).

5.2 Implementation
The LAL-Parser (Mrini et al., 2019) is used for
dependency parsing, with word embeddings initial-
ized by 300-dimensional pre-trained Glove vectors
(Pennington et al., 2014).

Additional 30-dimensional embeddings for po-
sition and part-of-speech (POS) are concatenated
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Model Restaurant14 Laptop14 Twitter
Acc. F1 Acc. F1 Acc. F1

ATAE-LSTM (Wang et al., 2016) 77.20 - 68.70 - - -
IAN (Ma et al., 2017) 78.60 - 72.10 - - -
RAM (Peng et al., 2017) 80.23 70.80 74.49 71.35 69.36 67.30
MGAN (Fan et al., 2018) 81.25 71.94 75.39 72.47 72.54 70.81
AEN (Song et al., 2019) 80.98 72.14 73.51 69.04 72.83 69.81
Coattention-Memnet (Yang et al., 2019) 79.70 - 72.90 - 70.50 -
DCN-CA (Zhu et al., 2024) 83.96 76.84 77.85 73.65 75.48 74.98
CDT (Sun et al., 2019) 82.30 74.02 77.19 72.99 74.66 73.66
ASGCN-DT (Zhang et al., 2019) 80.86 72.19 74.14 69.24 71.53 69.68
DGEDT (Tang et al., 2020) 83.90 75.10 76.80 72.30 74.80 73.40
Sentic-GCN (Liang et al., 2022) 84.03 75.38 77.90 74.71 - -
EK-GCN (Gu et al., 2023a) 83.96 74.93 78.46 76.54 75.84 74.57
DGGCN (Liu et al., 2023) 83.66 76.73 75.70 72.57 74.87 72.27
IA-HiNET (Gu et al., 2023b) 83.58 75.85 78.24 74.54 75.79 74.61
APSCL (Li et al., 2023) 83.37 77.31 77.14 73.86 - -
Mamba4ABSA 82.11 74.72 76.98 73.11 74.12 73.50
MambaFormer 82.93 75.33 77.53 73.42 74.47 73.86
MambaForGCN (ours) 84.38 77.47 78.64 76.61 75.96 74.77
BERT (Devlin et al., 2018) 85.79 80.09 79.91 76.00 75.92 75.18
KDGN+BERT (Wu et al., 2023) 85.79 80.09 79.91 76.00 75.92 75.18
EK-GCN+BERT (Gu et al., 2023a) 87.01 81.94 81.32 77.59 77.64 75.55
DGGCN+BERT (Liu et al., 2023) 87.65 82.55 81.30 79.19 75.89 75.16
DCN-CA+BERT (Zhu et al., 2024) 86.89 80.32 81.50 78.51 76.94 75.07
IA-HiNET+BERT (Gu et al., 2023b) 87.72 82.65 81.53 77.97 77.59 76.85
APSCL+BERT (Li et al., 2023) 86.79 81.84 79.45 76.56 75.88 75.36
MambaForGCN+BERT 86.68 80.86 81.80 78.59 77.67 76.88

Table 2: Experimental results comparison on three publicly available datasets

and fed into a BiLSTM model with a hidden size
of 50, applying a dropout rate of 0.7 to reduce
overfitting. The architecture includes SynGCN and
MambaFormer Module, each with 2 layers and
dropout of 0.1 and 0.05 (MHA with 4 heads). The
Mamba layer features 2 convolutional filters and
a 16-dimensional state vector. Model weights are
uniformly initialized, and the model is trained us-
ing the Adam optimizer (Kingma & Ba, 2014) with
a 0.002 learning rate and a batch size of 16 over
50 epochs. For MambaForGCN+BERT, BERT ex-
tracts word representations from the last hidden
states. Simplified versions include Mamba4ABSA
(removing MHA and SynGCN) and MambaFormer
(removing SynGCN). The implementation is done
using PyTorch.

5.3 Experimental Results

Table 2 displays the comparison’s findings with
each baseline model. The accuracy and macro-
averaged F1 score serve as the primary evalua-
tion criteria for the ABSA models. First, Mam-
baForGCN significantly improves sentiment clas-
sification accuracy compared to the syntax-based
models DGEDT, Sentic-GCN, DGGCN, and the
semantic-based model DCN-CA. This suggests that
MambaForGCN’s Mamba and MHA blocks help
better capture short and long-range dependencies
between aspect and opinion word relationships.
Second, the gain in accuracy on three datasets indi-
cates that the KAN-gated fusion effectively filters
noise and promotes information flow between Syn-
GCN and MambaFormer modules in ABSA. Lastly,
we can see that the fundamental BERT has outper-
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formed specific ABSA models by a considerable
margin. When our MambaForGCN is combined
with BERT, the outcomes demonstrate that this
model’s efficacy is further enhanced.

5.4 Ablation Study

We performed ablation experiments on the datasets
to examine the effects of various components in our
MambaForGCN model on performance, as shown
in Table 3. The phrase "w/o MHA" describes how
the MHA block in the MambaFormer module has
been removed. This entails using the representation
from the mamba block and SynGCN module. Simi-
larly, "w/o Mamba" involves excluding the Mamba
block from the MambaFormer module, thereby us-
ing MHA and SynGCN module. Additionally, "w/o
gated fusion" indicates using a fully connected net-
work to integrate representations from the two mod-
ules without employing the KAN fusion gate. The
results are shown in Table 3. Notably, without
MHA, the performance of MambaForGCN expe-
riences a decrease of 1.59%, 1.43%, and 1.13%
for the Restaurant, Laptop, and Twitter datasets,
respectively. Furthermore, the MHA layer’s rep-
resentation in the MambaFormer module must be
integrated with the mamba layer’s representation
in the MambaFormer module, as the performance
of MambaForGCN decreases by 1.71%, 1.68%,
and 1.41%, respectively, when solely relying on
MHA in MambaFormer module. Finally, Mam-
baForGCN performance drops by 1.90%, 1.58%,
and 1.81% when a primary, fully connected net-
work is substituted for the gated fusion module.
Overall, MambaForGCN performs better in cap-
turing short and long-range dependencies between
aspect and opinion words for ABSA when all com-
ponents are effectively combined. It can adaptively
integrate two features (syntax and semantics) from
the GCN and MambaFormer.

Model Rest14 Acc. Lapt14 Acc. Twit Acc.
MambaForGCN 84.38 78.64 75.96
w/o MHA 82.79 77.21 74.83
w/o Mamba 82.67 76.96 74.55
w/o KAN gated fusion 82.48 77.06 74.15

Table 3: Results of an ablation study (%)

5.5 Effect of MambaForGCN Layer

In our investigation, as depicted in Fig. 2, we ob-
serve that the Laptop and Restaurant datasets pro-
duced the best results with two layers. When the

Figure 2: Effect of different numbers of MambaForGCN
layers

number of layers is too low, dependency informa-
tion won’t be adequately communicated. When
the number of layers in the model is too high, it
becomes overfit, and redundant information passes
through, which lowers performance. Many trials
must be carried out to determine an appropriate
layer number.

5.6 Case Study

To evaluate the efficacy of MambaForGCN in cap-
turing long-range dependencies between aspects
and opinion words enhancing ABSA, we conducted
a case study using a few sample sentences. Table
4 presents the predictions and corresponding truth
labels for these sentences. In the second sample,
"Just scribbled 27 sides of pure bullshit in a two
and a half hour exam, my right arm looks like one
of Madonna’s," the aspect is "Madonna." The opin-
ion is implied rather than explicitly stated, but it
can be inferred that it relates to your arm’s phys-
ical state or appearance. The sentence structure
separates the aspect (Madonna) from the context
that describes the opinion (your arm looking mus-
cular or overworked). The actual descriptive com-
parison (implied opinion) depends on understand-
ing the cultural reference to Madonna’s muscular
arms, which comes after a fair amount of text. So,
there is a long-range dependency between the as-
pect "Madonna" and the implied opinion of "mus-
cular" or "overworked," even though the specific
opinion words aren’t directly adjacent to the as-
pect in the sentence. Capturing this relationship
requires handling long-range dependency between
the aspect and the implied opinion words. Mam-
baForGCN adeptly determines the polarity of the



2184

Text W/O Mamba Our Model Labels
I trust the [people]pos at Go Shushi, it never disappoints. (Pos✓) (Pos✓) (Pos)
Just scribbled 27 sides of pure bullshit in a two and a half
hour exam, my right arm looks like one of [Madonna]neg’s.

(Neu×) (Neg✓) (Neg)

The two [waitress]neg’s looked like they had been sucking
on lemons.

(Neg✓) (Neg✓) (Neg)

Great [performance]pos and quality. (Pos✓) (Pos✓) (Pos)
I Hollywood prefers miss goody two shoes to bad girls:
Now bad girls like Tara Reid, [Paris Hilton]neg, Britney

(Neu×) (Neg✓) (Neg)

Table 4: Case studies of our MambaForGCN model and ablated MambaForGCN without the Mamba module.

aspect word “Madonna” and the opinion words
by integrating the Mamba module, which success-
fully captured the long-range dependency. In con-
trast, MambaForGCN, without the Mamba mod-
ule, failed to determine the polarity of the aspect
“Madonna”.

6 Conclusion

This paper proposes the MambaForGCN frame-
work, which integrates syntactic structure and se-
mantic information for the ABSA tasks. We utilize
SynGCN to enrich the model with syntactic knowl-
edge. Then, we merge the selective space model
(Mamba) and transformer to extract semantic in-
formation from the input and capture short and
long-range dependencies. Furthermore, we fuse
these modules with a KAN-gated feature fusion
to maximize their interaction and filter out irrele-
vant information. The outcomes of our experiments
show that our method works well on three publicly
available datasets.

Limitation

The drawback of this work is the potential difficulty
in generalization to diverse real-world datasets. Al-
though MambaForGCN demonstrates effectiveness
on three benchmark datasets, its performance may
vary when applied to texts with different linguistic
patterns, domain-specific terminologies, or out-of-
vocabulary words not covered in the training data.
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