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Abstract

So far, the task of Scientific Query-Focused
Summarization (Sci-QFS) has lagged in devel-
opment when compared to other areas of Sci-
entific Natural Language Processing because
of the lack of data. In this work, we propose
a methodology to take advantage of existing
collections of academic papers to obtain large-
scale datasets for this task automatically. Af-
ter applying it to the papers from our read-
ing group, we introduce a novel dataset for
Sci-QFS composed of 8,695 examples, each
one with a query, the sentences of the full
text from a paper and the relevance labels for
each. After testing several classical and state-
of-the-art embedding models on this data, we
found that the task of Sci-QFS is far from be-
ing solved, although it is relatively straightfor-
ward for humans. Surprisingly, we found that
classical methods outperformed modern pre-
trained Deep Language Models (sometimes by
a large margin), showing the need for large
datasets to better fine-tune the latter. We share
our experiments, data and models at https:
//github.com/jarobyte91/rouge_sciqfs.

1 Introduction

Scientists must review and summarize dozens of
academic articles frequently to stay up-to-date with
the state of the art in their fields. This is especially
true before starting a new project, as they need to
ensure they incorporate the latest advances in their
work. As the number of academic documents keeps
increasing yearly, this task has become challenging
and time-consuming, especially for students and
young researchers (Landhuis, 2016).

A solution for this problem is Query-Focused
Summarization (QFS) systems (Dang, 2005),
which are helpful to process the extensive collec-
tions of papers that practitioners need to analyze.
In QFS systems, the objective is to take a long doc-
ument (or a document collection) along with the
user query and produce a relevant summary, thus

reducing the amount of text the users need to read
and facilitating the task of literature review.

Despite their potential applications, creating
such systems is not easy (Dang, 2005). First, it
is difficult to determine the correct summary from
a long document (or a document collection), as
different people would give a different answer de-
pending on their background and what they are
looking for. And second, these tasks usually have
small datasets, as having experts read and sum-
marize long documents or extensive collections of
documents is a complicated process.

In this work, we propose a methodology to ad-
dress the lack of data for training and evaluating
QFS systems in the scientific domain by taking
advantage of the citations found in peer-reviewed
academic publications. The basic idea is that when
the authors of a paper cite other documents as ref-
erences in their work, they implicitly build training
examples for QFS, as the citing sentences show pre-
cisely where the references are relevant. A diagram
describing our approach is shown in Fig. 1.

This paper makes the following contributions:

• It proposes a methodology to automatically
build datasets for Scientific Query-Focused
Summarization directly from raw collections
of academic articles. The datasets are com-
posed of three tables: the first contains the
text and meta-data of the papers present in the
collection, the second one contains the meta-
data of the articles cited by the papers in the
collection, and the third one contains the cita-
tions linking the first two tables. With these
tables, it is straightforward to find examples
for the task by concatenating the citations to
build query-focused summaries or to use them
as they are to find citations to predict.

• By applying this methodology to the papers
of our reading group, it introduces a novel

https://github.com/jarobyte91/rouge_sciqfs
https://github.com/jarobyte91/rouge_sciqfs
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Figure 1: Overview of our approach to automatically
build datasets for Scientific Query-Focused Summariza-
tion. The idea is that when the authors of a paper cite
other documents as references in their work, they implic-
itly build examples for the task, as the citing sentences
show where the references are relevant. In our approach,
the abstract of the referenced article plays the role of
the query, and the concatenation of the citing sentences
constitute the query-focused summary.

dataset composed of 8,965 examples for the
task of Scientific Query-Focused Summariza-
tion in the fields of Artificial Intelligence and
Natural Language Processing.

• It explores the difficulty of the task of Scien-
tific Query-Focused Summarization by apply-
ing several classical as well as state-of-the-art
methods, showing that, although the task is
natural for scholars, even pre-trained Deep
Language Models struggle with them.

The remainder of this paper is organized as fol-
lows: Section 2 provides an overview of previous
datasets for QFS and the corresponding methodolo-
gies employed to build them. Section 3 presents
our proposed methodology for leveraging the ci-
tations from a document collection to build QFS
datasets. Section 4 describes the experiments we
performed on the collected data. Section 5 offers a
discussion and elaboration on the obtained results.
Finally, Section 6 pinpoints our conclusions and
directions for future research.

2 Related Work

2.1 Summarization

The field of Summarization has always been an
important area of Natural Language Processing, of-
fering valuable solutions for condensing large vol-
umes of text into concise and coherent summaries.
On one hand, Extractive Summarization techniques
involve selecting and presenting important sen-
tences or phrases verbatim from the source doc-
ument (Moratanch and Chitrakala, 2017). On the
other hand, Abstractive Summarization attempts to
generate summaries by paraphrasing and restruc-
turing the source content (Lin and Ng, 2019).

One of the first methods to automatically obtain
summaries of news articles was introduced in Her-
mann et al. (2015). This methodology involves
querying the news articles obtained from the CNN
and DailyMail websites using a variety of combi-
natorial heuristics so that the models capture how
the different entities in the article relate to each
other. They tested the performance of several state-
of-the-art methods on their data and demonstrated
that their approach is general enough to produce
datasets for different domains.

Other text summarization datasets also focus
on the news domain. For instance, the Gigaword
dataset (Graff et al., 2003), created by the Linguis-
tic Data Consortium (LDC), contains nearly 10
million news documents sourced from seven major
outlets, with summaries derived from the headlines.
The XSum dataset (Narayan et al., 2018) consists
of 226,711 BBC news articles from 2010 to 2017,
each paired with a professionally written, single-
sentence summary spanning various topics.

The first large-scale dataset for Multi-Document
Summarization was introduced in Fabbri et al.
(2019). This paper exploits the data available at
newser.com, with 56,216 article-summary pairs,
each written by professional editors and with links
to the source articles. The novelty of this dataset
lies in its size and diversity, surpassing those of
previously published datasets. Additionally, they
introduced a novel model incorporating Maximal
Marginal Relevance into a Pointer-Generator Net-
work, improving the fluency and conciseness of
previous multi-document summarization models.

2.2 Scientific Summarization

One of the first attempts to create a dataset
for scientific document summarization was intro-
duced during the Joint Workshop on Bibliometric-

newser.com
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enhanced Information Retrieval and Natural Lan-
guage Processing for Digital Libraries (BIRNDL
2016) (Jaidka et al., 2019). To build the dataset for
the competition, they heuristically filtered the most
important papers from the ACL Anthology repos-
itory (https://aclanthology.org/). After that,
they instructed their annotators to find the citing
sentences along with the most important sentences
in the citing paper, following the BiomedSumm
shared task of the same event.

A methodology to automatically obtain sum-
maries from academic articles using presentation
and conference talks was introduced in Lev et al.
(2019). In this work, the authors exploited the fact
that when a researcher presents a paper, they must
express their ideas concretely and concisely, often
using key phrases and findings from their research.
This means that the talk transcripts or blog posts
are often good summaries of the entire article, and
hence they introduce a novel unsupervised algo-
rithm based on Hidden Markov Models to align the
summaries with the original articles.

A large-scale dataset composed of 10,148 scien-
tific articles, along with their abstracts, highlighted
statements and author-defined keywords, was in-
troduced in Collins et al. (2017). In this work,
the authors extracted articles from http://www.
sciencedirect.com/ and proposed a method
called HighlightROUGE to extend the dataset au-
tomatically. Additionally, they introduced a metric
(called AbstractROUGE) to extract summaries by
leveraging the abstract of the paper. Finally, they
compared several traditional and modern summa-
rization methods and analyzed how different sec-
tions of the paper contributed to the final summary.

A related approach was presented in (Cohan
et al., 2018) to generate two datasets from the aca-
demic repositories arXiv.org and PubMed.com,
totaling over 300,000 papers with abstracts as sum-
maries. The approach involves filtering the doc-
uments, normalizing math formulas and citation
markers, and converting LATEX files to plain text.

2.3 Query-Focused Summarization
The first time that the task of QFS was formally
studied was during the 2005 Document Understand-
ing Conference (DUC 2005) (Dang, 2005). The
purpose of the conference was to study how the
variability of the summaries produced by humans
affected the performance of the existing methods
of the time. To this end, DUC 2005 had a unique
summarization task, focusing on the user queries

instead of the summaries, as in previous efforts.
In that shared task, the objective was to produce

a well-organized and fluent answer to a complex
question using a set of 25 to 50 documents. Even
while there was a generous allowance of 250 words
for each answer, the results revealed that the best
systems of the time had a hard time summarizing
multiple documents. The two subsequent editions
of the conference (DUC 2006 (Dang, 2006) and
DUC 2007 (Dang, 2007)) refined the data and re-
sults produced in the first conference, and they still
are an important reference in the field.

Despite their importance and popularity, the
DUC datasets lack diversity, as shown by Baumel
et al. (2016). This paper introduced a new metric
called Topic Concentration, which the authors used
to show that the queries in the DUC datasets already
are very close to their document collections. Hence,
QFS systems did not significantly improve upon
generic summarization methods. Therefore, they
introduced TD-QFS, a dataset with controlled lev-
els of Topic Concentration, and showed that when
evaluated on this data, there is a clear difference
between QFS systems and generic summarizers.

A novel dataset for Multi-Document QFS was
introduced in Liu et al. (2024). The dataset, com-
posed of 27,041 examples, was produced by clean-
ing and filtering several online resources including
Answers.com, Google and Wikipedia and manu-
ally checking the correctness of the answers. After
that, the authors introduced a novel architecture to
summarize several documents at once and produce
a single query-focused summary.

A different direction to generate examples for
QFS was introduced in Xu et al. (2023). In this
work, the authors introduced a methodology us-
ing pre-existing datasets and leveraged the robust
few-shot capabilities of InstructGPT (Ouyang et al.,
2024) to synthesize a query using the information
used by the annotator to craft the summary, result-
ing in a dataset of over 1.1 million examples.

The task of Citation Worthiness, closely related
to Sci-QFS, was studied extensively in Gosangi
et al. (2021). In Citation Worthiness, the objective
is to determine if a sentence in a scientific article
requires a citation. Hence, they formulate the prob-
lem as a sequence labeling task, solving it with a hi-
erarchical Bi-LSTM model. Also, they introduced
a novel dataset with over 2,000,000 sentences, and
show through error analysis that context plays an
essential role in predicting Citation Worthiness.

A novel method to build large-scale datasets for

https://aclanthology.org/
http://www.sciencedirect.com/
http://www.sciencedirect.com/
arXiv.org
PubMed.com
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Figure 2: Overview of the proposed methodology.

paper writing support was introduced in Kobayashi
et al. (2022). In this paper, the authors take ad-
vantage of the fact that scientific papers already
include a list of relevant references in the Related
Work section, and extend the method introduced in
(Narimatsu et al., 2021) to consume papers in raw
PDF format with the help of PDFBoT (Yu et al.,
2020) and GROBID (Lopez, 2008–2024).

Two automatic methods to determine where a
citation should go inside a sentence were intro-
duced in Buscaldi et al. (2024). Both methods,
based on a similar task than the one used to train
BERT (Devlin et al., 2019), leverage the Trans-
former (Vaswani et al., 2017) to solve a Mask-
Filling or a Named Entity Recognition problem
and predict the placement of citations. Addition-
ally, they introduced s2orc-9k, an open dataset to
fine-tune models for this task.

Finally, a human-centric methodology along
with a novel dataset for Sci-QFS was introduced
in Ramirez-Orta et al. (2023). In this work, the au-
thors proposed an interactive system that performs
Sci-QFS using Active Learning to train a classifier
on-the-fly that finds sentences similar to the user
query. However, the dataset they collected is small,
as it is composed of only 23 examples, collected
during the user study of the system.

3 Methodology

Our methodology is composed of four main steps
to extract the content from the papers in a docu-
ment collection and clean it to obtain the examples
that make up the final dataset. It also includes an
optional step to improve the quality of the exam-
ples found by finding more relevant sentences. An
overview of the process is shown in Fig. 2.

3.1 Extracting the Article Content and
Meta-Data

First, all the PDF files from our document collec-
tion were processed with Science-Parse (AllenAI,
2019), an LSTM-based (Hochreiter and Schmidhu-
ber, 1997) software by AllenAI to extract text from
scientific articles. The input for Science-Parse is a

raw PDF file, and its output is a JSON file contain-
ing the content and meta-data of the paper, such
as its title, abstract, sections, information about
its authors, the list of its references and the citing
sentences from the text, among other fields. An
overview of the fields produced is shown in Fig. 3.

Document
Collection

Science-Parse

JSON file
• Title
• Abstract
• Sections

• References
• Reference

Mentions

Citations

• paper_id
• reference_id
• internal_reference_id
• context
• start_offset
• end_offset

References

• reference_id
• title
• total_citations
• abstract

Papers

• paper_id
• title
• abstract
• text

Figure 3: The Data Extraction process. First, the con-
tent and meta-data of each paper in the collection are
extracted using Science-Parse (AllenAI, 2019) into a
JSON file. Then, the JSON files are merged, cleansed
and de-duplicated to obtain three clean tables: the Pa-
pers table contains the information about the papers in
the collection, the References table contains the infor-
mation about the references cited by the papers in the
collection, and the Citations table contains the informa-
tion about the citations that link the first two tables.

3.2 Transforming the Data and Producing
Clean Tables

From the raw JSON files, three tables are produced:
Papers, References and Citations. An overview
of the fields in each one is shown in Fig. 3. The
Papers table contains the information describing
each one of the articles in the collection, using
the following fields: paper_id, title, abstract and
text. The paper_id fields contain a unique iden-
tifier for each paper, obtained after merging and
de-duplicating all the papers in the collection. The
title and abstract fields contain the title and abstract
of the article obtained after the de-duplication pro-
cess. Finally, the text field contains the full text of
the paper, which was obtained as the concatenation
of the text present in the Sections field of the raw
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JSON files obtained in the data extraction step.
The References table contains the information

about the papers cited by the papers from the col-
lection, using the following fields: reference_id,
title, total_citations and abstract. The reference_id
field contains a unique identifier for each reference,
obtained after merging and de-duplicating the Ref-
erences field of the raw JSON files. The title field
contains the title of the reference obtained after the
de-duplication process. The total_citations field
contains the total number of times the reference
was mentioned in the papers of the collection. The
field abstract contains the abstract of the reference
paper, obtained after joining the title field with the
arXiv dataset (Clement et al., 2019).

The Citations table contains the citations that
link the Papers and References tables, using the
following fields: paper_id, reference_id, inter-
nal_reference_id, context, start_offset, end_offset.
The paper_id field contains the unique paper
identifier from the Papers database. The refer-
ence_id field contains the unique reference iden-
tifier from the References database. The inter-
nal_reference_id field contains the reference num-
ber as it appears in the citing paper. The context
field contains the sentence where the paper cited
the reference. The start_offset and the end_offset
fields contain the character span inside the sentence
where the reference was cited.

3.3 Finding All the Citations for each
Reference

Once the clean tables have been produced, it is
straightforward to join the Citations table with
the Papers and References tables via the unique
identifiers of the articles and references to obtain an
augmented Citations table, which can be grouped
by both paper_id and reference_id to obtain a table
in which every row has the following data:

• paper_id
• paper_text
• reference_id
• reference_abstract
• citations_concatenated

3.4 Obtaining the Sentence Labels

The final step in our methodology is to produce a
True/False label for each one of the sentences from
the text of the paper, which encodes its relevance to
the query. To do this, the abstract of the reference

takes the role of the query, and both the paper text
and the concatenated citations are tokenized into
sentences. Finally, the relevance label for each
sentence from the paper is obtained by checking
if the sentence is one of the sentences from the
concatenated citations. A diagram displaying how
the final dataset looks is shown below in Fig. 4.

Document
(Sequence of Sentences) [s1, s2, s3, s4, s5, ...]

Query q

Sentence Labels [l1, l2, l3, l4, l5, ...]

Figure 4: Structure of the final dataset. Each example
has three elements: a list with the sentences from the full
text of the paper, a paragraph query and a list containing
the relevance labels for each one of the sentences.

3.5 Finding Extra Relevant Sentences
Since each reference was cited by at least one of the
papers in the collection, it is guaranteed that there
is at least one positive-labeled sentence in each one
of the examples. However, it is important to note
that for many examples, there might be only one
positive label in the entire paper. Hence, to obtain
more positive labels, we used a greedy approach in
which sentences are added one by one to the sum-
mary, using ROUGE (Lin, 2004) to compare it to
the abstract of the reference. Although this method
to find extra relevant sentences is limited and expen-
sive (given how ROUGE works), we found that this
augmentation technique worked well in practice.
An overview of this process is shown in Fig. 5.

Concatenated
Citations

Paper Query

Split into
Sentences

Starting
Summary

Add Sentences
One-by-One

Subset of Sentences
with Highest ROUGE

Figure 5: The (optional) data augmentation step. First,
the concatenated citations are taken as the starting
summary. Then, the sentence that introduces the best
ROUGE score in the current summary when compared
against the query is added. This process continues until
the ROUGE score stops improving. Ultimately, the se-
lected sentences are a good approximation of the subset
of sentences that would give the best ROUGE score.
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4 Experiments

4.1 Data
We applied our methodology to the collection of
papers from our reading group, composed of 1,365
PDF files. After grouping the augmented citations
table by reference_id, we ended up with 10,790 ex-
amples with the structure shown in Fig. 4. Nonethe-
less, some examples had documents that were too
long to feed into the data augmentation process
using our hardware, so after filtering them out, we
obtained our final dataset, described in Table 1.

Total Size: 8,965 examples
Mean Document Length: 353 sentences
Max Document Length: 4,447 sentences
Mean Fraction of Positive Labels: 3.9%
Train Set Size: 7,172 examples
Development Set Size: 897 examples
Test Set Size: 897 examples

Table 1: Details of the final dataset collected after apply-
ing our methodology to the papers of our reading group.
The original collection consisted of 1,365 PDF files,
which produced 10,790 examples. The final dataset was
obtained after excluding the examples with documents
too long to process with our data augmentation method.

4.2 Model Architecture
First, the paper (viewed as a sequence of sentences)
and the query are embedded into a Euclidean Space
using a classical frequency-based method or a Deep
Language Model. Then, each sentence embedding
is concatenated with a copy of the query embed-
ding to produce a sequence of augmented sentence
embeddings. Next, the augmented sentence em-
beddings are fed into a binary classifier (which
may or may not be aware of the sequence order) to
produce a binary label for each sentence, which en-
codes if the sentence is relevant or not. Finally, the
predictions are compared with the reference labels
using Binary Cross Entropy to train the classifier.
A diagram of this process is shown in Fig. 6.

4.3 Models
To embed the query and the sentences from the
papers, we used embedding models both classical
(based on frequency counts) and modern (based on
Deep Language Models). For the classical ones,
we used TFIDF (Sparck Jones, 1988) based on
word unigrams and character trigrams. For the
modern ones, we used Sentence-BERT (Reimers
and Gurevych, 2019) and SPECTER (Cohan et al.,

s1 s2 s3 s4 s5

Paper

q

Query

Embedding Model

e3e2e1 e4 e5
qeqeqe qe qe

Sentence
Embeddings

Classifier

0.20.10.9 0.3 0.8Predictions Binary Cross-Entropy

010 0 1

Sentence
Labels

Figure 6: Training of the models. First, the sentences
from the paper and the query are embedded into an Eu-
clidean Space. Then, the query embedding is copied
and concatenated with each one of the sentence embed-
dings, which are then fed into a classifier to estimate
the relevance label for each one of them. Finally, the
predictions from the classifier are compared with the
reference labels via Binary Cross Entropy.

2020). To produce the relevance labels for the sen-
tences, we also used both classical and modern
classifiers. For the classical ones, we used the typi-
cal Cosine Similarity/Euclidean Distance Classifier
and the Multi-Layer Perceptron (MLP). For the
modern ones, we used two sequence-aware clas-
sifiers: the LSTM (Hochreiter and Schmidhuber,
1997) and the Transformer (Vaswani et al., 2017).
The combinations of embedding models and classi-
fiers we used are shown in Table 2, while the exact
hyper-parameters can be found in the Appendix.

Classifier
TFIDF- TFIDF- Sentence-

SPECTER
Words Chars BERT

Euclidean Distance X
Cosine Similarity X X X
Multi-Layer Perceptron (MLP) X X X X
LSTM X X
Transformer X X

Table 2: Model variations used during the experiments.

4.4 Results

Since the objective is to produce a binary label for
each sentence, we evaluated the models using both
Average Precision and Area under the ROC Curve
(ROC AUC), as shown in Table 3. Both metrics
were computed on each one of the examples in the
Test Set using the standard implementation found
in scikit-learn (Pedregosa et al., 2011).

5 Discussion

Although some models display decent values of
ROC AUC, the Average Precision shows that they
struggle with this task, as none could obtain more
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Classifier Embeddings
Average
Precision

ROC AUC

Cosine Similarity TFIDF-Words 0.197± 0.008 0.765 ± 0.006
MLP TFIDF-Chars 0.148± 0.006 0.712± 0.007
MLP TFIDF-Words 0.145± 0.006 0.703± 0.007
Cosine Similarity TFIDF-Chars 0.152± 0.007 0.701± 0.006
LSTM SPECTER 0.208 ± 0.018 0.691± 0.009
Transformer SPECTER 0.193± 0.017 0.685± 0.010
LSTM Sentence-BERT 0.202± 0.018 0.684± 0.009
MLP SPECTER 0.115± 0.005 0.678± 0.006
MLP Sentence-BERT 0.103± 0.005 0.654± 0.007
Cosine Similarity Sentence-BERT 0.125± 0.006 0.633± 0.007
Transformer Sentence-BERT 0.160± 0.016 0.628± 0.010
Euclidean Distance SPECTER 0.114± 0.006 0.600± 0.008

Table 3: Mean Average Precision and Mean ROC AUC
on the Test Set. The best-performing models are in bold.

than 0.21 on this metric. Overall, the best mod-
els are the Cosine Similarity Classifier on top of
TFIDF-Word unigram embeddings and the LSTM
on top of SPECTER embeddings, well above the
others. Interestingly, the task appears to be con-
siderably easier when the user is involved in the
process, as shown in (Ramirez-Orta et al., 2023).

Surprisingly, the models based on classical em-
beddings (TFIDF-Chars and TFIDF-Words) per-
formed well despite their simplicity. Out of these
models, it is striking that the Cosine Similarity
Classifier on top of TFIDF-Words is the best of all
the models in terms of ROC AUC.

Another interesting fact is that for the Cosine
Similarity classifiers, the ones based on TFIDF
embeddings (character trigrams and word uni-
grams) performed better than the neural-based ones
(Sentence-BERT and SPECTER), although TFIDF-
Chars performed worse than TFIDF-Words. As an
explanation for these results, it makes sense that
simply matching words between the query and the
sentences provides a strong baseline for this task.

For the models based on embeddings produced
by neural networks, it is interesting to see that the
LSTMs outperformed the Transformers. Also, ex-
cept for the Cosine Similarity/Euclidean Distance
Classifier, the SPECTER embeddings performed
better than the Sentence-BERT ones, a trend con-
firmed with the LSTMs, the Transformers and the
MLPs. Finally, it is interesting that the MLPs are
on par with the Transformers regarding ROC AUC,
although their Average Precision is worse.

To further investigate our results, we computed
the fraction of relevant sentences and the mean
length of spans of consecutive positive labels for
each example in the Train Set, as shown in Table 4.
This shows that around 4% of the sentences in a
given example are relevant and that around 5% of

them come in sequences of 2 or more. This fact
might explain why the models that are unaware
of the sequence order (all but the LSTMs and the
Transformers) perform so similarly and why the
LSTMs outperformed the Transformers.

Fraction of Relevant Sentences

Mean 3.90%
STD 2.00%
Min 0.01%
First Quartile 2.43%
Median 3.66%
Third Quartile 5.03%
Max 22.73%

Span
Length

Relative
Frequency(%)

1 94.953
2 4.739
3 0.269
4 0.032
5 0.005

Table 4: Distribution of positive labels in the Train Set.

Furthermore, it is interesting that the Euclidean
Distance/Cosine Similarity Classifier based on the
SPECTER embeddings is worse than the one based
on Sentence-BERT embeddings. This is striking,
as SPECTER is trained to embed scientific doc-
uments. It is important to note that even while
it seems that this classifier requires some hyper-
parameter tuning, in reality, what matters is the
ranking of similarities between the query and the
document sentences, which is based on the pairwise
distances of their respective embeddings. Nonethe-
less, the classifiers based on the SPECTER embed-
dings outperformed their counterparts based on the
Sentence-BERT embeddings (sometimes by a large
margin), so they appear well-suited for this task.

To finalize the discussion of our results, we eval-
uated the models on the ground truth data produced
by real users collected using QuOTeS (Ramirez-
Orta et al., 2023), as shown in Table 5. Although
the results obtained with this dataset are different
from the ones obtained during our experiments, it is
important to note that this dataset is much smaller
(only 23 examples) and that the documents from
these examples are much shorter than the ones we
obtained with our methodology.

Nonetheless, the main conclusions we obtained
in our experiments are the same: the classical em-
bedding models still provide strong baselines for
the task, the LSTMs outperformed the Transform-
ers and the SPECTER embeddings proved superior
than the Sentence-BERT ones.

6 Conclusions and Future Work

In this work, we introduced a novel methodology
for the automatic creation of datasets for the task
of Scientific Query-Focused Summarization. After
applying it to the collection of papers from our
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Classifier Embeddings
Average
Precision

ROC AUC

MLP TFIDF-Chars 0.664± 0.13 0.682 ± 0.11
MLP SPECTER 0.652± 0.11 0.654± 0.11
MLP TFIDF-Words 0.654± 0.12 0.650± 0.13
Cosine Similarity TFIDF-Chars 0.674 ± 0.10 0.634± 0.13
LSTM Sentence-BERT 0.600± 0.11 0.631± 0.09
LSTM SPECTER 0.637± 0.10 0.627± 0.10
Cosine Similarity TFIDF-Words 0.575± 0.11 0.543± 0.13
MLP Sentence-BERT 0.600± 0.12 0.540± 0.13
Euclidean Distance SPECTER 0.532± 0.11 0.505± 0.12
Transformer Sentence-BERT 0.545± 0.10 0.485± 0.12
Transformer SPECTER 0.556± 0.09 0.479± 0.12
Cosine Similarity Sentence-BERT 0.526± 0.09 0.420± 0.12

Table 5: Results obtained by the models on the ground
truth data collected using QuOTeS (Ramirez-Orta et al.,
2023). The best-performing models are in bold.

reading group, we obtained a dataset composed of
8,965 examples.

Through several experiments, we have shown
that the task of Query-Focused Summarization is
far from being solved, despite being relatively sim-
ple for domain experts (Ramirez-Orta et al., 2023).
We have also shown that state-of-the-art systems
struggle with this task and that classical, simple
models perform better.

In particular, the traditional Cosine Similarity
Classifier based on TFIDF embeddings outper-
formed by a large margin modern off-the-shelf
methods based on deep neural networks. Further-
more, we found surprising that, contrary to the
current state of the art, a system based on a bidirec-
tional LSTM model outperformed the more com-
plex Transformer. This provides evidence that the
task of Sci-QFS is an interesting challenge inside
Scientific Natural Language Processing.

For future work, we would like to investigate
why this task is so difficult for current models.
Given the performance shown by Large Language
Models (LLMs) on several benchmarks, it would
appear that this task should be easy to solve, but
our experiments proved otherwise.

Another future direction would be to investigate
how LLMs like GPT-4 (OpenAI et al., 2024) be-
have on this task and how they can enhance the data
collected in this work. One idea in this direction is
to feed the query and the text from the article into
the model and ask it to verify the correctness of
the summary produced with the methodology intro-
duced here. A more sophisticated approach would
be to ask the model to generate the Query-Focused
Summary, although this idea would be susceptible
to hallucination and lack of reproducibility.

7 Limitations

The first main limitation of the methodology pre-
sented in this work is that in some cases, it is dif-
ficult to obtain the full query-focused summary or
all the citations relevant to a given query. The rea-
son for this is that when the authors of a paper are
composing it, they usually stop citing a reference
after using it a few times. This means that the cit-
ing paper has usually more implicit references than
the ones found by Science-Parse, so sentences that
could have been potentially relevant to the query
are left out. Unfortunately, we cannot think of a
way to fully verify the quality of the data obtained
with our method other than reading the full papers
and manually extracting all the citations. Nonethe-
less, a simple solution for this problem is to filter
out the examples with very few positive labels. Fi-
nally, a more complicated way to overcome this
limitation is the optional data augmentation pro-
cess we included at the end of our methodology.

The second main limitation of this work is that
the hardware requirements to use our methodology
can be quite high. First, the data augmentation pro-
cess can be very expensive (as actually happened
during our experiments), because if the document
is very long, the process of adding all the sentences
and computing the ROUGE scores of the potential
summaries is computationally prohibitive, and it
cannot be accelerated with specialized hardware,
like GPUs. Second, as outlined in the original
repository, Science-Parse requires a lot of heap
memory, which can be an issue for most users (in
our experiments, we ended up using a separate
workstation with 32 GB of RAM to extract the raw
JSON files). And third, for the examples with very
long documents, it is difficult to train the models
that are aware of the sequence order (LSTM and
Transformer) because of their inherent limitations
on the number of sentences they can process at
once. Unfortunately, the examples with longer doc-
uments are usually the most interesting ones, so
future users of the method presented here will have
to balance this trade-off between document length
and hardware requirements.

8 Ethical Considerations

Since our methodology does not require human
input and does not collect sensitive information, the
topics of Bias, Fairness or Offensive Speech are not
an issue. However, the main ethical consideration
about the methodology introduced in this paper is
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the copyright surrounding the papers on which our
methodology is applied. Nonetheless, each one of
the users of our methodology is responsible for the
correct use of the files in their personal computer.
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A Model Details

In this section, we describe the hyper-parameters
needed to implement the models that performed the
best in this work. For each one of them, we used
Random Search (Bergstra and Bengio, 2012) to
tune the hyper-parameters on the ranges described
below.

A.1 Embedding Models

Regarding the TFIDF embeddings, we used the
standard implementation found in Pedregosa et al.
(2011) with default parameters for both word un-
igrams and character trigrams. For the neural-
based embeddings, we used the standard implemen-
tation from https://www.sbert.net/ (Reimers
and Gurevych, 2019). For Sentence-BERT we used
all-MiniLM-L6-v2, while for SPECTER we used
allenai-specter.

A.2 Multi-Layer Perceptron (MLP)

For the MLPs on top of TFIDF embeddings, we
tried from 1 to 4 layers of 100, 200, 300 or 400 hid-
den units each, trained for 16 epochs. All the other
hyper-parameters were left as the default value
from the standard implementation found in Pe-
dregosa et al. (2011). For the word unigrams model,
the one that performed the best had a single layer
of 400 hidden units, with a total training time of
18.18 hours. For the character trigrams model, the
one that performed the best had three layers of 100
hidden units each, with a total training time of 4.05
hours.

For the MLPs on top of neural-based embed-
dings, we tried from 1 to 4 layers of 100 to 500
hidden units each, in steps of 50. Each model
was trained for 2,000 epochs using the Adam op-
timizer (Kingma and Ba, 2014) with a constant
learning rate of 10−4 and a L2 regularization term
of 0, 10−1, 10−2, 10−3, 10−4 or 10−5. For the
Sentence-BERT embeddings, the best model had
3 layers of 300 hidden units each, a regulariza-
tion value of 10−4 and a total training time of 45
minutes. For the SPECTER embeddings, the best
model had 4 layers of 450 hidden units each, a reg-
ularization value of 0 with a total training time of
91 minutes.

A.3 LSTM

For both the models built on top of Sentence-BERT
and SPECTER embeddings, we tried from 1 to 4
layers of 100 to 500 hidden units each, in steps

of 50. Each model was trained for 2,000 epochs
using the Adam optimizer (Kingma and Ba, 2014)
with a constant learning rate of 10−4 and a L2

regularization term of 0, 10−1, 10−2, 10−3, 10−4

or 10−5. For the Sentence-BERT embeddings, the
best model had 3 layers of 500 hidden units each, a
regularization value of 0 and a total training time of
3.9 hours. For the SPECTER embeddings, the best
model had a single layer of 500 hidden units each,
a regularization value of 0, with a total training
time of 102 minutes.

A.4 Transformer
For both the models built on top of Sentence-BERT
and SPECTER embeddings, we tried from 2 to 4
Transformer layers, having from 100 to 500 units in
its feed-forward networks, in steps of 50, and from
2 to 4 attention heads. Each model was trained for
2,000 epochs using the Adam optimizer (Kingma
and Ba, 2014) with a constant learning rate of 10−4

and a L2 regularization term of 0, 10−1, 10−2,
10−3, 10−4 or 10−5. For the Sentence-BERT em-
beddings, the best model had 3 layers of 250 units
in its feed-forward networks and 4 attention heads,
a regularization value of 0 and a total training time
of 11.96 hours. For the SPECTER embeddings,
the best model had 3 layers, 350 units in its feed-
forward networks, 4 attention heads, a regulariza-
tion value of 10−5 and a total training time of 30.25
hours.

https://www.sbert.net/
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