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Abstract

In knowledge graphs (KGs), predicting miss-
ing relations is a critical reasoning task. Re-
cent subgraph-based models have delved into
inductive settings, which aim to predict rela-
tions between newly added entities. While
these models have demonstrated the ability for
inductive reasoning, they only consider the
structural information of the subgraph and ne-
glect the loss of semantic information caused
by replacing entities with nodes. To ad-
dress this problem, we propose a novel Com-
monsense Subgraph Meta-Learning (CSML)
model. Specifically, we extract concepts from
entities, which can be viewed as high-level
semantic information. Unlike previous meth-
ods, we use concepts instead of nodes to con-
struct commonsense subgraphs. By combin-
ing these with structural subgraphs, we can
leverage both structural and semantic informa-
tion for more comprehensive and rational pre-
dictions. Furthermore, we regard concepts as
meta-information and employ meta-learning
to facilitate rapid knowledge transfer, thus
addressing more complex few-shot scenarios.
Experimental results confirm the superior per-
formance of our model in both standard and
few-shot inductive reasoning.

1 Introduction

Knowledge Graphs (KGs) are intricate semantic
networks that encompass a vast array of entities
and relations. These graph structures have attracted
considerable attention in various applications, such
as question answering (Wang et al., 2024) and rec-
ommendation systems (Jiang et al., 2024). Consid-
ering the inherent incompleteness of KGs, a con-
siderable volume of research has been dedicated to
predict missing information in KGs. Knowledge
Graph Embedding (KGE) methods have performed
strongly in conventional reasoning tasks. However,
in practical scenarios, KGs continually evolve, in-
corporating new entities over time. Since these

entities are unseen during training, traditional KGE
models can not recognize these newly added en-
tities. Therefore, inductive reasoning is proposed
to focus on predicting the relations between newly
added entities.

Recently, drawing on the successes of of graph
neural networks (GNNs) in modeling graph struc-
tures, GraIL (Teru et al., 2020) replaces entities
with nodes and forms the subgraphs of the target
triplet. It proposes to encode nodes based on their
distance to target entities. By learning from the sub-
graph structure, it achieves inductive reasoning. Ex-
panding upon GraIL, CoMPILE (Mai et al., 2021)
extracts directed subgraphs and introduces an edge-
enhanced message passing mechanism concerning
edges in the updating process. Meta-iKG (Zheng
et al., 2022) categorizes relations into two kinds ac-
cording to the count of associated triples. It utilizes
meta-learning to transfer knowledge, thus achiev-
ing inductive reasoning under the more challenging
few-shot settings. In summary, inductive reason-
ing requires the model to make predictions without
relying on entity representations, and GNN-based
methods mainly achieve this by replacing entities
with nodes.

Though GNN-based methods exhibit potential in
inductive reasoning, they grapple with two primary
challenges: (1) GNN-based models only consider
the structural information when replacing entities
with nodes, there is an inevitable loss of the se-
mantic information of the entities (Liang et al.,
2024); (2) In low-resource scenarios, the limitation
in sample size results in a simple and sparse graph
structure, inhibiting GNN-based methods from ac-
curately capturing the features of the graph struc-
ture. This makes the model ill-suited for few-shot
settings (Liu et al., 2024).

For the first problem, relying solely on struc-
tural information for predictions is insufficient. For
instance, Figure 1 demonstrates that when replac-
ing entities with nodes in the two left subgraphs,
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Figure 1: Different subgraphs with the same graph structure but different commonsense

they construct the identical structural subgraph de-
picted in the middle. While these subgraphs are
structurally identical, their relations for prediction
differ. Such an observation exposes the limitation
of relying solely on structural information. There-
fore, we suggest extracting concepts from entities,
such as deriving the concept company from the en-
tity Amazon. We then incorporate these concepts
to form commonsense subgraphs with their rela-
tions. As the right subgraphs illustrate, we form
two distinct commonsense subgraphs by extracting
concepts from entities. Within these, the reason-
ing is facilitated by the semantic information from
commonsense. For example, live_in is more
appropriate between person and city, whereas
located_in is apt for company and city.

For the second problem, in low-resource scenar-
ios, GNN-based models unavoidably suffer from
overfitting and oversmoothing issues (Ding et al.,
2022). To enhance the model’s robustness, we em-
ploy meta-learning to adjust parameters and trans-
fer knowledge. Firstly, we categorize relations into
large-shot and few-shot relations based on their
associated sample size, subsequently constructing
support and query sets, respectively. We then re-
gard commonsense as meta-information, bridging
the gap between two kinds of relations. By learn-
ing the meta-gradient of commonsense, our model
transfers the knowledge learned from the support
set to the query set, thereby addressing the few-shot
inductive reasoning task.

It’s imperative to note that introducing con-
cepts doesn’t violate the inductive settings. Con-
cepts can be interpreted as category labels for enti-
ties. Though an entity is novel, its associated con-
cept might have been encountered during training.
Stemming from this insight, we propose a novel
Commonsense Subgraph Meta-Learning (CSML)
model. By incorporating structural and common-
sense subgraphs, our model captures both struc-

tural and semantic features for more comprehensive
and rational predictions. Furthermore, regarding
commonsense as meta-information, it can rapidly
adapt to few-shot settings via meta-learning. Fi-
nally, we choose several widely used inductive rea-
soning benchmarks and evaluate CSML with other
baselines. Experimental results show that CSML
outperforms other baselines in both standard and
few-shot inductive settings. Our contributions are
summarized as follows:

• We propose a novel CSML model to tackle
inductive learning, which extracts concepts
and constructs commonsense subgraphs for
reasoning from both structural and semantic
perspectives.

• We treat commonsense as meta-information
and apply meta-learning to handle inductive
reasoning in realistic few-shot scenarios.

• Experimental results show that CSML
achieves state-of-the-art performance in both
standard and few-shot inductive reasoning
tasks.

2 Related Work

Inductive Relation Reasoning Compared to
transductive reasoning, inductive reasoning empha-
sizes focusing on newly added entities and predict-
ing the relations between them. Current inductive
reasoning methods primarily divide into two cate-
gories: rule-based methods and GNN-based meth-
ods. The former methods including RuleN (Meil-
icke et al., 2018) and DRUM (Sadeghian et al.,
2019) mine rules in KGs, thereby making predic-
tions based on logic rules for confidence scoring.
Given that rules are not reliant on specific entities,
rule-based approaches naturally support inductive
reasoning. However, these methods are limited
by scalability issues and overlook the structural
features of KGs.
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Unlike rule-based methods, GNN-based meth-
ods achieve inductive reasoning by constructing
subgraphs and learning from the structure of these
subgraphs. GraIL (Teru et al., 2020) is the first
to introduce a way to encode nodes, represent-
ing them by one-hot encoding the distance to the
target entities, thus replacing entity representa-
tions and achieving inductive reasoning. Based
on GraIL (Teru et al., 2020), CoMPILE (Mai
et al., 2021) suggests to extract directed subgraphs
and introduces an edge-enhanced message-passing
mechanism, increasing attention to edges. Meta-
iKG (Zheng et al., 2022) proposes more challeng-
ing inductive reasoning within few-shot settings
and tackles this problem through meta-learning.
However, these methods only focus on the struc-
tural information, neglecting the loss of semantic
information caused by the replacement of entities
with nodes.

Few-shot Relation Reasoning Current methods
for few-shot relation reasoning can generally be cat-
egorized into metric-based and meta-learning meth-
ods. The former calculates the similarity between
the given training samples and the queried sam-
ples by designing a matching network. GMatch-
ing (Xiong et al., 2018) is first proposed to tackle
this problem. It focuses on the entity’s local graph
and designs an LSTM matching network to model
one-hop graph structural information for calculat-
ing similarities. FSRL (Zhang et al., 2020) lever-
ages a recurrent autoencoder and a fixed atten-
tion neighbor encoder for the matching module.
FAAN (Sheng et al., 2020) introduces an adaptive
neighbor encoder to model entities and simultane-
ously utilizes an adaptive aggregator to distinguish
contributions of references. Informix-FKGC (Li
et al., 2023) encodes multi-aspect information and
employs a capsule network for matching.

Meta-learning methods aim to improve the
model’s adaptability and robustness, allowing it
to swiftly adjust to newly emerging relations
with only a few samples. MetaR (Chen et al.,
2019) takes a meta-learning perspective and learns
relation-meta to transfer knowledge. MetaP (Jiang
et al., 2021) introduces the relation-specific pat-
terns and uses them to assess the validity of triples.
GANA (Niu et al., 2021) notices the issue of sparse
neighbors and thus employs a gated and attentive
neighbor aggregator to tackle this and model the
complex relations with MTransH. Since these few-
shot learning methods rely on entity representa-

tions, they cannot be directly applied to inductive
reasoning tasks.

3 Method

In this work, we propose to extract concepts from
entities and construct commonsense with relations.
Based on our observations, in KGs, entities come
with specific labels, which can be viewed as the
concepts of entities representing high-level seman-
tic information. Our proposed CSML is presented
in Figure 2.

3.1 Structural Subgraph Learning
Subgraph Construction and Encoding For a
specified target triplet (hT , rT , tT ), we initially
construct a k-hop enclosing directed subgraph asso-
ciated to it as previous works have done. Following
CoMPILE (Mai et al., 2021), the subgraph is com-
posed of nodes, which are both the k-hop outgoing
neighbors of hT and the k-hop incoming neighbors
of tT . The edges between these nodes are selected
to form the subgraph. Given the hop number lim-
itation of k, it can be inferred that the maximum
distance from hT to tT is k+1. Based on distances
to hT and tT , the node embedding N is represented
to capture relative position information for nodes.
Specifically, for node i, dhi and dit are the short-
est distance from hT and tT to i, respectively. By
one-hot encoding, the node embedding of i can be
represented as Ni = one-hot(dhi)⊕one-hot(dit),
where ⊕ is the concat operation. For edge i, the
edge embedding is formed by the relation repre-
sented by the edge and the two associated nodes:
Ei = Nhi

⊕ Rri ⊕ Nti , where Rri denotes the
relation embedding of ri.

Directed Subgraph Scoring We adopt the com-
municative message passing proposed in CoM-
PILE (Mai et al., 2021) for updating parameters.
Firstly, for edge i, the edge attentive embedding
Al−1

i in the iteration of l − 1 can be obtained as
follows:

FG(h, r, t) = Nh +Rr −Nt, (1)

αl−1
i = f1(F

l−1
G (hi, ri, ti)⊕ F l−1

G (hT , rT , tT )), (2)

Al−1
i = αl−1

i El−1
i , (3)

where FG(h, r, t) represents the graph structural
feature of (h, r, t). f1 denotes the fully-connected



2201

Figure 2: An illustration of CSML framework. The framework mainly consists of three modules: (1) Structural
subgraph learning, (2) Commonsense subgraph learning, and (3) Commonsense meta-learning.

network and αi denotes the attentive weight of edge
i.

We define the node aggregation information as
follow:

Nl
agg = MteAl−1, (4)

where Mte denotes the tail-to-edge adjacency ma-
trix. We then use it to update the node representa-
tion:

Nl = σ((Nl
agg +Nl−1)Wl

n), (5)

where Wl
n represents the node parametric matrix

at iteration l. σ denotes the nonlinear activation
function.

The edge aggregation information and update
formulation are defined as follows:

El
agg = (Mhe)TNl + (Mre)TR− (Mte)TNl, (6)

El = σ((El−1 +El
agg)W

l
e), (7)

where Mhe, Mre, and Mte denote head-to-edge,
relation-to-edge and tail-to-edge adjacency matrix
respectively. Wl

e represents the edge parametric
matrix at iteration l. Finally, the scoring function
can be calculated as:

SG = f2(FG(hT , rT , tT )), (8)

in which f2 represents a two-layer fully-connected
network. We then obtain the structural subgraph
loss function as follows:

LG =
∑

i∈Gtri

max(SG(ni)− SG(pi) + γ, 0), (9)

where Gtri denotes the set of training graphs. γ
denotes the margin hyperparameter. ni and pi are
negative and positive triplets respectively.

3.2 Commonsense Subgraph Learning
The incorporation of commonsense has been
demonstrated to be advantageous in aiding mod-
els to comprehend semantics (Niu et al., 2022).
Broadly speaking, commonsense can be viewed
as a layer of concepts abstracted through ontologi-
cal relations. In KGs, each entity can be linked to
one or more concepts, which comprise high-level
semantic information.

For the extracted directed subgraph, we abstract
concepts from entities and replace nodes with con-
cepts to form commonsense subgraphs. We define
C as the set of concepts and C to denote the con-
cept embeddings. For the node n, if there is only a
concept associated with n, we use its embedding
Cn to replace the node n, else we calculate its
embedding representation as follows:

Cn =
1

|Cn| − 1

∑
i∈Cn

wiCi, wi = 1− freq(Ci)∑
j∈Cn

freq(Cj)
,

(10)

where Cn represents the set of concepts associated
with node n. |Cn| is the size of Cn. freq(Ci)
represents the number of entities associated with
concept Ci. We assume that the rarer a concept
is, the more significant its semantic impact on the
node. Therefore, to balance the update weights of
different concepts, we set it such that the smaller
the frequency, the larger the weight.

We define conceptual feature of (h, r, t) in the
commonsense subgraph as follows:

FC(h, r, t) = Ch +Rr −Ct. (11)

In the commonsense subgraph, we update the con-
cept representation in the same way as node rep-
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resentation mentioned earlier. However, it’s worth
noting that while relations and edges are consistent
with structural subgraphs from the perspective of
graph structure, we do not share parameters be-
tween structural subgraphs and commonsense sub-
graphs, as we aim to capture features from different
layers.

To obtain the scoring function at the conceptual
layer, we replace node embeddings N with concept
embeddings C and graph structural features FG

with conceptual features FC :

SC = f2(FC(hT , rT , tT )). (12)

Similar to Eq.9, the conceptual subgraph loss func-
tion LC is defined within conceptual scoring func-
tion SC . By combining structural and conceptual
subgraph features, we can achieve more compre-
hensive reasoning. Therefore, we calculate the total
loss function as follows:

L = LG + λLC , (13)

where λ is a hyperparameter to balance the loss
function.

3.3 Commonsense Meta-learning
Benefiting from the powerful adaptive ability
of meta-learning, we use meta-learning to learn
well-initialized parameters and quickly update the
learned representations.

Firstly, given the threshold K, relations with
the number of associated triplets exceeding K are
regarded as large-shot relations, otherwise, they are
considered as few-shot relations. In each iteration,
we sample from large-shot and few-shot relations,
and subsequently formulate the support set S and
query setQ, accordingly. We regard commonsense
as a bridge between the two types of relations. As
a higher-level semantic information, commonsense
remains a constant pivot across different relations.
Therefore, we treat commonsense as a type of meta-
information and can transfer it from S to Q. For
the S , the loss function is calculated using samples
extracted from S and concept embeddings C:

L(S) =
∑

(h,r,t)∈S

max(SC(Ch′ ,Rr,Ct)

−SC(Ch,Rr,Ct) + γ, 0).

(14)

We efficiently update the concept embedding C by
implementing the gradient update rule, as demon-
strated below:

GC = ∇CL(S),C
′
= C− βGC , (15)

where GC represents the gradient meta of C and
we use β to adjust step size. For the Q, the final
loss is calculated as follows with concept meta C

′
:

L(Q) =
∑

(h,r,t)∈Q

max(SC(C
′
h′ ,Rr,C

′
t)

−SC(C
′
h,Rr,C

′
t) + γ, 0).

(16)

The meta-gradients are computed in two phases,
employing the Q within few-shot relations for the
final parameter updates. This process allows CSML
to quickly adapt to few-shot relations, updating the
well-initialized parameters with the S constructed
by large-shot relations.

4 Experiments

In this section, we evaluate CSML with those of
previously state-of-the-art models on both standard
and few-shot inductive reasoning tasks to demon-
strate its effectiveness. Furthermore, we study the
impact of few-shot size on CSML and analyze mod-
els’ performance under subgraphs of different den-
sities. We conduct ablation studies to assess the
contribution of each module to CSML. Finally, we
gain a deep understanding of the samples suitable
for CSML model prediction through the case study.

4.1 Experimental Setup
Datasets We select two widely used benchmarks,
FB15k-237 and NELL-955, and follow CoM-
PILE (Mai et al., 2021) to construct their variants
v1, v2, and v3 for the inductive reasoning tasks.
Theoretically, our model requires that the datasets
contain the concepts of the entities. In NELL-955,
each entity has been associated with a concept that
meets this requirement. As for FB15k-237, since a
large amount of Freebase data has been migrated
to Wikidata, we utilize the SPARQLWrapper1 li-
brary to connect to Wikidata for searching concepts.
The Summaries of inductive datasets are shown in
Table 1.

Baselines To evaluate the superiority of our
model, we compare CSML with the state-of-the-art
inductive models, including the rule-based model
RuleN (Meilicke et al., 2018) and GNN-based
models such as GraIL (Teru et al., 2020), CoM-
PILE(Mai et al., 2021) and Meta-iKG (Zheng et al.,
2022). For Meta-iKG, there are two model vari-
ants based on two different meta-learning strategies
MAML and Meta-SGD. We use Meta-iKG and

1https://sparqlwrapper.readthedocs.io/

https://sparqlwrapper.readthedocs.io/
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#Ent #Rel #Cnpt #Train #Valid #Test

FB15k-237
v1 2,687 180 675 4,245 489 205
v2 4,268 200 893 9,739 1,166 478
v3 6,169 215 1,090 17,986 2,194 865

NELL-955
v1 3,328 14 185 4,687 414 100
v2 4,650 88 212 8,219 922 476
v3 8,210 142 233 16,393 1,851 809

Table 1: Summaries of datasets. #Ent, #Rel, and #Cnpt
denote the number of entities, relations, and concepts.
#Train, #Valid, and #Test denote the number of triples
in training, validation, and test datasets

Meta-iKG* to represent the former and the latter,
respectively. To ensure fairness, we directly report
the original results from Meta-iKG (Zheng et al.,
2022).

Implementation Details Following prior meth-
ods, we use AUC-PR and Hits@10 as the evalua-
tion metrics. We calculate AUC-PR by sampling
a negative triplet for each test sample and compar-
ing their scores. For Hits@10, we assess the score
of the positive triplet against the sampled negative
ones to see if the positive triplet ranks within the
top 10. We employ the Adam optimizer and set
learning rate to 0.001. To maintain the same set-
tings, hop number k and iterations l are set to 3. We
train CSML for 20 epochs and 100 meta updates
for each epoch. To avoid overfitting, the early stop-
ping mechanism is employed in CSML. We repeat
the experiment 10 times and take the average result
as our final experimental outcome.

4.2 Standard Inductive Results

Firstly, we compare our proposed CSML with other
baselines on the standard inductive datasets to ver-
ify the effectiveness of our model. As shown in
Table 2, we can see that the GNN-based methods
outperform the rule-based approach RuleN. This is
the reason why GNN-based methods have garnered
recent attention. Additionally, our model gener-
ally performs better than other models, suggesting
that incorporating commonsense aids in inductive
reasoning. Whereas previous GNN-based models
solely focused on reasoning from the perspective
of subgraph structures, our model builds upon this
by introducing commonsense to compensate for
the lack of semantic information. Therefore, our
model CSML can utilize both structural and seman-
tic information to make more comprehensive and
rational predictions.

4.3 Few-shot Inductive Results

To evaluate the stability and robustness of CSML
and other baselines, we conduct experiments under
few-shot settings, selecting relations with fewer
than K triplets for testing. As shown in Table
3, meta-learning methods, like Meta-iKG and our
approach, outperform models such as GraIL and
CoMPILE, highlighting meta-learning’s advantage
in few-shot reasoning. Unlike Meta-iKG, our
model uses commonsense subgraphs instead of
structural ones for meta-learning, allowing com-
monsense knowledge to bridge large-shot and few-
shot relations for more efficient reasoning.

To examine the impact of meta-learning, we vi-
sualize 5 few-shot relations and their 6 associated
concepts. As shown in Figure 3, meta-learning typ-
ically creates a separable embedding space. While
we update only concept embeddings through meta-
learning, the scoring function incorporates both
concepts and relations, ensuring accurate concept
modeling enhances the representation of few-shot
relations, making them more distinguishable.

4.4 Impact of Few-shot Size

To explore the impact of K on the performance
of our CSML and other models, we select differ-
ent few-shot sizes and conduct experiments. As
shown in Figure 4, most models exhibit an increase
in performance as the K increases, indicating that
increasing the number of instances helps improve
the performance of the models. We notice that as
the K increases, the upward trend in accuracy di-
minishes and sometimes even reverses. This might
be due to the model’s varying sensitivity to the few-
shot size. We can see that different models have
different sensitivity to changes inK, and our model

Figure 3: Visualization of concepts and few-shot rela-
tions before meta-learning and after.
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Model
AUC-PR % Hits@10 %

FB15k-237 NELL-955 FB15k-237 NELL-955
v1 v2 v3 v1 v2 v3 v1 v2 v3 v1 v2 v3

RuleN 79.60 82.67 83.03 67.12 80.52 73.91 65.35 71.68 67.84 53.70 69.77 64.29
GraIL 80.45 83.66 84.35 69.35 85.04 84.43 66.52 73.82 70.15 55.56 76.40 75.66
CoMPILE 79.95 83.56 83.97 68.36 85.50 84.04 66.52 72.37 69.77 62.35 76.51 75.58
Meta-iKG 80.31 82.95 82.52 72.12 84.11 82.47 66.52 72.37 68.81 60.49 74.07 77.99
Meta-iKG* 81.10 84.26 84.57 72.50 85.97 84.05 66.96 74.08 71.89 64.20 77.91 77.41
CSML 82.43 85.71 86.27 73.64 86.10 85.52 67.71 73.82 71.44 65.34 79.16 78.82

Table 2: Standard Inductive Results

Model FB15k-237-v1 FB15k-237-v2 FB15k-237-v3 NELL-955-v2 NELL-955-v3
K = 5 K = 10 K = 5 K = 10 K = 5 K = 10 K = 5 K = 10 K = 5 K = 10

GraIL 50.00 37.50 83.33 80.00 54.67 56.29 64.00 66.67 53.17 63.81
CoMPILE 43.75 42.86 80.08 80.00 58.33 57.14 78.18 72.41 65.87 70.95
Meta-iKG 75.00 56.25 86.67 88.33 66.67 64.29 80.00 74.36 65.87 71.43
Meta-iKG* 75.00 60.71 86.67 90.00 58.33 57.14 78.00 78.21 65.87 72.86
CSML 77.32 61.54 88.14 88.59 64.75 66.38 80.16 75.82 67.54 74.02

Table 3: Few-shot Inductive Results (Hits@10 %)

Figure 4: Impact analysis of few-shot size K.

is relatively stable. For our model, given that the
number of concepts is significantly less than the
number of nodes, the commonsense information
provided tends to saturate quickly as the number of
samples in the support set increases. This implies
that even with continued growth in K, there won’t
be any additional benefit for knowledge transfer
concerning commonsense information.

4.5 Analysis under subgraphs of different
densities

To assess model performance on subgraphs of vary-
ing densities, we divided the dataset and conducted
experiments. We define subgraph density by the
number of edges, as each edge corresponds to a
triplet, reflecting the number of samples within the
subgraph. In addition, we count the number of
nodes in subgraphs of different densities and the
average number of entities associated with the con-
cepts contained in the subgraph. The experimental
results and related statistics are shown in the Figure
5.

As edges increase, the number of nodes grows
rapidly, indicating a denser structure. GraIL and

Figure 5: Results and related data statistics under sub-
graphs of different sparsity. The horizontal axis in the
graph represents the range of the number of edges in the
subgraph, and the bar chart represents the experimen-
tal results of different models. #Node represents the
average number of nodes in the subgraph, and #Cnpt-
Freq represents the average number of entities associ-
ated with the concepts contained in the subgraph

CoMPILE perform better in dense subgraphs but
struggle with sparse ones. In contrast, CSML
shows greater robustness, maintaining strong per-
formance even in sparse subgraphs. While the
number of nodes and edges increases as the graph
becomes more complex, #CnptFreq remains rel-
atively stable. This stability reflects that entities
linked to a concept extend beyond the subgraph
and contributes to CSML’s robustness.

4.6 Ablation Study

To evaluate the contribution of each module in our
model, we conduct the ablation experiment. Our
ablation study mainly investigates the impact of the
Commonsense subgraph learning (CS) and Meta-
learning (ML). For the ’w/o ML’ case, we remove
the commonsense meta-learning module. As for
’w/o CS’, since our meta-learning is based on the
commonsense subgraph and concept embeddings,
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Model NELL-955-v1 NELL-955-v2
AUC-PR Hits@10 AUC-PR Hits@10

w/o CS 69.45 62.66 85.57 76.73
w/o ML 72.18 63.51 86.94 78.46
CSML 73.64 65.34 87.10 79.16

Table 4: Results of ablation study (%)

(a) TP sample structure (b) FN sample structure

Figure 6: Visualization of TP and FN sample structure.

we still need to extract the commonsense subgraph.
However, we no longer learn the commonsense
information through GNN. That is to say, the com-
monsense information is no longer updated via the
message-passing mechanism but solely relies on
meta-learning for updates.

The results of the ablation study are shown in
Table 4. From the table, we can observe that both
modules contribute to the model’s performance.
However, the contribution of the CS module is
more significant than that of the ML module, which
aligns with our expectations. Previous sections
on few-shot inductive reasoning have highlighted
the effectiveness of meta-learning. However, our
model leverages commonsense information to as-
sist reasoning, so updating this information is cru-
cial. In the ’w/o CS’ case, due to the absence
of the message-passing mechanism for updating
commonsense information, there’s a decline in the
model’s ability to represent commonsense, leading
to a significant performance drop.

4.7 Case Study

To further understand what types of samples are
easy or difficult for our CSML model to make pre-
diction, we select a high-scoring true positive (TP)
sample (texans, concept:agentparticipatedinevent,
result) and a low-scoring false negative (FN) sam-
ple (great_falls, concept:subpartof, montana) for
analysis from both structural and semantic perspec-
tives.

To highlight the structural differences between
the two samples, we visually analyze their sub-

graphs. As shown in Figure 6, the subgraph for
the TP sample is much more complex, with more
nodes and edges than the FN sample. This suggests
that complex subgraphs provide richer information,
aiding CSML’s predictions.

Semantically, we compare the concept frequency
associated with head and tail entities. For the TP
sample, the frequencies are 353 and 17, while for
the FN sample, they are 469 and 158. The low
concept frequency for the TP sample’s tail entity
suggests stronger associations with entities. The
high frequency for the TP sample’s head entity oc-
curs because there are fewer concepts than entities
in complex graphs. In conclusion, samples suitable
for CSML predictions have two traits: (1) complex
subgraphs and (2) low concept frequency linked to
entities.

5 Conclusion

We study the inductive relation reasoning prob-
lem and propose the CSML model to address this
issue. We extract concepts of entities and form
commonsense subgraphs. By incorporating com-
monsense information, we supplement additional
semantic information, which is neglected by previ-
ous GNN-based models. Our model leverages both
structural and semantic information for more com-
prehensive and rational predictions. Experimental
results show that CSML can effectively tackle both
standard and few-shot inductive reasoning tasks. In
our future endeavors, we aim to delve into novel
few-shot learning theories and enhance the efficacy
of CSML even more.

Limitations

Our approach, which relies on the concept informa-
tion of entities, performs better when the concept
information is more accurate and comprehensive.
However, the concept information depends on the
specific dataset. Additionally, as extra concept in-
formation is introduced, computational overhead is
incurred while calculating concept features, result-
ing in a slightly higher computational complexity
of our method compared to previous methods.

Acknowledgments

This work was supported in part by the Na-
tional Key R&D Program of China under Grant
2023YFF0905503, National Natural Science Foun-
dation of China under Grants No.62472188.



2206

References
Mingyang Chen, Wen Zhang, Wei Zhang, Qiang Chen,

and Huajun Chen. 2019. Meta relational learning
for few-shot link prediction in knowledge graphs. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4217–
4226.

Kaize Ding, Jianling Wang, James Caverlee, and Huan
Liu. 2022. Meta propagation networks for graph
few-shot semi-supervised learning. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 36, pages 6524–6531.

Yangqin Jiang, Yuhao Yang, Lianghao Xia, and Chao
Huang. 2024. Diffkg: Knowledge graph diffusion
model for recommendation. In Proceedings of the
17th ACM International Conference on Web Search
and Data Mining, WSDM 2024, pages 313–321.
ACM.

Zhiyi Jiang, Jianliang Gao, and Xinqi Lv. 2021. Metap:
Meta pattern learning for one-shot knowledge graph
completion. In Proceedings of the 44th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 2232–
2236.

Qianyu Li, Jiale Yao, Xiaoli Tang, Han Yu, Siyu Jiang,
Haizhi Yang, and Hengjie Song. 2023. Capsule neu-
ral tensor networks with multi-aspect information
for few-shot knowledge graph completion. Neural
Networks, 164:323–334.

Ke Liang, Lingyuan Meng, Sihang Zhou, Wenxuan
Tu, Siwei Wang, Yue Liu, Meng Liu, Long Zhao,
Xiangjun Dong, and Xinwang Liu. 2024. MINES:
message intercommunication for inductive relation
reasoning over neighbor-enhanced subgraphs. In
Thirty-Eighth AAAI Conference on Artificial Intelli-
gence, pages 10645–10653. AAAI Press.

Haochen Liu, Song Wang, Chen Chen, and Jundong Li.
2024. Few-shot knowledge graph relational reason-
ing via subgraph adaptation. In Proceedings of the
2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Pa-
pers), NAACL 2024, pages 3346–3356. Association
for Computational Linguistics.

Sijie Mai, Shuangjia Zheng, Yuedong Yang, and
Haifeng Hu. 2021. Communicative message passing
for inductive relation reasoning. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 4294–4302.

Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel
Ruffinelli, Rainer Gemulla, and Heiner Stucken-
schmidt. 2018. Fine-grained evaluation of rule-
and embedding-based systems for knowledge graph
completion. In The Semantic Web–ISWC 2018: 17th
International Semantic Web Conference, Monterey,

CA, USA, October 8–12, 2018, Proceedings, Part I
17, pages 3–20. Springer.

Guanglin Niu, Bo Li, Yongfei Zhang, and Shiliang Pu.
2022. Cake: A scalable commonsense-aware frame-
work for multi-view knowledge graph completion.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2867–2877.

Guanglin Niu, Yang Li, Chengguang Tang, Ruiying
Geng, Jian Dai, Qiao Liu, Hao Wang, Jian Sun, Fei
Huang, and Luo Si. 2021. Relational learning with
gated and attentive neighbor aggregator for few-shot
knowledge graph completion. In Proceedings of the
44th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 213–222.

Ali Sadeghian, Mohammadreza Armandpour, Patrick
Ding, and Daisy Zhe Wang. 2019. Drum: End-to-
end differentiable rule mining on knowledge graphs.
Advances in Neural Information Processing Systems,
32.

Jiawei Sheng, Shu Guo, Zhenyu Chen, Juwei Yue, Li-
hong Wang, Tingwen Liu, and Hongbo Xu. 2020.
Adaptive attentional network for few-shot knowl-
edge graph completion. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1681–1691.

Komal Teru, Etienne Denis, and Will Hamilton. 2020.
Inductive relation prediction by subgraph reasoning.
In International Conference on Machine Learning,
pages 9448–9457. PMLR.

Yu Wang, Nedim Lipka, Ryan A. Rossi, Alexa F. Siu,
Ruiyi Zhang, and Tyler Derr. 2024. Knowledge
graph prompting for multi-document question an-
swering. In Thirty-Eighth AAAI Conference on Arti-
ficial Intelligence, pages 19206–19214. AAAI Press.

Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo,
and William Yang Wang. 2018. One-shot relational
learning for knowledge graphs. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1980–1990.

Chuxu Zhang, Huaxiu Yao, Chao Huang, Meng Jiang,
Zhenhui Li, and Nitesh V Chawla. 2020. Few-shot
knowledge graph completion. In Proceedings of
the AAAI conference on artificial intelligence, vol-
ume 34, pages 3041–3048.

Shuangjia Zheng, Sijie Mai, Ya Sun, Haifeng Hu, and
Yuedong Yang. 2022. Subgraph-aware few-shot in-
ductive link prediction via meta-learning. IEEE
Transactions on Knowledge and Data Engineering.


	Introduction
	Related Work
	Method
	Structural Subgraph Learning
	Commonsense Subgraph Learning
	Commonsense Meta-learning

	Experiments
	Experimental Setup
	Standard Inductive Results
	Few-shot Inductive Results
	Impact of Few-shot Size
	Analysis under subgraphs of different densities
	Ablation Study
	Case Study

	Conclusion

