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Abstract

Automatically evaluating the quality of re-
sponses in dialogue systems is a challenging
yet crucial task. Current metrics often fail to
align with human judgments, especially when
assessing responses that are grammatically cor-
rect. To address this issue, we propose a
novel metric, called CausalScore, which as-
sesses the relevance of responses by measur-
ing the causal strength between dialogue his-
tories and responses. The causal strength is
estimated by utilizing both unconditional de-
pendence and conditional dependencies from
dialogue histories to responses. We compare
our metric with the existing competitive met-
rics in terms of their alignment with human
judgements. Our experimental results demon-
strate that CausalScore significantly surpasses
existing state-of-the-art metrics by aligning bet-
ter with human judgements. Additionally, we
collect a dialogue dataset CGDIALOG+ with
human-annotated causal relations and a set of
pairwise human judgements to facilitate the de-
velopment of automatic metrics. 1

1 Introduction

Although various automatic metrics (Papineni et al.,
2002; Lin, 2004a; Tao et al., 2018; Ghazarian et al.,
2022) have been proposed in the past, evaluation
of open-domain dialogue systems is still an open
challenge. Existing metrics often show a low corre-
lation with human judgements (Ma et al., 2023). In
particular, assessing to what degree a response is
semantically relevant to the corresponding dialogue
history is a difficult task.

Reference-based metrics, such as BLEU (Pap-
ineni et al., 2002) and BERTScore (Zhang* et al.,
2020), assess the quality of generated dialogue re-
sponses by measuring their similarities to human
written “gold” responses. However, they cannot

1Our codes and datasets are available at https://github.
com/WilliamsToTo/causalscore_dialogue.

Figure 1: This is an illustrative example of dialogue
evaluation, where the responses are generated by human
and different dialogue systems. Evaluation results for
relevance using different metrics are provided along-
side the responses. Highlighted texts indicate causes of
human response.

accurately and impartially evaluate diverse texts
generated by the systems built upon large language
models (LLMs), especially when the responses dif-
fer significantly from references but are still plausi-
ble and fluent for humans (Liu et al., 2023).

In contrast, reference-free metrics are proposed
to directly output scores based on the dialogue his-
tory and responses without the references. There
are in general two paradigms to evaluate responses
from dialogue models: i) supervised models, which
are classifiers or regression models to estimate a
score for a given response, such as ADEM (Lowe
et al., 2017), RUBER (Tao et al., 2018), and
DEAM (Ghazarian et al., 2022), and ii) pre-trained
LLMs, which are employed to generate a score in-
dicating the quality of a response (Liu et al., 2023).
However, as illustrated in Fig. 1, our study (see Sec.
4.4) reveals that these metrics frequently assign
high scores to grammatically correct responses, but
none of those scores correlate well with the cor-
responding human rankings on crucial evaluation

https://github.com/WilliamsToTo/causalscore_dialogue
https://github.com/WilliamsToTo/causalscore_dialogue
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aspects (e.g., relevance, empathy, etc) even in the
in-domain setting.

Based on the above analysis, this work focuses
on developing an automatic, reference-free metric
that better aligns with human judgements in evalu-
ating the relevance of responses. Feng et al. (2023)
show that responses which are highly relevant to
the dialogue history also exhibit a strong causal
relation between the history and the responses. As
shown in Fig 1, the most relevant response (i.e.,
the human response) replies to more utterances in
the dialogue history. For instance, the question
"how much is the rent?" causes the response con-
taining "It’s $200 a month". Similarly, because
the history states "It’s all gas - the flat has central
heating and a gas stove," the human responds with
"That does not include the cost of gas." Addition-
ally, the question "Is it still available?" elicits the
response "The flat will be available starting Septem-
ber 1." However, other responses have few or no
such causal relations. Inspired by this finding, we
propose a novel metric CausalScore to quantify the
relevance of responses by estimating the causal
strength (Janzing et al., 2013a) between utterances
and responses, where causal strength measures the
strength of causal relations. Namely, a response
assigned with a high causal strength score indicates
it is highly relevant to dialogue history.

We use classifier-based (un)conditional indepen-
dence tests to estimate causal strength (Spirtes
et al., 1993; Pearl, 2009b; Mukherjee et al., 2020b).
Specifically, the implementation of CausalScore
involves a three-step process. First, we apply an
unconditional independence classifier to identify
a subset of the utterances in dialogue history that
depend on a given response, named dependent utter-
ances. Second, we calculate conditional dependen-
cies using the conditional independence classifier,
which is operated by conditioning each utterance
in dependent utterances. Finally, CausalScore esti-
mates causal strength by aggregating both uncondi-
tional and conditional dependencies.

To train CausalScore classifiers for a new do-
main, we employ a rapid annotation process to
extend the CGDIALOG dataset (Feng et al., 2023)
with a domain-specific corpus. As an example,
we recruit four crowd-workers to annotate causal
relations for 950 history-response pairs from the
DREAM (Gu et al., 2022) dataset within 12 hours
for the new domain. The resulting corpus is re-
ferred to as CGDIALOG+. To evaluate the align-
ment between an automatic metric and human

judgements, we ask crowd-workers to indicate their
preference between a pair of responses, given the
same dialogue history. This ends up with 1,800 an-
notated preferences, which are used to conduct ex-
tensive experiments to compare CausalScore with
the state-of-the-art (SOTA) automatic metrics.

Our contributions are summarized as follows:
1) We introduce CausalScore, a novel automatic
metric for evaluating the relevance of responses. 2)
We release CGDIALOG+, a new dataset created
through a rapid annotation process that enables
CausalScore to be adapted to new domains within
12 hours. 3) The experimental results show that
CausalScore has significantly stronger correlations
with human judgements than the SOTA metrics.

2 Background

Causal Discovery and Causal Strength. Unlike
traditional statistical analysis, which focuses on
correlation analysis between variables, causal dis-
covery aims to discover a causal graph among a set
of variables through data. A causal graph G con-
sists of a set of nodes V and a set of edges E , where
a node v ∈ V denotes a random variable and a
directed edge vi → vj ∈ E indicates that vi is a di-
rect cause of vj (Pearl, 2009a; Neal, 2020). Causal
discovery algorithms can be roughly divided into
two categories: constraint-based method and score-
based method (Spirtes et al., 1993; Pearl and Verma,
1991; Pearl, 2009a). One widely-used constraint-
based causal discovery algorithm is the Peter-Clark
(PC) algorithm (Spirtes et al., 1993).

For a pair of variables (vi, vj), the PC algorithm
operates unconditional independence tests and con-
ditional independence (CI) tests given the other
variables. If vi and vj are independent according
to any of the tests, the PC algorithm concludes that
there is no causal relation between vi and vj . The
orientation of edges is determined using heuristics
and identifying the specific structure such as im-
morality (Pearl, 2009a; Neal, 2020).

The core of the PC algorithm is the CI
test. Given n i.i.d samples from the distribu-
tion P (vi, vj , vk), we say that vi is conditionally
independent of vj given vk (denoted by vi ⊥⊥
vj |vk), if the distribution P (vi, vj |vk) factories as
P (vi|vk)P (vj |vk). The resulting hypothesis test-
ing is as follows: Given n i.i.d samples from the
distribution P (vi, vj , vk), one needs to distinguish
between the two hypotheses:

H0 : vi ⊥⊥ vj |vk vs H1 : vi ⊥̸⊥ vj |vk.
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Conditional independence tests can also be opera-
tionalised or interpreted based on conditional mu-
tual information (CMI) (Cover and Thomas, 2006;
Janzing et al., 2013b; Mukherjee et al., 2020a),
because CMI is zero if two variables are condi-
tional independent, otherwise CMI is proportional
to the dependencies between two variables. Thus,
prior works also use CMI as an indicator of causal
strength (Seitzer et al., 2021).

Classifier-based CI Test. There are many CI
tests for statistical data, such as Fisher-z test
(Fisher), Chi-Square test (McHugh, 2013), and
kernel-based CI test (Zhang et al., 2011). How-
ever, those methods are designed for continuous
random variables, and cannot be directly applied to
text data. Classifier-based CI tests convert the CI
test into a binary classification problem (Lopez-Paz
and Oquab, 2017; Sen et al., 2017, 2018; Mukher-
jee et al., 2020a). The central idea is to train a
binary classification model to identify whether data
examples are from vi ⊥⊥ vj |vk or vi ⊥̸⊥ vj |vk. In
this work, we adopt classifier-based CI tests to text
data to identify causal relations and compute causal
strength between dialogue history and response.

3 Methodology

In this paper, we propose a reference-free automatic
evaluation metric, named CausalScore, to assess
the relevance of a given response to the correspond-
ing dialogue history. Formally, we are given a
dialogue history c = {c1, ..., ct−1} and a response
rt, where each ci is an utterance in the history. The
goal is to develop a function f : (c, rt) → s that
produces a score s indicating their causal strength.
We argue that a response exhibiting high relevance
to the dialogue history inherently entails strong
causal strength with a particular set of utterances
in that dialogue history.

To quantify causal strength between utterances
and responses, we integrate the classifier-based
(un)conditional test results into a single score, in-
spired by the PC algorithm. By using a procedure
similar to the PC algorithm, the more causal rela-
tions we find between a response and utterances,
the stronger the causal strength is. We run first
unconditional tests to identify strong candidates
of causal relations, followed by verifying them
with CI tests. Both types of tests are conducted
by employing a classifier, which predict the proba-
bility of being dependent between a response and
input utterances. Instead of discovering full causal

graphs, we average among these dependence clas-
sifier probabilities based on the selected candidates
after unconditional tests to produce the final score.

In the following, we first introduce the CGDIA-
LOG+ corpus, followed by how we build the clas-
sifiers on that corpus and employ their predictions
to calculate CausalScore.

3.1 Annotation of CGDIALOG+

CGDIALOG+ is an extension of CGDIALOG that
is used to train the classifiers for independence tests.
CGDIALOG is a dialogue dataset with human-
annotated causal relations between utterances in
dialogue histories and responses.

Due to the relatively small size of CGDIA-
LOG, we extend it to CGDIALOG+ by adding
950 history-response pairs from the dialogues in
DREAM (Sun et al., 2019), using a rapid annota-
tion instruction. In the first round of annotation,
we hire four graduate students to annotate causal
graphs. Subsequently, in the second round, we se-
lect annotators who have high-quality annotation
results to review all annotations and correct mis-
takes. We measure the inter-annotator agreement
at both the utterance level and the clause level. At
the utterance level, we compute Cohen’s Kappa
and obtain 0.8021. At the clause level, we com-
pute the averaged F1 score for all possible pairs of
annotators and obtain an F1 score of 0.8316. Both
utterance and clause level scores indicate a high
level of inter-annotator agreement. The statistics of
CGDIALOG+ can be found in Table 1. More de-
tails of the rapid annotation process are presented
in Appendix A.2, and the annotation interface is
available in our code repository.

Number of items ESConv MSC DREAM
Annotation time (hr) - - 11
History-response pairs 694 800 950
Utterances 2301 3807 3862
Direct causes utterance 1347 1525 1519
Average length
of direct causes

24.01
(σ = 16.61)

22.22
(σ = 13.79)

16.67
(σ = 11.83)

Table 1: Statistics of the CGDIALOG+

3.2 Construction of Classifiers

To construct classifiers, we assume there is a projec-
tion function g(ci) = zi, which maps an utterance
to a continuous latent random variable zi denoting
the meaning of the utterance; the corresponding
node in the causal graph is denoted by vi. Utter-
ances with similar meaning are thus mapped to
the same latent representation. Thus, we are able
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to build a classifier on top of the hidden repre-
sentations produced by a pre-trained encoder, e.g.
RoBERTa (Liu et al., 2020).

Unconditional Independence Classifier The in-
put of the classifier is an utterance ci and a response
rt. The classifier predicts such a pair as positive
(l = 1) if ci ⊥̸⊥ rt, otherwise negative (l = 0).

To construct a training set, we label a pair of
(ci, rt) as positive, if either they have a causal re-
lation in CGDIALOG+ or ci is the preceding ut-
terance of rt. This is supported by the study of
Feng et al. (2023), which demonstrates that 90%
of preceding utterances serve as direct causes of
the following responses. We obtain negative exam-
ples by randomly sampling utterances as responses
from other conversations.

We use RoBERTa as the backbone model to
develop the unconditional independence classifier.
This is done by integrating a binary classification
head, which is fed by the representation of the
[CLS] token. As input to RoBERTa, we concate-
nate the context utterance ci with the response rt
using the special token ’</s>’ as the delimiter. This
amounts to the unconditional classifier Cuncond.

Conditional Independence Classifier The input
to the CI classifier is the concatenation of two ut-
terances from a dialogue history and a response.
It predicts positive if they are conditionally depen-
dent, otherwise negative.

The construction of the initial training set is
based on CGDIALOG+. Given one history-
response pair from CGDIALOG+, we select one
annotated cause of response, one utterance that is
unconditionally dependent on the response (deter-
mined by Cuncond), and the response as the posi-
tive example. Negative examples are constructed
similarly but with a crucial difference: instead of
using the cause of response, we choose an utter-
ance that is not the cause of response. The con-
structed dataset is denoted as DL. We use incre-
mental self-training with constraints to improve the
performance of the CI classifier. This method starts
with the supervised training of an initial classifier
C0 on DL. Then, C0 is applied to unlabeled utter-
ance tuples. Those tuples classified with a label of 1
are incorporated into the training set as positive ex-
amples if they satisfy two criteria: 1) the probability
p(l = 1|ci, ck, rt) surpasses a predefined threshold
0.9; 2) ci is ct−2 or ct−3. Then, a new classifier C1

is trained on the updated training set D0. The self-
training cycle is repeated, each iteration yielding

a new classifier Ci, until optimal performance is
achieved on the validation set. The classifier ulti-
mately chosen through this self-training process is
denoted as Ccond. More details of training the CI
classifier are provided in Algorithm 1.

3.3 Compute CausalScore

We compute CausalScore of responses by using the
(un)conditional independence classifiers. Given a
response, we first identify individual utterances ci
that have a probability P (l = 1|ci, rt) over 0.5
as dependent utterances using the unconditional
independence classifier. The set of dependent ut-
terances ci is denoted by Udep. Each of those utter-
ances is paired with another utterance in Udep and
the response to compute the probability of being
conditionally dependent. The total causal strength
of a response w.r.t. a dialogue history is averaged
across the corresponding classifier predictions de-
tailed below.

Janzing et al. (2013b); Geiger et al. (2014)
shows causal strength between two variables,
Svi→vj , can be measured by (C)MI I(vi; vj) or
I(vi; vj |PA−vi

vj ) in different causal relations 2,
where PA−vi

vj represent parents of vj excluding
vi. Considering the diversity and complexity of
causal relations in dialogues, we employ both
I(vi; vj) and I(vi; vj |PA−vi

vj ) to measure causal
strength. It makes sense because both I(vi; vj)
and I(vi; vj |PA−vi

vj ) measure strength of depen-
dencies, and strength of dependencies imply causal
strength (Janzing et al., 2013b). However, it is still
challenging to compute MI or CMI in the dialogue
scenario. Considering the equivalent relation be-
tween CI test and CMI, we use the probabilities
of being dependent or conditional dependent pro-
duced by CI classifiers to measure causal strength.

Specifically, the unconditional independence
classifier Cuncond is applied to each pair of (ci, rt),
where ci is an utterance in Udep. Then, we assess
the unconditional dependence strength between
each utterance and the response using probability
P (l = 1|ci, rt), where label 1 represents depen-
dence. We denote this probability as p+(ci, rt) for
simplicity.

The conditional classifier Ccond is thus em-
ployed on tuples of the form (ci, cj , rt), where
both ci and cj are members of the set Udep with
i ̸= j. We then compute the probability of

2Janzing et al. (2013b) shows Svi→vj = I(vi; vj) or
Svi→vj ≥ I(vi; vj |PA−vi

vj ) in different causal relations.
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P (l = 1|ci, cj , rt) to assess the strength of condi-
tional dependence between utterance and response,
p+(ci, cj , rt) for simplicity. The scoring mecha-
nism for CausalScore considers both p+(ci, rt) and
p+(ci, cj , rt) as follows:

CausalScore(c, rt) =

1

2

∑
Udep
ci

p+(ci, rt)

|Udep| +

∑
Udep
ci,cj

p+(ci, cj , rt))∣∣∣Udep
ci,cj

∣∣∣
 (1)

where ci and cj are elements of the set Udep. Udep
ci

represents select one element from Udep. Udep
ci,cj

represents select two different elements from Udep.∣∣∣Udep
ci,cj

∣∣∣ represents the number of all possible pairs
of (ci, cj). The score of CausalScore ranges from 0
to 1, with higher values indicating better relevance.

4 Experiments

4.1 Experimental Setup
Baseline Metrics. We compare our metric
CausalScore with eight dialogue evaluation met-
rics, consisting of five reference-based metrics:
BLEU (Papineni et al., 2002), ROUGE (Lin,
2004b), METEOR (Lavie and Agarwal, 2007),
BERTScore (Zhang* et al., 2020), BLEURT (Sel-
lam et al., 2020). For comparison, we only present
the BLEU-4 for BLEU, ROUGE-L for ROUGE,
and BERTScore-F1 for BERTScore. Based on the
prior works (Li et al., 2022; Yang and Klein, 2021;
Dathathri et al., 2020), we feed the dialogue history
and corresponding generated text to a language
model (i.e., GPT-2) and report the perplexity (PPL)
of the generated text under the language model.
GRADE (Huang et al., 2020) and DEAM (Ghazar-
ian et al., 2022) evaluate dialogues by using proba-
bility of fine-tuned classifiers. DEnsity (Park et al.,
2023) evaluates a response by utilizing density es-
timation on the feature space derived from a neu-
ral classifier. To ensure a fair comparison, these
classifier-based models are fine-tuned on experi-
mental dialogue datasets. Chiang and Lee (2023);
Wang et al. (2023) argue that ChatGPT can be
a good text evaluation metric. We also consider
ChatGPT as a baseline metric for dialogue evalua-
tion. We follow the prompts from Chiang and Lee
(2023); Wang et al. (2023) to require ChatGPT to
evaluate responses using a 5-point Likert scale.

Datasets. We conduct experiments on three di-
alogue datasets across diverse domains: ES-
Conv (Liu et al., 2021), MSC (Xu et al., 2022),

DREAM (Sun et al., 2019). The details of the
datasets are provided in Appendix A.1. For MSC
and DREAM, we use the dataset splits as pro-
vided in their publications. For ESConv, because
it doesn’t have an official split, we randomly split
the dataset with 80% dialogues for training, 10%
dialogues for validation, and 10% for testing. As a
result, any dialogue in a test set cannot be seen in
any of the training sets.

Implementation Details. We use RoBERTa (Liu
et al., 2020) as the backbone model to fine-tune
classifiers. All the models are implemented with
PyTorch (Paszke et al., 2019) and the Transformers
library (Wolf et al., 2020). All models are trained
with Adam (Kingma and Ba, 2015) optimizer with
β1 = 0.9 and β2 = 0.999. The learning rate is
1×10−5 for fine-tuning classifiers. We use a linear
learning rate scheduler that dynamically decreases
the learning rate after 10 warm-up steps. Classifiers
were trained for 10 epochs with the batch size 16
on NVIDIA A40 GPU.

Dialogue Models. We evaluate metrics using
both human-generated and model-generated re-
sponses to assess their performance across varying
levels of response quality. For model-generated
responses, we consider two dialogue models,
Blenderbot (Roller et al., 2021) and Blenderbot-
ConSTrain (Feng et al., 2023), both known for
producing human-like responses. Additionally,
we fine-tuned a large language model named
Alpaca (Taori et al., 2023) using the LoRA tech-
nique (Hu et al., 2022) on dialogue datasets.

4.2 Metric Evaluation

Human Judgements. Belz and Kow (2010);
Callison-Burch et al. (2007); Kiritchenko and Mo-
hammad (2017) found that asking crowd-workers
to directly score responses on a Likert scale usually
receives low-quality evaluation. Thus, following
the evaluation design in Novikova et al. (2018);
Bojar et al. (2016); Zheng et al. (2021); Zhou et al.
(2018); Feng et al. (2023), we opt for pairwise com-
parison between responses from different dialogue
models. For each dataset, we randomly sample 100
dialogue histories from the test set. Then, given
one dialogue history, we ask annotators to compare
two responses from two dialogue models. Because
we have four dialogue models (one human response
and three model-generated responses), there are six
different pair comparisons in total. The annotation
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was conducted by 16 undergraduate and graduate
students who are native English speakers.

In each comparison, we ask five evaluation ques-
tions: Empathy (Which response has a better un-
derstanding of the emotional state and provides a
more appropriate emotional reaction?), Specificity
(Which response produces more unique and non-
generic information that is specific to the conversa-
tion history?), Relevance (Which response is more
on-topic with the immediate dialogue history?),
Consistency (Which response is more logically co-
herent with the conversation history and common
sense?) and Overall (Which response performs bet-
ter overall?). Each question has four options: A is
better than B, B is better than A, Both are good, and
Both are bad. Three individual annotators assessed
each comparison. To eliminate any bias from anno-
tators, we anonymized the names of dialogue mod-
els, shuffled the order of dialogues, and shuffled
the order of responses. Finally, we collected 1800
pairwise comparison results from 16 annotators.
The calculated Krippendorff’s alpha (Krippendorff,
2011) for assessing the inter-annotator agreement
is 0.6708, indicating a moderate level of agreement
among the annotators.

Correlation Calculation. Because human eval-
uation results are categorical options and auto-
matic metrics are continuous values, we cannot
directly calculate correlation coefficients between
them. Thus, we apply different schemas to convert
categorical options to integer values and convert
continuous values to categorical options.

To convert categorical options into integer val-
ues, we use the voting schema. Specifically, if
one annotator selects A is better than B, response
A gets one point, while B gets zero points, and
vice versa for B is better than A. If one annota-
tor selects Both are good, both responses A and
B get one point. If Both are bad is selected, both
responses A and B get zero points. Then we ap-
ply this rule to three annotator assessments. After
conversion, we have integer scores for human eval-
uation and continuous scores for automatic eval-
uation. Then, we apply Pearson and Spearman’s
correlation coefficient to measure correlations be-
tween human evaluation and automatic evaluation.
Because continuous metrics hardly produce ex-
actly equivalent values, we propose a IgnoreEqual
schema that only considers nonequivalent relation-
ships. Specifically, for one human annotator re-
sults, we convert A is better than B to 1 and A is

better than B to 0. In this way, human evaluation
becomes a dichotomous variable. For automatic
evaluation, we consider the difference of automatic
score on response A and response B. Formally, we
take AutoMetric(A) − AutoMetric(B) as an-
other variable, where AutoMetric refers to any
automatic metric, A and B refer to response A
and response B. In this way, we can use Point-
Biserial correlation coefficient to correlation be-
tween human evaluation and automatic evaluation.
To convert continuous values into category options
(Cont2Cat), we simply compare automatic scores
of responses A and B. If the score of response A
is larger than B, we convert it to A is better than
B, otherwise convert it to B is better than A. After
conversion, we treat automatic metric as another
annotator and compute inter-annotator agreement
using Krippendorff’s alpha method.

4.3 Analytical Experiments

To comprehensively evaluate the individual con-
tributions of CausalScore, we conducted a series
of ablation studies. The outcomes of these studies
are presented in Table 2. The observed decline in
the removal of each component demonstrates their
collective positive impact on the evaluation of re-
sponses, thus supporting the integral role of each
element within the CausalScore framework.

Efficacy of the Classifiers. To prove the con-
tribution of (conditional) mutual information in
our framework, we perform two ablation exper-
iments: 1) removing unconditional dependence
(i.e.,-p(ci, rt) rows of Table 2) in the computation
of CausalScore scores; 2) removing conditional de-
pendence (i.e.,-p(ci, cj , rt) rows) when computing
CausalScore scores. Consequently, removing con-
ditional dependence has the most detrimental im-
pact on the metric’s performance. As we described
in Section 3, we argue that a response exhibiting
high relevance to the dialogue history inherently
entails strong causal strength with a particular set
of utterances in that dialogue history. Furthermore,
causal strength can be well measured by the degree
of conditional independence. In other words, condi-
tional dependence is closer to causal strength than
unconditional dependence. The better performance
of CI classifier can be attributed to the fact that con-
ditional dependencies more accurately reflect the
actual causal relations between the dialogue history
and the response than unconditional dependencies.

Instead of taking the average of conditional de-
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DREAM ESConv MSC

Metric
Voting IgnoreEqual Cont2Cat Voting IgnoreEqual Cont2Cat Voting IgnoreEqual Cont2Cat

Pearson Spearman Point-Biserial IAA Pearson Spearman Point-Biserial IAA Pearson Spearman Point-Biserial IAA
Relevance

CausalScore 0.294* 0.334* 0.363 0.369 0.312* 0.343* 0.402 0.337 0.257* 0.308* 0.316 0.330
-p(ci, cj , rt) 0.184 0.157 0.216 0.312 0.148 0.146 0.209 0.284 0.137 0.151 0.176 0.289

-p(ci, rt) 0.229 0.303* 0.335* 0.347 0.294* 0.328* 0.362 0.327 0.204 0.256* 0.292 0.318
-self-training 0.285* 0.325* 0.351* 0.358 0.302* 0.340* 0.387* 0.336 0.247* 0.299* 0.304* 0.324
→MaxCI 0.087 0.075 0.101 0.302 0.095 0.079 0.104 0.277 0.133 0.119 0.161 0.271
→ Preced2 0.150 0.128 0.177 0.303 0.114 0.107 0.163 0.280 0.105 0.121 0.146 0.272

Overall
CausalScore 0.331* 0.422* 0.511* 0.595 0.287* 0.339* 0.411* 0.568 0.331* 0.401* 0.492* 0.569
-p(ci, cj , rt) 0.192 0.231 0.303 0.517 0.115 0.121 0.161 0.483 0.179 0.235 0.272 0.526

-p(ci, rt) 0.303* 0.396* 0.496* 0.571 0.262* 0.314* 0.403* 0.548 0.316* 0.380* 0.473* 0.546
-self-training 0.326* 0.414* 0.503* 0.586 0.284* 0.331* 0.407* 0.568 0.324* 0.387* 0.488* 0.562
→MaxCI 0.203 0.147 0.250 0.490 0.048 0.087 0.058 0.473 0.086 0.116 0.112 0.480
→ Preced2 0.172 0.158 0.183 0.358 0.103 0.095 0.135 0.263 0.126 0.131 0.157 0.301

Table 2: Ablation results on three datasets. Asterisk * indicates results with p-value < 0.05 (statistically significant).

pendence, we only use the maximum of conditional
dependence to compute the metric score as another
ablation study (i.e., → MaxCI rows). In several
instances, relying on the maximum conditional de-
pendence yields inferior results compared to using
the average of unconditional dependencies. This
outcome can be attributed to the fact that the rele-
vance of responses is more accurately reflected by
the causal relations with the entire dialogue history,
rather than only with the most likely direct cause.

Usefulness of Annotated Causal Relations. We
verify the necessity of annotated causal relations on
training the CI classifier. Instead of using annotated
causal relations, we trained a CI classifier using the
two most recent preceding utterances as positive
instances and two random utterances from other
dialogue as negative instances. The performance
outcomes, detailed in the "-Preced2" row, demon-
strate a notable decline when compared to the CI
classifier trained on the annotated CGDIALOG+
dataset (i.e.,-p(ci, rt)). We attribute this perfor-
mance drop to the high noise present in the positive
examples. Our empirical observations suggest that
approximately only 40% of the penultimate utter-
ances serve as the cause of response, indicating a
significant level of noise within positive instances,
which undermines the classifier’s reliability.

Effectiveness of Self-Training. We compare the
CI classifier Ccond trained with incremental self-
training with constraints with the initial classifier
C0. As shown in the ’-self-training’ rows of Ta-
ble 2, CausalScore without self-training results in
a decline of 0.012 in Pearson correlation, 0.013
in Spearman correlation, 0.007 in Point-Biserial
correlation, 0.012 in inter-annotator agreement in
average. We believe self-training with constraints
benefits the training of CI classifiers by augment-
ing training data and reducing the noise in pseudo-

label data. These findings indicate incremental
self-training with constraints is an effective method
to improve the performance of classifiers.

4.4 Experimental Results

Table 3 depicts the quantitative results for different
evaluation metrics on ESConv, MSC, and DREAM
datasets. According to the reported correlations
and inter-annotator agreements, CausalScore out-
performs all baseline metrics across various evalu-
ation dimensions, including relevance, specificity,
empathy, consistency, and overall. CausalScore
achieves higher correlations on relevance which is
the primary target evaluation dimension of our met-
ric. Regarding the overall dimension, it is posited
that annotators tend to favor responses having high
relevance, perceiving them as indicative of superior
overall quality. This comprehensive effectiveness
of CausalScore can be ascribed to its capability to
identify causal relations between dialogue histories
and responses. Such causal connections are essen-
tial to establish the relevance of responses in the
context of the preceding dialogue.

Baseline metrics can be categorized into two
types: reference-based and reference-free metrics.
Our experimental findings reveal that both types
are generally unreliable for evaluating responses.
Although ChatGPT and GPT-4-based metrics ex-
hibit relatively better correlations in the dimensions
of empathy and consistency, this enhanced perfor-
mance lacks stability across different datasets.

4.5 Qualitative Study

To provide a more intuitive assessment of
CausalScore’s performance, we present a repre-
sentative example in Table 4. For human evalu-
ations, we can see the human-generated response
exhibits the highest relevance. Responses gen-
erated by Alpaca and Blenderbot display rela-
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DREAM ESConv MSC

Metric
Voting IgnoreEqual Cont2Cat Voting IgnoreEqual Cont2Cat Voting IgnoreEqual Cont2Cat

Pearson Spearman Point-Biserial IAA Pearson Spearman Point-Biserial IAA Pearson Spearman Point-Biserial IAA
Relevance

Reference-based

BLEU 0.021 0.018 0.027 0.246 -0.047 -0.065 -0.053 0.216 0.076 0.065 0.074 0.222
ROUGE -0.005 -0.008 -0.015 0.272 0.039 0.020 0.045 0.243 0.091 0.087 0.090 0.249
METEOR 0.028 0.033 0.043 0.262 0.097 0.097 0.081 0.243 0.013 0.036 0.087 0.241
BERTScore -0.004 -0.010 -0.003 0.260 0.085 0.069 0.092 0.246 0.021 0.002 0.031 0.239
BLEURT -0.022 -0.032 -0.030 0.257 0.025 0.022 0.026 0.246 0.074 0.089 0.094 0.249

Reference-free

PPL 0.033 0.097 0.043 0.292 -0.040 -0.031 -0.073 0.246 -0.046 -0.047 -0.053 0.245
GRADE 0.004 -0.005 0.035 0.248 0.013 0.021 0.030 0.248 -0.003 0.012 0.049 0.243
DEAM -0.090 -0.053 -0.121 0.273 -0.011 0.039 -0.011 0.257 -0.012 -0.032 -0.007 0.253
DEnsity 0.117 0.112 0.149 0.286 0.080 0.099 0.095 0.268 0.030 0.030 0.026 0.258
ChatGPT 0.036 0.024 0.088 0.284 -0.002 -0.018 0.096 0.250 0.083 0.084 0.109 0.271
GPT4 0.049 0.038 0.083 0.263 -0.002 -0.023 0.097 0.251 0.039 0.083 0.110 0.277
CausalScore 0.294* 0.334* 0.363 0.369 0.312* 0.343* 0.402 0.337 0.257* 0.308* 0.316 0.330

Overall

Reference-based

BLEU 0.019 0.058 0.011 0.444 0.069 0.050 0.005 0.434 0.019 -0.019 0.007 0.422
ROUGE -0.031 -0.028 -0.040 0.453 -0.030 -0.041 -0.044 0.445 -0.011 -0.018 -0.010 0.435
METEOR -0.043 -0.031 -0.053 0.454 0.041 0.029 0.052 0.455 0.006 0.015 0.007 0.435
BERTScore 0.065 0.077 0.103 0.458 -0.028 0.004 -0.035 0.458 0.032 0.042 0.052 0.440
BLEURT 0.011 0.005 0.011 0.451 -0.112 -0.117 -0.161 0.439 0.076 0.077 0.112 0.445

Reference-free

PPL 0.034 0.010 0.032 0.454 0.045 0.105 0.100 0.480 0.023 -0.038 -0.022 0.436
GRADE 0.054 0.033 0.012 0.454 0.023 0.011 0.004 0.436 0.088 0.050 0.105 0.442
DEAM 0.111 0.107 0.168 0.467 0.013 0.010 0.005 0.442 0.042 0.021 0.074 0.442
DEnsity 0.011 0.009 0.023 0.462 0.038 0.100 0.064 0.483 0.076 0.045 0.091 0.465
ChatGPT 0.153 0.101 0.113 0.460 0.052 0.055 0.041 0.463 0.129 0.125 0.181 0.481
GPT4 0.159 0.157 0.141 0.486 0.048 0.062 0.042 0.471 0.131 0.103 0.119 0.486
CausalScore 0.331* 0.422* 0.511* 0.595 0.287* 0.339* 0.411* 0.568 0.331* 0.401* 0.492* 0.569

Table 3: Correlations between automatic evaluation metrics and human judgements on three different datasets
(DREAM, ESConv, MSC). Inter-annotator agreement (IAA) is computed using Krippendorff’s alpha. PPL represents
perplexity. Asterisk * indicates results with p-value < 0.05 (statistically significant).

M: Good afternoon. I’ve just seen the advertisement in the newspaper about the furnished flat for rent. Is it still available?
W: Yes, it is. Would you like me to tell you about it?
M: Yes, but could you tell me the address first, please?
W: Yes, it’s Number 45 Station Road.
M: Thank you. How big is the flat?
W: Oh, it’s big enough for a family of four. There are three bedrooms.
M: Thanks. What about the heating and the stove?
W: It’s all gas – the flat has central heating and a gas stove.
M: OK. And how much is the rent?

Evaluation on Relevance
Responses: Human CausalScore GPT4 DEAM BERTScore

Human:
It’s $ 200 a month, and that does not include the cost of gas.
The flat will be available starting Sep. 1.

9 0.611 5 0.996 1.0

Alpaca:
The flat is located at Number 45 Station Road and is big enough for a family of four.
It has three bedrooms and is gas heated with a gas stove. The rent is $6487258.

7 0.583 1 0.995 0.843

Blenderbot: I don’t know yet, but it’s a lot of money. 8 0.602 1 0.996 0.855
ConSTrain: It looks nice. Would you like to see it? 2 0.557 1 0.996 0.846

Table 4: A case study showing evaluation results of human judgement, CausalScore, GPT4, DEAM, and BERTScore.
We use voting schema on all pairwise comparisons to get human scores.

tively high relevance, while response generated
by Blenderbot− ConSTrain shows the lowest rele-
vance. Notably, the ranking of scores assigned by
our metric aligns more closely with human judge-
ments compared to other metrics. The GPT4-based
metric often assigns the highest scores to human
responses but falls short of properly ranking model
generated responses. The DEAM metric allocates
nearly identical scores to all responses, suggesting
its inadequacy in differentiating between varying
levels of relevance. BERTScore, as a reference-
based metric, naturally scores the human response
as 1.0 due to it serves as the reference. However, it
assigns similar scores to all model-generated re-
sponses, highlighting the inability of reference-
based metrics to effectively address the one-to-
many nature of dialogues. More examples can be

found in Appendix A.5.

5 Related Work

Automatic evaluation for open-domain dialogue
systems is challenging as one dialogue context can
have many appropriate responses, which is known
as the one-to-many nature of dialogues (Zhao et al.,
2017; Yeh et al., 2021). In general, dialogue evalu-
ation metrics can be divided into reference-based
metrics and reference-free metrics. Reference-
based metrics, such as BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004b), METEOR(Lavie and
Agarwal, 2007), BERTScore (Zhang* et al., 2020),
BLEURT (Sellam et al., 2020), are widely used for
language generation and machine translation tasks.
Those metrics use statistical rules or learned em-
beddings to measure the surface similarity between
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generated responses and reference responses. How-
ever, they cannot deal with the one-to-many nature
of dialogues and many works have shown that they
have weak correlations with human judgements
(Huang et al., 2020; Yeh et al., 2021; Ghazarian
et al., 2022; Wang et al., 2023).

Considering the one-to-many nature of dia-
logues, recent research has proposed several
reference-free automatic metrics, which directly as-
sess generated responses without given references.
RUBER proposed by Tao et al. (2017) is trained
with a triplet ranking loss using an RNN neural
network. Huang et al. (2020) propose GRADE
metric, which constructs a topic transition graph in
dialogues and then feeds the graph and input into
a neural network to compute a coherence score.
However, GRADE uses commonsense knowledge
graph ConceptNet (Speer et al., 2017) to construct
topic graphs in dialogues, which may cause wrong
assessment due to domain shift. To train reference-
free metrics, high-quality incoherent responses are
essential. Vakulenko et al. (2018); Mesgar et al.
(2020); Zhang et al. (2021) automatically generate
incoherent responses by shuffling utterances order,
inserting or replacing irrelevant utterances. Ghaz-
arian et al. (2022) relies on abstract meaning rep-
resentation to apply semantic-level manipulations
for incoherent response generation. Chiang and
Lee (2023); Wang et al. (2023) employ large lan-
guage models (e.g., ChatGPT) as a metric for text
generation tasks, utilizing crafted prompts. The
experimental results suggest the reliability of using
large language models as metrics.

6 Conclusion

We propose CausalScore, a novel automatic met-
ric for evaluating the relevance of responses. Ex-
perimental results show that CausalScore exhibits
stronger correlations with human judgements than
the SOTA metrics across datasets. In addition, we
release a new dataset CGDIALOG+ annotated with
causal relations in dialogues and its annotation pro-
cess that enable CausalScore to be adapted to new
domain in less than 12 hours. The developed metric
and data annotation interface are publicly available
to facilitate future research on dialogue evaluation.

Limitations

Due to the limited budget for this project, we can-
not recruit a large number of annotators to annotate
large dialogue datasets with causal relations. Con-

sequently, the CGDIALOG+ dataset is relatively
modest in size. It may not meet the requirements of
industrial applications. Our metric focuses on eval-
uating the relevance of generated responses. While
our metric outperforms the baselines in terms of
empathy and consistency, its margin is not as high
as in relevance and specificity. Thus, the design of
novel metrics for task-specific evaluation criteria
will be a promising direction of our future work.

Ethics Statement

We acknowledge the importance of ACM Code of
Ethics and agree with it. We ensure that our study
is compatible with the provided code.

The development of CausalScore have been con-
ducted with a keen awareness of ethical consid-
erations, particularly those pertaining to the use
of human annotators. Our approach requires hu-
man annotation to construct the training set (CG-
DIALOG+), a process we acknowledge as labor-
intensive. We have ensured that the annotation
process adheres to ethical guidelines and ensur-
ing fair compensation for their contributions. We
have taken rigorous measures to anonymize the
dataset thoroughly. The dataset does not contain
any personally identifiable information or sensi-
tive data related to the contributors. The CGDI-
ALOG+ dataset was compiled with contributions
from undergraduate and graduate students, which
may inherently introduce biases based on their de-
mographic backgrounds. We advise researchers
utilizing this dataset to carefully consider these po-
tential biases, particularly in studies focusing on
AI fairness, biases, and safety.
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their problems, such as unemployment, losing fam-
ily member or infecting with COVID. Dialogue
response models play the role of supporters to pro-
vide supportive responses to help seekers. Each
utterance from supporters is annotated with a strat-
egy such as providing suggestions, paraphrasing or
question, which are not considered in our models.
For ESConv, because it doesn’t have an official
split, we split dialogues with 80% dialogues for
training, 10% dialogues for validation, and 10%
for testing.

Multi-Session Chat (MSC). MSC (Xu et al.,
2022) contains 5,000 human-human conversations
over five sessions, each of which contains up to 14
utterances. The average number of utterances per
dialogue is 53.3. In each session, two interlocutors
conduct a conversation based on given personas.
Each persona describes personal information with
multiple sentences. We use the official split for
experiments.

DREAM. DREAM (Sun et al., 2019) collects
conversations from English as a Foreign Language
examinations designed by human experts to eval-
uate the comprehension level of Chinese learners
of English. It contains 6, 444 dialogues, with 4.7
utterances per dialogue on average. The topics are
about daily life including diverse topics. We use
the official split for experiments.

A.2 Annotating Training Data Overnight
In this section, we describe the process of anno-
tating training data for CausalScore in a new do-
main overnight, using the DREAM dataset (Sun
et al., 2019) as an example. We randomly sampled
95 dialogues from DREAM, which results in the
creation of 950 history-response pairs, annotating
about 10 context-response pairs per dialogue. We
engaged annotators who have a thorough under-
standing of identifying direct causes of responses.
The annotation process uses Amazon Mechanical
Turk (AMT).

To ensure the understanding of the task, a train-
ing phase was implemented before real annotation.
This phase involved a ’dry-run’ dataset, where an-
notators practiced annotation tasks. Comprehen-
sive feedback was provided in cases of any mis-
understanding, thereby fine-tuning their annota-
tion skills. After training, in the first annotation
round, annotators were asked to read the provided
responses and their conversation histories, then
highlight utterances or clauses that directly caused

the responses. We can understand the cause of
response in this way "because of these texts, the
speaker makes this response" or "without these
texts, making this response is groundless". To
maintain high annotation quality, in the second
annotation round, we select annotators who have
high-quality annotation results to review all annota-
tions and correct mistakes. We carefully distribute
the workload among annotators to ensure they do
not review their own annotations. The entire an-
notation process requires less than 12 hours. Our
annotators received compensation exceeding the lo-
cal minimum hourly wage. Annotation instruction
and interface can be found in Figure 2 and Figure 3.

For our experimental setup, the CGDIALOG-
DREAM dataset was partitioned into a training set
comprising 450 context-response pairs, a valida-
tion set with 250 pairs, and a test set also contain-
ing 250 pairs. The division of the CGDIALOG-
ESConv and CGDIALOG-MSC datasets follow
their official allocations, which are 272/211/211
and 300/250/250 context-response pairs for train-
ing, validation, and testing, respectively.

A.3 Training of Conditional Independence
Classifier

In Algorithm 1, we provide more details of training
the conditional independence classifier.

A.4 More Experiments Results

Evaluation on All Dimensions. Besides Rele-
vance and Overall dimensions, we also present cor-
relations on Specificity, Empathy, and Consistency
in Table 5 and 6. Additionally, CausalScore shows
higher performance on specificity and overall than
relevance. Specificity measures the degree to which
responses are generated to the dialogue history.
The high specificity often correlates with elevated
relevance, as specific responses are typically more
relevant. Regarding the overall dimension, it is
posited that annotators tend to favor responses hav-
ing high relevance and specificity, perceiving them
as indicative of superior overall quality. In terms of
consistency and empathy dimensions, CausalScore
also surpasses baseline metrics, although with less
distinction compared to its achievements in rele-
vance, specificity, and overall assessment.

Distribution of CausalScore. CausalScore is
bounded between 0 and 1, where a higher score
indicates greater relevance between the dialogue
history and the response. A score of 0 indicates
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Figure 2: Annotation instruction of CGDIALOG+.

Figure 3: CGDIALOG+ annotation interface.

Algorithm 1 Training of Conditional Independence Classifier

Require:
Labeled training and validation sets from CGDIALOG+: Dtr

L , Dva
L

Unlabeled dataset (e.g., ESConv): DU

Pseudo-label data constraint: S
Initial Classifier: Cθ

Ensure:
i← 0
Di ← Dtr

L

Ci ← fine-tuning Cθ on Di

while Ci does not have the best performance on Dva
L do

Predict labels on DU using Ci

Select prediction results by constraint S
Construct pseudo-labeled dataset Di

PL using selected data
Di+1 ← Di ∪ Di

PL

Ci+1 ← fine-tuning Ci on Di+1

i← i+ 1
end while
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DREAM ESConv MSC

Metric
Voting IgnoreEqual Cont2Cat Voting IgnoreEqual Cont2Cat Voting IgnoreEqual Cont2Cat

Pearson Spearman Point-Biserial IAA Pearson Spearman Point-Biserial IAA Pearson Spearman Point-Biserial IAA
Relevance

CausalScore 0.294* 0.334* 0.363 0.369 0.312* 0.343* 0.402 0.337 0.257* 0.308* 0.316 0.330
-p(ci, cj , rt) 0.184 0.157 0.216 0.312 0.148 0.146 0.209 0.284 0.137 0.151 0.176 0.289

-p(ci, rt) 0.229 0.303* 0.335* 0.347 0.294* 0.328* 0.362 0.327 0.204 0.256* 0.292 0.318
-self-training 0.285* 0.325* 0.351* 0.358 0.302* 0.340* 0.387* 0.336 0.247* 0.299* 0.304* 0.324
→MaxCI 0.087 0.075 0.101 0.302 0.095 0.079 0.104 0.277 0.133 0.119 0.161 0.271
→ Preced2 0.150 0.128 0.177 0.303 0.114 0.107 0.163 0.280 0.105 0.121 0.146 0.272

Specificity
CausalScore 0.328* 0.434* 0.390* 0.360* 0.324* 0.379* 0.411* 0.359 0.321* 0.356* 0.400* 0.355
-p(ci, cj , rt) 0.162 0.244 0.190 0.303 0.116 0.140 0.166 0.300 0.193 0.176 0.229 0.310

-p(ci, rt) 0.307* 0.413* 0.346* 0.347 0.304* 0.351* 0.395* 0.334 0.302* 0.344* 0.387* 0.342
-self-training 0.325* 0.430* 0.384* 0.351 0.308* 0.360* 0.406* 0.348 0.317* 0.353* 0.400* 0.351
→MaxCI 0.085 0.083 0.102 0.282 0.091 0.144 0.132 0.293 0.140 0.156 0.175 0.296
→ Preced2 0.052 0.072 0.142 0.274 0.103 0.121 0.158 0.274 0.135 0.142 0.213 0.304

Empathy
CausalScore 0.131 0.252* 0.211 0.325 0.186* 0.208* 0.302* 0.317 0.131* 0.201* 0.292* 0.314
−p(ci, cj , rt) 0.012 0.021 0.022 0.273 0.053 0.021 0.048 0.254 0.031 0.032 0.037 0.277
−p(ci, rt) 0.094 0.155 0.170 0.296 0.106 0.138 0.259 0.287 0.094 0.112 0.264 0.296

-self-training 0.113 0.231 0.200 0.313 0.151 0.172 0.281* 0.307 0.107 0.177 0.291* 0.304
→MaxCI -0.007 -0.025 -0.005 0.251 0.009 -0.005 0.025 0.254 0.057 0.065 0.064 0.287
→ Preced2 0.052 0.083 0.103 0.263 0.063 0.036 0.073 0.259 0.051 0.058 0.103 0.284

Consistency
CausalScore 0.206 0.234* 0.222 0.317 0.216 0.238* 0.287 0.337 0.214 0.231* 0.208 0.315
-p(ci, cj , rt) 0.056 0.030 0.085 0.257 0.113 0.118 0.143 0.291 0.131 0.180 0.144 0.295

-p(ci, rt) 0.193 0.201 0.208 0.301 0.202 0.227 0.278 0.323 0.170 0.200 0.201 0.309
-self-training 0.204 0.231* 0.215 0.315 0.210 0.232 0.283 0.335 0.189 0.215 0.205 0.315
→MaxCI -0.023 0.023 -0.031 0.265 0.077 0.045 0.052 0.282 0.090 0.046 0.104 0.247
→ Preced2 0.073 0.052 0.097 0.271 0.092 0.115 0.133 0.287 0.145 0.173 0.156 0.294

Overall
CausalScore 0.331* 0.422* 0.511* 0.595 0.287* 0.339* 0.411* 0.568 0.331* 0.401* 0.492* 0.569
-p(ci, cj , rt) 0.192 0.231 0.303 0.517 0.115 0.121 0.161 0.483 0.179 0.235 0.272 0.526

-p(ci, rt) 0.303* 0.396* 0.496* 0.571 0.262* 0.314* 0.403* 0.548 0.316* 0.380* 0.473* 0.546
-self-training 0.326* 0.414* 0.503* 0.586 0.284* 0.331* 0.407* 0.568 0.324* 0.387* 0.488* 0.562
→MaxCI 0.203 0.147 0.250 0.490 0.048 0.087 0.058 0.473 0.086 0.116 0.112 0.480
→ Preced2 0.172 0.158 0.183 0.358 0.103 0.095 0.135 0.263 0.126 0.131 0.157 0.301

Table 5: Ablation results on three datasets.

complete irrelevance, implying no causal connec-
tion between the response and the preceding dia-
logue. Conversely, a score of 1 signifies the highest
relevance, demonstrating a direct and significant
causal link. As depicted in Figure 4, the distribu-
tion of CausalScore across different datasets covers
the full spectrum of scores from 0 to 1.

Out-of-Domain Evaluation. As discussed in the
Limitations Section 6, the efficacy of CausalScore
is limited by the availability of human-annotated
cause-effect relationships for the training of con-
ditional independence classifiers. In the absence
of such annotations, there is a potential for dimin-
ished performance when CausalScore is applied
to unseen domains. Table 7 provides a quanti-
tative evaluation of CausalScore’s out-of-domain
performance. For instance, CausalScore-ESConv,
which is trained on the CGDIALOG+(ESConv)
subset, has a diminished performance on the MSC
and DREAM datasets. CausalScore-DREAM and
CausalScore-MSC have similar observations. Al-
though there is a drop in performance within
the Out-of-Domain setting, CausalScore maintains
equivalent or superior results relative to baseline
models.

A.5 Qualitative Study
In this section we present more evaluation exam-
ples in Table 8, 9, 10, 11 to provide a more
intuitive assessment of CausalScore. In Table 12,
we demonstrate that our method can assign a score
nearing zero to the completely irrelevant responses
(i.e., generated by Blenderbot), and assign a score
nearing one for relevant responses (provided by
humans).
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DREAM ESConv MSC

Metric
Voting IgnoreEqual Cont2Cat Voting IgnoreEqual Cont2Cat Voting IgnoreEqual Cont2Cat

Pearson Spearman Point-Biserial IAA Pearson Spearman Point-Biserial IAA Pearson Spearman Point-Biserial IAA
Relevance

Reference-based

BLEU 0.021 0.018 0.027 0.246 -0.047 -0.065 -0.053 0.216 0.076 0.065 0.074 0.222
ROUGE -0.005 -0.008 -0.015 0.272 0.039 0.020 0.045 0.243 0.091 0.087 0.090 0.249
METEOR 0.028 0.033 0.043 0.262 0.097 0.097 0.081 0.243 0.013 0.036 0.087 0.241
BERTScore -0.004 -0.010 -0.003 0.260 0.085 0.069 0.092 0.246 0.021 0.002 0.031 0.239
BLEURT -0.022 -0.032 -0.030 0.257 0.025 0.022 0.026 0.246 0.074 0.089 0.094 0.249

Reference-free

PPL 0.033 0.097 0.043 0.292 -0.040 -0.031 -0.073 0.246 -0.046 -0.047 -0.053 0.245
GRADE 0.004 -0.005 0.035 0.248 0.013 0.021 0.030 0.248 -0.003 0.012 0.049 0.243
DEAM -0.090 -0.053 -0.121 0.273 -0.011 0.039 -0.011 0.257 -0.012 -0.032 -0.007 0.253
DEnsity 0.117 0.112 0.149 0.286 0.080 0.099 0.095 0.268 0.030 0.030 0.026 0.258
ChatGPT 0.036 0.024 0.088 0.284 -0.002 -0.018 0.096 0.250 0.083 0.084 0.109 0.271
GPT4 0.049 0.038 0.083 0.263 -0.002 -0.023 0.097 0.251 0.039 0.083 0.110 0.277
CausalScore 0.294* 0.334* 0.363 0.369 0.312* 0.343* 0.402 0.337 0.257* 0.308* 0.316 0.330

Specificity

Reference-based

BLEU -0.079 -0.066 0.023 0.220 0.051 0.037 0.063 0.239 0.041 0.016 0.004 0.239
ROUGE 0.043 0.052 0.049 0.259 0.046 0.043 0.061 0.253 -0.001 -0.019 0.001 0.251
METEOR 0.066 0.061 0.081 0.251 0.093 0.040 0.080 0.259 0.002 0.011 0.001 0.263
BERTScore 0.043 0.065 0.044 0.249 0.067 0.072 0.095 0.265 0.036 0.033 0.046 0.266
BLEURT 0.041 0.038 0.050 0.249 -0.003 -0.004 0.003 0.258 0.031 0.020 0.046 0.261

Reference-free

PPL 0.057 0.047 0.066 0.263 -0.038 0.002 -0.062 0.266 -0.001 -0.068 -0.032 0.249
GRADE 0.047 0.031 0.058 0.251 0.057 0.047 0.071 0.271 0.063 0.041 0.069 0.268
DEAM 0.063 0.029 0.078 0.255 0.039 0.015 0.059 0.274 0.048 0.039 0.047 0.253
DEnsity 0.060 0.066 0.066 0.265 0.124 0.118 0.165 0.296 0.112 0.082 0.125 0.287
ChatGPT 0.026 0.017 0.033 0.266 0.042 0.039 0.054 0.276 0.070 0.082 0.085 0.286
GPT4 0.057 0.038 0.057 0.260 0.017 0.014 0.016 0.258 0.069 0.068 0.080 0.263
CausalScore 0.328* 0.434* 0.390* 0.360 0.324* 0.379* 0.411* 0.359 0.321* 0.356* 0.400* 0.355

Consistency

Reference-based

BLEU 0.045 0.050 0.041 0.225 0.049 0.009 0.014 0.241 0.047 -0.007 0.015 0.216
ROUGE 0.002 -0.014 -0.002 0.242 -0.023 -0.041 -0.028 0.247 0.002 -0.008 -0.006 0.229
METEOR -0.022 -0.016 -0.027 0.231 0.015 0.011 0.018 0.254 -0.021 -0.027 -0.044 0.231
BERTScore -0.001 0.012 -0.003 0.228 -0.036 -0.033 -0.042 0.258 -0.005 -0.015 -0.009 0.229
BLEURT 0.008 0.007 0.009 0.244 -0.031 -0.017 -0.038 0.252 -0.006 -0.017 -0.010 0.232

Reference-free

PPL 0.014 0.025 0.012 0.260 0.017 0.011 0.020 0.270 0.012 0.027 0.053 0.275
GRADE 0.041 0.014 0.042 0.262 0.057 0.008 0.071 0.268 0.048 0.027 0.079 0.267
DEAM 0.035 0.019 0.039 0.259 0.061 0.002 0.082 0.269 0.043 0.019 0.066 0.237
DEnsity -0.015 -0.025 -0.014 0.240 0.043 0.046 0.058 0.282 0.076 0.044 0.103 0.259
ChatGPT 0.067 0.034 0.041 0.261 0.083 0.055 0.082 0.273 0.099 0.101 0.119 0.278
GPT4 0.073 0.043 0.047 0.264 0.088 0.048 0.065 0.271 0.103 0.124 0.132 0.273
CausalScore 0.206 0.234* 0.222 0.317 0.216 0.238* 0.287 0.337 0.214 0.231* 0.208 0.315

Empathy

Reference-based

BLEU 0.019 0.058 0.012 0.225 0.069 0.050 0.024 0.205 0.019 -0.020 0.007 0.203
ROUGE 0.031 0.028 0.041 0.233 0.050 0.041 0.044 0.215 0.021 0.018 0.009 0.215
METEOR 0.043 0.031 0.054 0.234 0.041 0.029 0.052 0.235 0.016 0.015 0.007 0.214
BERTScore 0.065 0.077 0.103 0.238 -0.028 0.004 -0.035 0.238 0.032 0.042 0.052 0.220
BLEURT 0.011 0.005 0.011 0.231 0.112 0.117 0.161 0.239 0.076 0.077 0.111 0.235

Reference-free

PPL 0.018 -0.031 0.016 0.242 0.021 -0.018 0.008 0.245 0.030 0.032 0.061 0.248
GRADE 0.063 0.048 0.024 0.247 0.046 0.030 0.075 0.243 0.079 0.063 0.094 0.247
DEAM 0.111 0.073 0.168 0.247 0.053 0.036 0.086 0.247 0.041 0.021 0.074 0.242
DEnsity 0.039 0.013 0.056 0.259 -0.034 -0.036 -0.038 0.253 0.055 0.047 0.059 0.286
ChatGPT 0.110 0.084 0.106 0.251 0.062 0.045 0.074 0.243 0.109 0.084 0.112 0.241
GPT4 0.105 0.085 0.132 0.246 0.029 0.026 0.041 0.228 0.105 0.082 0.127 0.238
CausalScore 0.131 0.252* 0.211 0.325 0.186 0.208* 0.302* 0.317 0.131 0.201 0.292* 0.314

Overall

Reference-based

BLEU 0.019 0.058 0.011 0.444 0.069 0.050 0.005 0.434 0.019 -0.019 0.007 0.422
ROUGE -0.031 -0.028 -0.040 0.453 -0.030 -0.041 -0.044 0.445 -0.011 -0.018 -0.010 0.435
METEOR -0.043 -0.031 -0.053 0.454 0.041 0.029 0.052 0.455 0.006 0.015 0.007 0.435
BERTScore 0.065 0.077 0.103 0.458 -0.028 0.004 -0.035 0.458 0.032 0.042 0.052 0.440
BLEURT 0.011 0.005 0.011 0.451 -0.112 -0.117 -0.161 0.439 0.076 0.077 0.112 0.445

Reference-free

PPL 0.034 0.010 0.032 0.454 0.045 0.105 0.100 0.480 0.023 -0.038 -0.022 0.436
GRADE 0.054 0.033 0.012 0.454 0.023 0.011 0.004 0.436 0.088 0.050 0.105 0.442
DEAM 0.111 0.107 0.168 0.467 0.013 0.010 0.005 0.442 0.042 0.021 0.074 0.442
DEnsity 0.011 0.009 0.023 0.462 0.038 0.100 0.064 0.483 0.076 0.045 0.091 0.465
ChatGPT 0.153 0.101 0.113 0.460 0.052 0.055 0.041 0.463 0.129 0.125 0.181 0.481
GPT4 0.159 0.157 0.141 0.486 0.048 0.062 0.042 0.471 0.131 0.103 0.119 0.486
CausalScore 0.331* 0.422* 0.511* 0.595 0.287* 0.339* 0.411* 0.568 0.331* 0.401* 0.492* 0.569

Table 6: Correlations on all dimensions between automatic evaluation metrics and human judgements on three
different datasets (DREAM, ESConv, MSC). Inter-annotator agreement (IAA) is computed using Krippendorff’s
alpha. PPL represents perplexity.

DREAM ESConv MSC

Metrics Voting IgnoreEqual Cont2Cat Voting IgnoreEqual Cont2Cat Voting IgnoreEqual Cont2Cat
Pearson Spearman Point-Biserial IAA Pearson Spearman Point-Biserial IAA Pearson Spearman Point-Biserial IAA

Relevance
PPL 0.033 0.097 0.043 0.292 -0.040 -0.031 -0.073 0.246 -0.046 -0.047 -0.053 0.245
GRADE 0.004 -0.005 0.035 0.248 0.013 0.021 0.030 0.248 -0.003 0.012 0.049 0.243
DEAM -0.090 -0.053 -0.121 0.273 -0.011 0.039 -0.011 0.257 -0.012 -0.032 -0.007 0.253
DEnsity 0.117 0.112 0.149 0.286 0.080 0.099 0.095 0.268 0.030 0.030 0.026 0.258
ChatGPT 0.036 0.024 0.088 0.284 -0.002 -0.018 0.096 0.250 0.083 0.084 0.109 0.271
GPT4 0.049 0.038 0.083 0.263 -0.002 -0.023 0.097 0.251 0.039 0.083 0.110 0.277
CausalScore-DREAM 0.294* 0.334* 0.363 0.369 0.101 0.103 0.195 0.285 0.107 0.132 0.176 0.295
CausalScore-ESConv 0.094 0.101 0.135 0.285 0.312* 0.343* 0.402 0.337 0.108 0.109 0.163 0.285
CausalScore-MSC 0.109 0.124 0.154 0.294 0.145 0.122 0.232 0.304 0.257* 0.308* 0.316 0.330
CausalScore 0.294* 0.334* 0.363 0.369 0.312* 0.343* 0.402 0.337 0.257* 0.308* 0.316 0.330

Table 7: Out-of-Domain Performance of CausalScore.
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Figure 4: Distribution of CausalScore on three datasets with a kernel density estimate to smooth the distribution.

W: How was the game, Bill? Did you enjoy it?
M: No, it was not interesting at all.
W: That’s too bad. Football games are usually exciting.
M: Not last night. Some of the players didn’t know what they were doing. In fact, one of them was just terrible.
W: Well, which team was the winner?
M: The Tigers, they won the game 3-1.

Evaluation on Relevance
Responses: Human CausalScore GPT4 DEAM BERTScore
Human: Were you happy about the score? 9 0.643 5 0.997 1.0
Alpaca: That’s great! It’s always exciting when the Tigers win. 7 0.624 2 0.997 0.866
Blenderbot: The Tigers are one of my favorite baseball teams. 3 0.576 4 0.996 0.854
ConSTrain: It was a close game, but the Tigers won. 4 0.622 4 0.996 0.871

Table 8: One example with evaluation results on human judgement, CausalScore, GPT4, DEAM, and BERTScore.
We use voting schema on all pairwise comparisons to get human scores.

supporter: Hello there, how are you feeling at the moment?
seeker: I am feeling okay, but I have been better
supporter: Is there anything specific that you’d like to talk about with me?
seeker: I am having a lot of conflict with my boss at work.
supporter: That is not good. Are you thinking of looking for new work?
seeker: Honestly maybe. It is exhausting
supporter: I had a similar situation myself a few years ago and I moved on. I’ve never regretted it.
seeker: It is just a little scary since I don’t have anything else set up
supporter: Is your boss’s behaviour unreasonable enough to justify making a complaint about him to HR?
seeker: I have and they just contacted her boss. Nothing changed after.

Evaluation on Relevance
Responses: Human CausalScore GPT4 DEAM BERTScore

Human:
It might be worth following up with.
There are organisations that could give you free advice.

7 0.647 4 0.995 1.0

Alpaca:
It sounds like you’ve been through a lot with your boss.
Have you thought about what kind of job you would look for
if you decided to move on? Is there anything I can do to help?

9 0.964 4 0.997 0.851

Blenderbot: That’s good to hear. I hope it all works out for you. 2 0.457 2 0.996 0.857
ConSTrain: Contacting her boss is a step in the right direction. 7 0.939 3 0.990 0.858

Table 9: One example with evaluation results.
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supporter: Hi. How are you doing?
seeker: I am very sad
supporter: oh, what happened? why are you sad?
seeker: I think I am just feeling down because of the pandemic

supporter:
ok, i understand. this pandemic has been really tough.
have you tried to take your mind off of the pandemic by spending time on your hobbies?

seeker: I have but they aren’t the same without my friends

supporter:
that’s true. times like these really show us the value of our friends.
have you talked to your friends recently? either in person or through phone/video calls?

seeker: We have done a few video calls but it just makes me more sad that I can’t see them in person

supporter:
okay. at lease seeing them in the video should have brought you some relief.
Are you planning to get vaccinated when you are able to? And what about your friends? once you are vaccinated,
it will help you meet your friends in person.

seeker: Yes we are planning to get it as soon as possible but that is hard in our state
supporter: oh okay. Have you tried checking with your friends to see if you could meet in person but still maintain social distance and wear masks, etc.
seeker: None of them are really comfortable with that sadly.

Evaluation on Relevance
Responses: Human CausalScore GPT4 DEAM BERTScore

Human:
oh okay, have you discussed anything with your friends to see
if you find any alternative way of meeting?

9 0.788 5 0.997 1.0

Alpaca:
That’s understandable. Have you thought about reaching out to other people
in the same situation and trying to organize a group vaccination?
That might make it easier for all of you to get vaccinated.

9 0.803 5 0.995 0.876

Blenderbot: I don’t understand why they don’t all of them are comfortable with it. 6 0.676 2 0.996 0.840
ConSTrain: What do you do for a job? Do you have the money? 1 0.501 1 0.994 0.862

Table 10: One example with evaluation results.

. . .

Speaker 2:
it hasn’t happened yet! we’re still packing and getting ready but i’m already exhausted.
how long did it take you to recover from your move?

Speaker 1: It took about 3 weeks to fully recover from all of the packing and unpacking. It’s not fun at all!

Speaker 2:
yes and because it’s like, your HOME, there’s just no peaceful place to recover from the chaos!
what had prompted your most recent move?

Speaker 1:
Exactly! And I was ready for a bigger house, I needed more space.
I bet you’re going to need even more time recovering since you had a long mountain hike!

Speaker 2:
I totally hear you on space. nobody likes to be cramped. and yeah,
i’m definitely sore from the hike but it was good to clear my head before the big move!
what do you do to relax or unwind when you’re in a stressful situation?

Speaker 1:
I love to just take a stroll around the mall on my lunch break. The mall is usually empty so it’s kind of peaceful.
Other than yellow do you have anything else in mind for colors?

Speaker 2:
that sounds really nice. fresh air! and yes, I want to paint the living room a really vibrant purple.
my couch is orange and I think it would look cool!

Speaker 1: Yes that would look really good together! I can’t wait to get a new couch, the dogs have messed up the couch I have now.
Speaker 2: aw man thats such a bummer. what color couch would you get do you think?
Speaker 1: I think I want a dark grey couch, something where stains from the dogs doesn’t show so easily. I love them, but they are messy!

Speaker 2:
big dogs often are! dark colors hide stains better so thats smart.
I have cats so I had to get a special fabric couch so their claws couldnt ruin it.

Speaker 1: I am going to send you a list of my best moving tips that will save you time and trouble.
Evaluation on Relevance

Responses: Human CausalScore GPT4 DEAM BERTScore

Human:
Oh, that would be excellent! Thank you.
I am not excited to move next week as it is so much work.

10 0.695 5 0.991 1.0

Alpaca: Hey there, what are you up to? I’m going to work at the mall. 6 0.626 5 0.995 0.859
Blenderbot: That sounds like a great idea! Thank you so much! 8 0.530 1 0.993 0.882
ConSTrain: That would be great. Moving can be so stressful and time-consuming. 10 0.730 5 0.997 0.895

Table 11: One example with evaluation results.



2369

. . . . . .
W: Have we agreed where we’re going to meet John on Sunday?
M: Well, I talked to the others and nobody seemed to have any idea where they wanted to go.
W: I thought we were going to that restaurant.., what was it?
M: ... the McDonald’s at the end of Beijing Road–I suggested it a long time ago.
W: Well–I think we should agree on that.
M: OK, shall I phone the others now?

Evaluation on Relevance
Responses: Human CausalScore GPT4 DEAM BLEU
Human: No, thanks. It is better for me to do that! 9 0.999 3 0.995 1.0
Alpaca: Have we agreed where we’re going to meet John on Sunday? 3 0.475 1 0.001 0.0
Blenderbot: I don’t know what that is, but I’m sure you can find something to do. 1 0.004 1 0.995 0.0
ConSTrain: Yes, I’d like to. Are you free this afternoon? 3 0.554 2 0.995 0.0

Table 12: One example with evaluation results. CausalScore can output a score close to zero for the irrelevant
response generated by Blenderbot.
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