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Abstract

Recent studies have demonstrated that cross-
domain recommendation (CDR) effectively
addresses the cold-start problem. Most ap-
proaches rely on transfer functions to generate
user representations from the source to the tar-
get domain. Although these methods substan-
tially enhance recommendation performance,
they exhibit certain limitations, notably the fre-
quent oversight of similarities in user prefer-
ences, which can offer critical insights for train-
ing transfer functions. Moreover, existing meth-
ods typically derive user preferences from his-
torical purchase records or reviews, without
considering that preferences operate at three
distinct levels: category, brand, and aspect,
each influencing decision-making differently.
This paper proposes a model that integrates
the preferences from coarse to fine levels to
improve recommendations for cold-start users.
The model leverages historical data from the
source domain and external memory networks
to generate user representations across differ-
ent preference levels. A meta-network then
transfers these representations to the target do-
main, where user-item ratings are predicted by
aggregating the diverse representations. Ex-
perimental results demonstrate that our model
outperforms state-of-the-art approaches in ad-
dressing the cold-start problem on three CDR
tasks.

1 Introduction

Recommender systems are crucial for e-commerce
platforms and have garnered significant attention
from both industry and academia. Despite exten-
sive research, recommending content to users with-
out historical records remains a major challenge,
particularly for cold-start users. Recent studies
(Zhu et al., 2022; Man et al., 2017; Zhu et al.,
2021a; Zhao et al., 2020; Wang et al., 2020; Vartak
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et al., 2017; Sun et al., 2023; Li et al., 2024) demon-
strate the effectiveness of CDR systems in address-
ing this challenge. These works primarily focus
on transferring user representations from a source
domain with abundant historical data to a target do-
main with minimal or no historical data. Building
on these researches, this paper also employs CDR
methods to tackle the cold-start problem.

The key of CDR for cold-start users is to bridge
user representations in the source domain and the
target domain. Previous studies mainly utilize neu-
ral networks to extract user’s item-level preference
representation from historical purchased items in
the source domain (Man et al., 2017; Wang et al.,
2018; Zhu et al., 2022; Sun et al., 2023; Li et al.,
2024). Additionally, a common transfer function,
as shown in Figure 1 (a) was designed for all users
to facilitate the migration of representation from the
source domain to the target domain. During train-
ing, overlapping users are employed to optimize
the models, resulting in the successful implementa-
tion of a cross-domain recommendation system for
cold-start users. However, users’ preferences vary,
necessitating personalized transfer approaches for
each individual. Then, Zhu et al. (2022) utilized
a meta-network to generate personalized transfer
functions for each user, as shown in Figure 1 (b).
On the other hand, a unified user representation
cannot reflect the user’s multiple preferences in the
source domain. Thus, Sun et al. (2023) proposed
a novel reinforced multiple preferences transfer
framework for CDR.

Although these methods substantially enhance
recommendation performance, they exhibit certain
limitations, notably the frequent oversight of simi-
larities in user preferences, which can offer critical
insights for training transfer functions, as shown
in Figure 1 (c). Moreover, existing methods typ-
ically derive user preferences from historical pur-
chase records or reviews, without considering that
preferences operate at three distinct levels: cate-
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Figure 1: An illustration of common transfer, personalized transfer, and personalized transfer with similar users
preferences (group-based preferences).

gory, brand, and aspect, each influencing decision-
making differently. For example, some users pri-
oritize brands, while others focus on specific as-
pects of items. Therefore, effectively capturing and
aggregating representations across different prefer-
ence levels is crucial.

This paper integrates GRoup-bAsed
PreferencEs from coarse to fine for cold-
start users recommendation (GRAPECDR). First,
we use historical data to generate user represen-
tations at category, brand, and aspect levels in
the source domain. External memory networks
create group-based representations for each level,
which are then transferred to the target domain by
a meta-network. In the target domain, we predict
user-item ratings by combining: (1) category
preference from the user’s representation and
item’s category embedding, (2) brand preference
from the user’s representation and item’s brand
embedding, and (3) aspect preference from review
aspects and polarities matched with the user’s
representation. The final rating is an aggregate
of these three ratings. Experiments on three
cross-domain tasks show our model outperforms
many state-of-the-art approaches.

2 Related work

2.1 Cold-start Recommendation
Previous works have focused on the following as-
pects of research: (1) How to efficiently use lim-
ited interactive information. In certain cold-start
scenarios, where only a limited amount of inter-
action data is available, efficiently leveraging this
constrained data becomes crucial. Current research
(Lu et al., 2020; Vartak et al., 2017; Lee et al., 2019)
primarily employed meta-learning approaches to
address such situations, yielding promising results.
(2) How to use policy for recommendation. For ex-

ample, Pan et al. (2019a); Li et al. (2010) adopted
the method of reinforcement learning to adjust their
product selection strategies according to user click
feedback to maximize the total number of user
clicks. (3) How to efficiently use auxiliary infor-
mation. The user’s auxiliary information includes
rich content, which can greatly improve the per-
formance of cold-start recommendations. Gener-
ally speaking, this auxiliary information includes
user attributes (Man et al., 2017; Pan et al., 2019b;
Seroussi et al., 2011; Volkovs et al., 2019; Zhu
et al., 2021b), knowledge graph (Wang et al., 2019),
and cross-domain information (Man et al., 2017;
Zhu et al., 2021a; Wang et al., 2018; Zhu et al.,
2022; Zhao et al., 2020; Sun et al., 2023; Li et al.,
2024). Overall, the cross-domain recommendation
(CDR) used the data of the auxiliary domain to help
the recommendation in the target domain achieved
better results than other methods (Zhu et al., 2022).
Therefore, in this paper, we focus on CDR for cold-
start users.

2.2 Cross-domain Recommendation for
Cold-start Users

The core task of CDR for cold-start users is to
bridge user preference representations between the
source and target domains. Current studies derive
these representations mainly from users’ interac-
tion history (item-level) or reviews (aspect-level)
in the source domains.

Methods based on user interaction history pri-
marily used matrix factorization (MF) models to
generate latent factors or rating patterns, then trans-
ferred them across domains. Pan et al. (2010) in-
tegrated user and item knowledge from auxiliary
data sources using a matrix-based transfer learn-
ing framework. EMCDR (Man et al., 2017) devel-
oped an embedding-and-mapping framework for
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cross-domain recommendation. Zhu et al. (2018)
combined MF models and a Deep Neural Net-
work (DNN), leveraging user and item sparsity in
both domains to guide DNN training. Wang et al.
(2018) introduced Cross-Domain Latent Feature
Mapping (CDLFM) with user rating behavior and
neighborhood-based feature mapping. Previous
models overlooked bidirectional latent connections
between users and items, which Li and Tuzhilin
(2020) addressed with a dual learning approach for
iterative information transfer. Zhu et al. (2022) pro-
posed PTUPCDR, a framework for personalized
transfer of user preferences, but it neglected pref-
erence correlations among users. To address this,
Li et al. (2024) proposed a novel CDR framework
with neural processes. Latest, Zhu et al. (2024)
proposed a multi-interest meta-network to decou-
ple users’ multiple interests, and generate multi-
interest bridges to transfer user embeddings from
the source domain to the target domain.

Considering user reviews contain rich prefer-
ence information, Zhao et al. (2020) extracted as-
pect information from reviews to generate user
aspect-level representation and transferred it from
the source to the target domain. Fu et al. (2019)
used review text and item content as supplemen-
tary data, integrating multiple variations of Stacked
Denoising Autoencoders (SDAE) to combine this
information with the rating matrix in both domains.
However, a unified user representation cannot cap-
ture a user’s multiple interests. To address this, Sun
et al. (2023) proposed a reinforced multi-interest
transfer framework for CDR.

3 The GRAPECDR Framework

3.1 Overview of GRAPECDR

We use Ds = {Is,Us} and Dt = {It,U t} to de-
note the source and target domains, where Is/t and
Us/t are item and user set in Ds/t respectively. Let
Uo be an overlapping user set in two domains, that
is, the user has purchased items in both domains.
Uc is a cold-start user that only has purchased items
in Ds domain. Given a user u ∈ Uc and an item
i ∈ It, predict the user-item rating r̂u,i.

The architecture of GRAPECDR is shown in
Figure 2. It mainly consists of three parts: User
Group-based Representations Generation, Rep-
resentations Transfer, and Rating Prediction.
Similar to previous studies (Zhao et al., 2020; Zhu
et al., 2022; Sun et al., 2023; Li et al., 2024), we
only select overlapping users Uo for our experi-

ments.

3.2 User Group-based Representations
Generation

3.2.1 Intrinsic Representations Generation
As mentioned earlier, the user’s preferences include
three levels from coarse to fine: category-level,
brand-level, and aspect-level. In this paper, we first
generate three levels of user intrinsic representa-
tions in Ds.

Each item can belong to one or more categories.
For example, the book (The Progressive Era) be-
longs to ’Historical Novel’ and ’United States His-
tory’ categories. In Ds, the u′s category-level in-
trinsic representation can be computed by:

esu = softmax(nesu)E
s, (1)

where nesu ∈ R1×|Es| is number of occurrences
for each category in u′s historical purchased items
(If the category does not appear, the number will
be 0), Es is category vocabulary in Ds, and Es =
[es1, e

s
2, ..., e

s
|Es|] are embedding matrix of Es.

Similarly, the user’s brand-level intrinsic repre-
sentation can by obtained by:

isu = softmax(nisu)I
s, (2)

where Is = [is1, i
s
2, ..., i

s
|Is|] is the brand embedding

matrix, and nisu ∈ R1×|Is| is number of occur-
rences for each brand in u′s historical purchased
items and Is is brand vocabulary in Ds.

Further, we extract aspect occurrence list and
the number of occurrences from u′s reviews, as
elaborated in Appendix A. nvsu ∈ R1×|Vs| is u′s
number of occurrences for each aspect, Vs is as-
pect vocabulary in Ds. Finally, the u′s aspect-level
intrinsic representation can be obtained by:

vs
u = softmax(nvsu)V

s, (3)

where Vs = [vs
1,v

s
2, ...,v

s
|Vs|] is the embedding

matrix of Vs.

3.2.2 Group-based Representations
Generation

At this stage, the three levels of u′s intrinsic repre-
sentations in Ds have been obtained. The category-
level intrinsic representation esu will be used as an
example to illustrate the process of generating the
group-based representation in the source domain.
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Figure 2: The architecture of GRAPECDR.

Firstly, we introduce an External Memory Net-
work (EMN) (Graves et al., 2014) to store the typ-
ical features of overlapping users at the category-
level. Suppose there are N overlapping users
in our system, their category memory matrix is
Me = [me

1,m
e
2, ...,m

e
N ], where me

k is the mem-
ory slot of kth user. Then, a soft-attention mecha-
nism is adopted to read Me for obtaining u′s group-
based representation at category-level, denoted as
esu∗ :

esu∗ =
N∑
k=1

zu,k ·me
k, (4)

zu,k =
expwu,k∑N
i=1 expwu,i

, wu,k = esu · (me
k)

T , (5)

where esu is computed by Equation 1, and zu,k is
similarity weight. The memory slot in Me corre-
sponding to each user is expected to store as many
of the user’s typical features as possible. The group-
based representation for the user is then derived
through a weighted summation of the typical fea-
tures of similar users. Consequently, the memory

slot for each user must be updated during training
(Chen et al., 2018). Drawing inspiration from Neu-
ral Turing Machine (Graves et al., 2014), our ap-
proach involves clearing Me before incorporating
fresh information. To elaborate, we commence by
computing the D-dimensional erase vector eraseu
from esu by:

eraseu = σ(Werasee
s
u + berase), (6)

where σ is the element-wise sigmoid function, and
Werase and berase are the erase parameters to be
learned. Given the erase vector, the u′s memory
slot me

u is updated by:

me
u ←me

u ⊙ (1− eraseu), (7)

where ⊙ is element-wise product. The primary
purpose of the erase operation is to remove user
memories that are deemed unimportant, as acquired
through the neural control network. After erasing,
an add vector addu is used to update the u′s mem-
ory by:

addu = tanh(Wadde
s
u+badd), m

e
u ←me

u+addu,
(8)
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where Wadd, badd are the add parameters to be
learned. The erase-add update strategy facilitates
both the forgetting and reinforcement of user repre-
sentations throughout the learning process (Chen
et al., 2018). By automatically adjusting the erase
and add parameters, the model can discern which
signals should be attenuated and which should be
augmented.

3.3 Representations Transfer
Zhu et al. (2022) argued that representation transfer
should be personalized. Building on this approach,
a meta-network is proposed to generate a person-
alized transfer function from users’ group-based
representations. A similarity weight vector aeu is
computed by taking the inner product of esu with
each category in Es, which is then used to calculate
a weighted sum of the category embeddings.

aeu = softmax(esu(E
s)T ), esû = aeuE

s. (9)

The proposed meta-network is formulated as:

We
u = g(esû; θ), (10)

where g(.) is the meta-network, which is param-
eterized by θ. In this paper, the meta-network is
a two-layer feed-forward network. The We

u is a
weight matrix whose size depends on the structure
of the transfer function. The personalized category
transfer function is formulated as:

fe
u = (.;We

u). (11)

Note that the W e
u is used as the parameters of the

transfer function rather than input. And the gen-
erated transfer function depends on group-based
representation. By the transfer function, we can
obtain the transformed user’s group-based category-
level representation esu∗ (Computed by Equation 4)
in the target domain:

etu = fe
u(e

s
u∗). (12)

Similarly, we can acquire the user’s group-based
brand-level and aspect-level representations itu,v

t
u

in the target domain. It is important to highlight
that each level of preference corresponds to dis-
tinct transfer functions f i

u, f
v
u and external memory

networks Mi,Mv (as shown in Figure 2).

3.4 Rating Prediction
u′s rating for i ∈ It is mainly composed of three
parts: category preference rating reu,i, brand

preference rating riu,i, aspect preference rating
rvu,i.

To calculate category preference rating, we need
to extract categories from the i′s metadata, de-
noted as eti = [eti,1, ..., e

t
i,|eti|

]. Since u has different
weights on different categories, which can be rep-
resented by:

etui =

|eti|∑
k=1

ϕu,i,ke
t
i,k, (13)

ϕu,i,k =
exp (hT

e tanh(Wee
t
u +Uee

t
i,k))∑|eti|

j=1 exp (h
T
e tanh(Weetu +Ueeti,j))

,

(14)
where eti,k is embeddings of eti,k. Finally, category
preference rating reu,i is computed by:

reu,i = We2(We1 [e
t
u ⊕ etui ] + be1) + be2 . (15)

Then we compute the brand preference rating
by:

riu,i = Wi2(Wi1 [i
t
u ⊕ it] + bi1) + bi2 , (16)

where it is the brand embedding of i in Dt.
To calculate aspect preference rating, we need

to extract aspects and their sentiment polarities
from the i′s reviews (as elaborated in Appendix
A), denoted as vt

i = [vti,1, ..., v
t
i,|vt

i |
] and sti =

[sti,1, ..., s
t
i,|sti|

]. Note that if multiple reviews all
relate to the same aspect, the sentiment polarity is
the average of them. Intuitively, u has different
preferences on different aspects of i, so the aspect
preference probability is calculated as follows:

σu,i,k =
exp (hT

v tanh(Wvv
t
u +Uvv

t
i,k))∑|vt

i |
j=1 exp (h

T
v tanh(Wvvt

u +Uvvt
i,j))

,

(17)
where vt

i,k is the embedding of vti,k. Moreover,
when a user makes a purchase, if the aspects high-
lighted in the reviews align with the user’s interests
and exhibit a positive polarity, it is likely to bolster
the user’s inclination to make the purchase. In view
of this, we calculate the weighted sum of the aspect
polarity scores to generate aspect preference rating:

rvu,i =

|vt
i |∑

k=1

σu,i,ks
t
i,k,∀sti,k ∈ (−1, 1). (18)

In practice, users assign varying weights to dif-
ferent preference ratings. For instance, some users
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prioritize aspect ratings, whereas others priori-
tize category ratings. Consequently, we derive
the user’s rating weight from their representations,
which is computed by:

wf = sigmoid(ww[e
t
u ⊕ itu ⊕ vt

u] + bw), (19)

and the finally rating is defined as:

r̂u,i = wf [r
e
u,i ⊕ riu,i ⊕ rvu,i]. (20)

3.5 Optimization Strategy
During Training, the historical data generated by
overlapping users is leveraged to optimize the
model parameters with SmoothL1(Girshick, 2015)
loss, which is defined as follows:

Lmain = −
∑

u∈UO,i∈It

l(yu,i, r̂u,i), (21)

l(a, b) =

{
1
2(a− b)2 if |a− b| < 1

|a− b| − 1
2 otherwise

, (22)

where yu,i is ground-truth rating.

4 Experiments

4.1 Datasets
Three popular categories: Books, CDs & Vinyl
(Music), and Movies & TV (Movies) on the Ama-
zon reviews dataset (He and McAuley, 2016;
McAuley et al., 2015) are selected for the experi-
ments. Table 1 shows the detailed statistics of the
dataset.

4.2 Baseline Methods
In the experiment, we choose the following base-
lines for comparison: TGT is a naive target model
trained only with data in the target domain. CMF
(Singh and Gordon, 2008) is a simple CDR method
extending MF, where user embeddings are shared
between source and target domains. SSCDR (Kang
et al., 2019) trained the bridge function in a semi-
supervised manner. EMCDR (Man et al., 2017) is
an embedding-and-mapping framework that learns
a mapping function to capture coordinate rela-
tionships between domains. PTUPCDR (Zhu
et al., 2022) is a framework for personalized trans-
fer of user preferences, aiming to address a sin-
gle shared bridge function. REMIT (Sun et al.,
2023) is a novel framework called reinforced multi-
interest transfer for CDR. MIMNET (Zhu et al.,

2024) employed multi-interest meta-network with
multi-granularity target-guided attention for cross-
domain recommendation.

Following Zhao et al. (2020); Zhu et al. (2022),
to compare the performance of the models more
comprehensively, we use Mean Absolute Error
(MAE), and Rooted Mean Square Error (RMSE)
as metrics.

4.3 Implementation Details
We use PyTorch (Paszke et al., 2019) to develop
both our model1. Model parameters are initially
randomized according to a uniform distribution as
described in (Glorot and Bengio, 2010). These pa-
rameters are then updated using Adam (Kingma
and Ba, 2014) with a learning rate of 1 × 10−4.
Both the embedding dimension (300) and the batch
size (256) are consistently set across all models.
An open-source large language model (LLM) with
prompt-based extraction is utilized to directly ex-
tract aspects and their associated sentiments (see
Appendix A for details)

Following the methods described in (Sun et al.,
2023; Zhu et al., 2024), the effectiveness of
GRAPECDR is evaluated by randomly removing
all ratings from a subset of overlapping users in the
target domain, who are then treated as test users.
The remaining overlapping users are used to train
the bridge function. In the experiments, the pro-
portions of test (cold-start) users β are set to 80%,
50%, and 20% of the total overlapping users. For
each task, the average results are reported over
three random runs.

4.4 Cold-start Recommendation Experiments
Multiple experiments are conducted on three tasks,
and the results are presented in Table 2. TGT per-
forms the worst because it trains directly on target
domain data. CMF performs better by combin-
ing data from different domains into one. SSCDR
and EMCDR outperform CMF by using a common
bridge to transfer user embeddings from the source
to the target domain. PTUPCDR further improves
performance by learning personalized bridges for
each user. Among baseline methods, REMIT is the
second best due to its use of multiple personalized
bridges and an RL-based selector for interests.

Our method, GRAPECDR, consistently per-
forms the best across all tasks and cold-start set-
tings. It also shows greater robustness. As

1Our source code is available at
https://github.com/sygogo/GRAPECDR.
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Domain Users items
#users #overlap #items #categories #brands #aspects

Task 1 Movie 123,960 18,031 50,052 398 12366 1537
Music 75,258 64,443 425 13787 3769

Task 2 Book 603,668 37,388 367,982 638 123510 3375
Movie 123,960 50,052 398 12366 5725

Task 3 Book 603,668 16,738 367,982 638 123510 1917
Music 75,258 64,443 425 13787 4635

Table 1: Statistics of the three tasks. #overlap denotes number of overlapping users.

Tasks β Metric TGT† CMF† SSCDR† EMCDR† PTUPCDR† REMIT† MIMNet⋆ Ours

1

20% MAE 4.4730 1.4128 1.2151 1.1963 1.0051 0.9393 0.8027 0.7419
RMSE 5.1615 1.8725 1.4946 1.4803 1.3498 1.2709 1.1509 1.0296

50% MAE 4.5064 1.5179 1.3235 1.4570 1.1464 1.0437 0.8729 0.7441
RMSE 5.1774 2.0225 1.6794 1.8086 1.5987 1.4580 1.2244 1.0263

80% MAE 4.5129 1.8609 1.6382 1.9397 1.4245 1.2181 1.0614 0.7534
RMSE 5.1983 2.4507 2.1576 2.3290 2.0338 1.6601 1.4721 1.0406

2

20% MAE 4.2026 1.4857 1.2631 0.9834 0.9093 0.8759 0.8718 0.8531
RMSE 4.7677 1.9308 1.4700 1.2295 1.1914 1.1650 1.1430 1.1442

50% MAE 4.2225 1.5974 1.3407 1.0556 0.9567 0.9172 0.9025 0.8538
RMSE 4.7890 2.0636 1.5607 1.3238 1.2712 1.2379 1.1983 1.1433

80% MAE 4.2405 2.3416 1.2495 1.2249 1.0519 1.0055 0.9710 0.8584
RMSE 4.8201 2.8561 1.5572 1.5334 1.4338 1.3772 1.2910 1.1495

3

20% MAE 4.4516 1.7873 1.5988 1.6121 1.4701 1.3749 0.8107 0.7228
RMSE 5.1455 2.3316 2.1146 2.1638 2.0707 1.9940 1.1711 0.9928

50% MAE 4.4825 1.9348 1.8166 1.9050 1.5872 1.4401 0.9348 0.7222
RMSE 5.1585 2.5232 2.2718 2.3289 2.2279 2.0495 1.3009 1.0078

80% MAE 4.5188 2.3989 2.1749 2.2192 1.8344 1.6396 1.1167 0.7326
RMSE 5.2001 3.0838 2.5652 2.6331 2.5235 2.2653 1.5178 1.0100

Table 2: Comparisons of baselines performances. And the baselines marked † are taken from Sun et al. (2023), and
marked ⋆ is taken from Zhu et al. (2024), we used the same training and test sets as these papers. Note that a lower
MAE and RMSE value indicates a better model performance. For each task, the averaged results over three random
runs are reported.

β increases, fewer training users, making cross-
domain mapping less effective due to fewer train-
ing instances. Therefore, the baseline methods all
show varying degrees of performance degradation.
GRAPECDR addresses this by focusing on transfer-
ring categories, brands, and aspects across domains,
rather than user representations, thus reducing the
impact of β.

4.5 Ablation Study
This section presents an analysis of the proposed
model to assess the contribution of each compo-
nent.

4.5.1 Impact of different levels of preference
on model performance

First, we observe a significant performance decline
in Table 3, when the aspect preferences (denoted
as category + brand) are removed. The MAE
increases by approximately 0.04 across Tasks 1,
2, and 3, indicating that fine-grained preferences
are crucial to the model’s performance. Addition-
ally, when brand preference is removed (denoted
as category), the model shows a slight decrease in

performance, with the MAE increasing by about
0.01 across the same tasks, this result suggests that
while brand preference does influence the model,
its impact is less pronounced than that of aspect
preference. Overall, the ablation experiment con-
firms that each preference level significantly affects
the model’s performance.

4.5.2 Impact of integrating group-based
preference on model performance

Furthermore, we construct a variant model for the
transfer function, wherein each user possesses a
personalized transfer function (as shown in Equa-
tion 12), but the input of this function is user in-
trinsic representation (denoted as w/o group-based
transfer preference). As illustrated in Table 3,
upon exclusion of group-based preference, the
model’s performance experiences a notable decline
across all tasks. In Task 3, MAE increased by about
0.06, and in the other tasks, it increased by about
0.03. This result shows that adding the preference
of similar users to the representations can signifi-
cantly improve the performance of the model.
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Models Task 1 Task 2 Task 3
MAE RMSE MAE RMSE MAE RMSE

category 0.7912 1.0767 0.9216 1.2134 0.7639 1.0299
category+brand 0.7744 1.0723 0.9025 1.1916 0.7500 1.0232

GRAPECDR(category+brand+aspect) 0.7419 1.0296 0.8531 1.1442 0.7228 0.9928
w/o group-based transfer function 0.7872 1.0647 0.8957 1.1796 0.7867 1.0531

Table 3: Performance comparison of different levels of preference. Note we set β = 20% in these experiments.
category denotes that the model only contains category preferences, and category+brand denotes that the model
contains category and brand preferences. w/o group-based transfer function denotes GRAPECDR do not use
group-based transfer function.

Source Domain Target Domain
book,dialogue,storytelling,value,writing style movie,acting,performance,story,film

planet,story cartoons,dvd,animation,ship,acting
soundtrack,plot,movie release,waiting time,movie longevity performance,special,music,staging,production

plot,film,acting,mood story,musicians,special,music,concert

Table 4: Case Study.

Figure 3: Visualization for category, brand, and aspect
memory network (Me, Mi and Mv) in three tasks. The
orange color represents the category memory network,
the green color denotes the brand memory network, and
the blue color represents the aspect memory network.

4.6 Visualization Analysis

Three external memory networks are employed to
store user features corresponding to category-level,
brand-level, and aspect-level preferences. T-SNE
(Van der Maaten and Hinton, 2008) visualizes these
networks across three tasks, showing that similar
user features cluster into distinct groups. Figure 3
illustrates that the category memory network (or-
ange) and the brand and aspect networks (green
and blue) effectively capture and store typical user
features, aligning with our goal of grouping users
by shared preferences.

4.7 Case Study

This section presents a case study focusing on
aspect-level preferences as an illustrative exam-

ple. Results are shown in Table 4. The first two
cases come from Task 2 (Books->Movies), and
the remaining cases come from Task 1 (Movies-
>Musics).

We first obtain the aspects mentioned in the
user’s reviews, as shown in the ’Source Domain’
column of Table 4. Then, the attention weights
from Equation 17 are used to identify the top five
aspects the user focuses on in the target domain.
In the first case, the aspects mentioned by users
in the source domain (Books) mainly include "sto-
rytelling, writing style", which may mean that the
reader pays more attention to the plot. In the tar-
get domain (Movies), users pay more attention to
"story, acting, performance". Obviously, this pref-
erence is similar to the preference in the source
domain. In the second case, users prefer "planet,
story" in the source domain, the reader may be a
child or a woman/man with children. In the target
domain, they pay more attention to the "cartoons"
and "animation" aspects of movies. Similarly, cases
3 and 4 yield analogous outcomes. The case study
highlights not only the efficacy but also the expla-
nation of our method.

5 Conclusion

This paper addresses the cold-start problem
in cross-domain recommendation by integrating
group-based preferences from coarse to fine levels.
A model is designed to generate coarse-to-fine pref-
erence representations using historical data from
the source domain. Firstly, external memory net-
works are employed to capture group-based repre-
sentations of similar users, which are then trans-
ferred to the target domain via a meta-network.
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Aggregating ratings from various preference rep-
resentations then predict user-item ratings. Empir-
ical results demonstrate that the proposed model
outperforms several state-of-the-art methods. Fur-
thermore, ablation experiments further reveal that
preferences at each level significantly influence
performance, and incorporating similar users’ pref-
erences enhances the model’s effectiveness.
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A Appendix

A.1 Aspect-Polarity Extraction with LLM
we use Mistral-Nemo-2407-Instruction-
quantized.w4a162, a quantized version of
Mistral-Nemo-2407-Instruction , as the base model
to extract the aspect and related polarity of the
given sentences. Due to the quantized version
model and batch reference, the speed of inference
to extract expected information is greatly improved.
Then, we deploy the model with Vllm(Kwon et al.,
2023) on a server machine of NVIDIA A800.

The system prompt of extraction is as follows:
Now you are an aspect category and sentiment po-
larity extractor. Your work is to extract aspect
category and sentiment polarity pairs from the
given sentences. If you could not detect any aspect
category and sentiment polarity information from
the provided sentences, please just return a empty
list:[]. Remember the polarity should be one of

’positive’, ’negative’ and ’neutral’. Note that if the
aspect category and sentiment polarity pairs exist,
your answer should be a json list. Each json in the
list has two keys: ’aspect’ and ’polarity’, for exam-
ple:[{"aspect":"food","polarity":"negative"}]. Do
not contain explain or any other unrelated content
in your answer!

The user prompt of extraction is as fol-
lows: Given a sentence as follows: [TAR-
GET_SENTENCE] Please extract the aspect and
polarity pairs in a json list.

The target sentence is inserted in place of the
placeholder [TARGET_SENTENCE] to generate
the user prompt, which is then appended to the sys-
tem prompt. This combined prompt is fed into the
model to obtain a response. A JSON output parser
is used to extract the expected JSON-formatted
answer. If the parser fails, a retry mechanism is
triggered until a correct answer is produced or the
retry limit is reached.

2https://huggingface.co/nvidia/Mistral-NeMo-12B-
Instruct


	Introduction
	Related work
	Cold-start Recommendation
	Cross-domain Recommendation for Cold-start Users

	The GRAPECDR Framework
	Overview of GRAPECDR
	User Group-based Representations Generation
	Intrinsic Representations Generation
	Group-based Representations Generation

	Representations Transfer
	Rating Prediction
	Optimization Strategy

	Experiments
	Datasets
	Baseline Methods
	Implementation Details
	Cold-start Recommendation Experiments
	Ablation Study
	Impact of different levels of preference on model performance
	Impact of integrating group-based preference on model performance

	Visualization Analysis
	Case Study

	Conclusion
	Appendix
	Aspect-Polarity Extraction with LLM


