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Abstract

Recent studies have shown that post-aligning
multilingual pretrained language models
(mPLMs) using alignment objectives on both
original and transliterated data can improve
crosslingual alignment. This improvement
further leads to better crosslingual transfer
performance. However, it remains unclear
how and why a better crosslingual alignment
is achieved, as this technique only involves
transliterations, and does not use any parallel
data. This paper attempts to explicitly evaluate
the crosslingual alignment and identify the key
elements in transliteration-based approaches
that contribute to better performance. For this,
we train multiple models under varying setups
for two pairs of related languages: (1) Polish
and Ukrainian and (2) Hindi and Urdu. To
assess alignment, we define four types of
similarities based on sentence representations.
Our experimental results show that adding
transliterations alone improves the overall
similarities, even for random sentence pairs.
With the help of auxiliary transliteration-based
alignment objectives, especially the contrastive
objective, the model learns to distinguish
matched from random pairs, leading to
better crosslingual alignment. However, we
also show that better alignment does not
always yield better downstream performance,
suggesting that further research is needed
to clarify the connection between alignment
and performance. The code implementation
is based on https://github.com/cisnlp/
Transliteration-PPA.

1 Introduction

The training of highly multilingual language mod-
els has to cope with the diversity of scripts (e.g.,
more than 30 in Glot500-m (ImaniGooghari et al.,
2023)), which tends to reduce the effectiveness
of crosslingual transfer (Dhamecha et al., 2021;
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Purkayastha et al., 2023). A few recent studies ex-
plore the possibility of using a common script to
represent all languages (Purkayastha et al., 2023;
Moosa et al., 2023) through transliteration, a pro-
cess of converting the text of a language from one
script to another script (Wellisch et al., 1978). The
intuition is that a common script can help the model
to learn more knowledge through lexical overlap
since common vocabularies have been shown to
contribute to better crosslinguality (Pires et al.,
2019; Amrhein and Sennrich, 2020). However,
this script normalization step yields models that
only support one script. This also hinders effi-
ciency, as texts have to be transliterated into the
common script before being fed to the model. In
addition, transliteration ambiguity (words with dif-
ferent meanings having the same transliteration)
can be a potential problem for the effectiveness of
crosslingual transfer (Liu et al., 2024c).

Instead of relying solely on common-script
transliterations, a recent line of work also uses
transliterations as an auxiliary input to improve
crosslingual alignment without expanding the vo-
cabulary (Liu et al., 2024b; Xhelili et al., 2024).
These approaches combine sentences in their origi-
nal script alongside their transliteration as paired
inputs for sentence- or token-level alignment ob-
jectives. Surprisingly, even without parallel data,
these methods show remarkable improvement in
crosslingual transfer between languages with dif-
ferent scripts. However, the concept of crosslingual
alignment is often vaguely defined in these studies.
Moreover, it remains unclear why incorporating
transliterations and auxiliary alignment objectives
contributes to better crosslingual alignment, which
relates to the similarity between translation pairs.

To this end, this work presents – to the best
of our knowledge – the first attempt to explain
why including transliterated data in training and
incorporating transliteration-based alignment ob-
jectives, such as transliteration contrastive model-

https://github.com/cisnlp/Transliteration-PPA
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ing (TCM) (Liu et al., 2024b) and transliteration
language modeling (TLM) (Xhelili et al., 2024),
can improve the crosslingual alignment. We first
discuss definitions of crosslingual alignment (Roy
et al., 2020; Hämmerl et al., 2024) and establish a
clear connection between crosslingual alignment
and sentence retrieval performance – an explicit
evaluation of sentence-level alignment as we show
in §3. We then conduct a case study on two related
language pairs using different scripts: (a) Polish-
Ukrainian and (b) Hindi-Urdu, to explore how
and why the transliteration-augmented approach
improves crosslingual alignment. Specifically, we
aim to answer the following questions: (1) Does
adding transliterated data alone improve crosslin-
gual alignment? (2) How do auxiliary objectives
contribute to better alignment? (3) How does align-
ment vary when the target language is in the origi-
nal script, the Latin script, or when both the source
and target languages are in the Latin script? (4)
Does better alignment always lead to better down-
stream zero-shot crosslingual performance?

To answer these questions, we define four types
of similarities based on sentence-level representa-
tions and conduct a thorough analysis of how these
similarities vary across multiple model variants
throughout the pretraining stage. Our key experi-
mental findings can be summarized as follows:

(i) Adding transliterations alone does not im-
prove crosslingual alignment but does enhance all
types of similarities. This occurs as the similarity
between randomly paired sentences also increases.
However, effective alignment requires distinguish-
ing matched pairs from random pairs. (ii) With aux-
iliary transliteration-based alignment objectives,
transliterations serve as an intermediary: language
L1 in its original script is aligned with the translit-
erations of L1; similarly, language L2 in its orig-
inal script is also aligned with its transliterations;
transliterations of L1 are better aligned with those
of L2 in pretraining because of increased lexical
overlap. Through this process, the alignment be-
tween L1 and L2 (both in their original scripts) is
improved. (iii) Although crosslingual alignment
is generally considered crucial for enhancing zero-
shot crosslingual transfer in downstream tasks, our
results indicate that better alignment does not al-
ways yield better downstream performance. This
finding aligns with recent findings by Hua et al.
(2024) and suggests that further research is needed
in the community to clarify the connection between
crosslingual alignment and crosslingual transfer.

2 Related Work

2.1 Multilingual Language Models

Models pretrained on a wide range of languages
using self-supervised objectives, such as masked
language modeling (MLM) (Devlin et al., 2019) or
causal language modeling (Radford et al., 2019),
are referred to as mPLMs. With respect to their
use of the Transformer (Vaswani et al., 2017) ar-
chitecture, these models can be categorized into
encoder-only (Devlin et al., 2019; Conneau et al.,
2020; Liang et al., 2023), encoder-decoder (Liu
et al., 2020; Fan et al., 2021; Xue et al., 2021),
and decoder-only models (Lin et al., 2022; Shli-
azhko et al., 2022; Scao et al., 2022). With the re-
cent scale-up in both model and data size, decoder-
only models, also known as large language models
(LLMs) (Achiam et al., 2023; Touvron et al., 2023),
can achieve impressive performance in various gen-
eration tasks across high- and medium-resource
languages (Zhao et al., 2024a; Üstün et al., 2024;
Zhao et al., 2024b). Parallel efforts have produced
encoder-only models with very large language
coverage, improving the situation for many low-
resource or under-represented languages (Ogueji
et al., 2021; Alabi et al., 2022; ImaniGooghari et al.,
2023; Wang et al., 2023; Liu et al., 2024a). These
encoder-only models excel in multiple tasks in
the zero-shot crosslingual transfer manner (Huang
et al., 2019; Artetxe and Schwenk, 2019; Hu et al.,
2020; Zhang et al., 2024).

2.2 Training with Alignment Objectives

Most mPLMs trained without any additional
crosslingual signals already show good perfor-
mance across languages, possibly due to factors
such as lexical overlap (Pires et al., 2019), shared
position and special token embeddings (Dufter
and Schütze, 2020) and even language imbalance
(Schäfer et al., 2024). A recent review of factors
contributing to crosslingual transfer is provided
by Philippy et al. (2023). To further improve the
crosslingual alignment of mPLMs, many methods
additionally leverage crosslingual signals during or
after pretraining. These methods can rely on bilin-
gual dictionaries (Cao et al., 2020; Wu and Dredze,
2020; Chi et al., 2021b; Efimov et al., 2023), paral-
lel data (Reimers and Gurevych, 2020; Pan et al.,
2021; Wang et al., 2022b), or a combination of
both (Wei et al., 2021; Hu et al., 2021) to facili-
tate crosslingual alignment. This set of methods
aims to increase the similarity between paired in-
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stances (words or sentences) and sometimes also
to reduce the similarity between unrelated data, via
contrastive learning objectives (Chopra et al., 2005;
Gao et al., 2021; Chi et al., 2021a). Another group
of methods focuses on reformulating the training
data, with the expectation of implicitly improv-
ing alignment through techniques such as artificial
code-switching generation (Chaudhary et al., 2020;
Wang et al., 2022a; Reid and Artetxe, 2022) or
using a translation language modeling objective
(Conneau and Lample, 2019).

2.3 Transliteration in Language Modeling
Transliteration converts the text of a language from
one script to another (Wellisch et al., 1978). Since
this process does not translate meanings but rather
represents the original sounds as closely as pos-
sible in the target script, transliteration can be
performed efficiently and accurately using a rule-
based system, such as Uroman (Hermjakob et al.,
2018). Recent studies have shown that better lan-
guage models can be trained using data transliter-
ated into a common script, due to improved lexical
overlap (Amrhein and Sennrich, 2020; Dhamecha
et al., 2021; Muller et al., 2021; Purkayastha et al.,
2023; Moosa et al., 2023; Ma et al., 2024). To
further break the script barrier and prevent mod-
els from supporting only one script, another line
of research uses transliterations as auxiliary in-
put to create paired data for post-pretraining with
some translation-based alignment objectives (Liu
et al., 2024b; Xhelili et al., 2024), resulting in bet-
ter crosslingual transfer performance between lan-
guages written in different scripts. However, it re-
mains unclear why these approaches achieve better
alignment between languages written in different
scripts using only transliterations as auxiliary in-
puts without the presence of translation data.

3 Prelimilary: Crosslingual Alignment

Definition. Crosslingual alignment refers to the
degree of similarity among representations of simi-
lar meanings across languages, which can be fur-
ther classified into weak alignment and strong
alignment (Roy et al., 2020).1 Following the defi-
nition of weak alignment of Hämmerl et al. (2024),
similar meanings (across languages) should have
more similar representations than dissimilar mean-
ings. Formally, let (ui, vi) be a pair of representa-

1Strong alignment requires even a greater distance of dis-
similar meanings within a language, which is usually hard in
multilingual NLP. Therefore it is not considered in this paper.

tions of two units (either tokens or sentences) with
similar meanings in language L1 and L2 respec-
tively, weak alignment is defined as follows:

∀i, sim(ui, vi) > max
∀j:j ̸=i

sim(ui, vj)

where sim is a similarity measure, such as the co-
sine similarity. Weak alignment requires that the
representational similarity between a unit in L1 and
its (approximately) equivalent counterpart in L2 is
higher than the similarities between this unit and
any other units in L2. It is important to note that
this notion of alignment emphasizes the relative
magnitude of similarity rather than the absolute
magnitude. The similarity between ui and vi does
not have to be very large to induce compliant align-
ments. Some models, though assigning similar rep-
resentations to similar units, also make less related
or even unrelated units similar, therefore possibly
resulting in sim(ui, vi) < max∃j:j ̸=i sim(ui, vj).
This naturally induces suboptimal alignments, due
to the failure to differentiate between similar and
dissimilar meanings across languages.

Evaluations. The definition of crosslingual align-
ment on the sentence level closely resembles the
measure used in sentence retrieval tasks, where a
model retrieves the most relevant or similar sen-
tence in language L2 given a query sentence in
language L1. Therefore, sentence-level crosslin-
gual alignment can be directly evaluated through
sentence retrieval. The performance of sentence re-
trieval can be evaluated by calculating the top-k ac-
curacy on a given parallel corpus, using sentences
from one language as the queries, and retrieving
their corresponding matches in the other language.2

Additionally, crosslingual alignment is believed to
be able to be evaluated indirectly by other down-
stream tasks that rely on zero-shot crosslingual
transfer ability (Huang et al., 2019; Artetxe and
Schwenk, 2019). That is, given an mPLM, one fine-
tunes the model on the training data of a source lan-
guage and then directly evaluates its performance
on the test set of target languages. The underlying
intuition is that models with strong alignment are
often expected to perform well in such tasks, as
representations of similar meanings should be con-
sistent across languages. However, we show that

2Similarly, the word alignment task (identifying corre-
sponding words between two texts) can be used to evaluate the
crosslingual alignment, particularly at the token level. How-
ever, this task often requires high-quality, golden-labeled data,
which is difficult to obtain. As a result, this study focuses
solely on sentence-level crosslingual alignment.
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better crosslingual alignment does not always lead
to better downstream crosslingual performance in
§5.4. This observation aligns with previous find-
ings (Wu and Dredze, 2020; Gaschi et al., 2023),
which suggest that alignment and downstream per-
formance are not always strongly correlated.

4 Experiments

4.1 Languages
Polish-Ukrainian pair. Polish (pol) and
Ukrainian (ukr) are Slavic languages, belonging
to the West and East Slavic branch respectively.
Polish and Ukrainian have historically influenced
each other, contributing to shared vocabulary and
linguistic features. Polish uses Latin (Latn) script
while Ukrainian uses Cyrillic (Cyrl) script.

Hindi-Urdu pair. Hindi (hin) and Urdu (urd)
both belong to the Indo-Aryan branch of the
Indo-European family, spoken in the Indian sub-
continent. They are mostly mutually intelligible
languages that historically can be viewed as two
standardized dialects of Hindustani, and therefore
they share large common vocabularies. A major
difference is that Hindi uses the Devanagari (Deva)
script while Urdu uses the Arabic (Arab) script.

An important difference between these two lan-
guage pairs is that transliteration only changes the
script of one language (ukr) for the pol-ukr pair,
whereas it changes the script of both urd and hin
for the hin-urd pair. In this way, our choices cover
the most common cases, and therefore we assume
the conclusions and insights from our experiments
can be naturally extended to other language pairs.

4.2 Training Data
Original data. We use the data from Glot500-c
(ImaniGooghari et al., 2023) for each language of
interest. For the pol-ukr pair, there are around 7M
sentences for ukr_Cyrl and around 19M sentences
for pol_Latn sentences. For the hin-urd pair, there
are around 7M sentences for hin_Deva and 6M
sentences for urd_Arab. We concatenate all data
together for each language pair and refer to the
final data in their original script as Datapol-ukr

Orig for
pol-ukr and Datahin-urd

Orig for hin-urd respectively.

Transliterated data. We use Uroman (Herm-
jakob et al., 2018) to transliterate both Datapol-ukr

Orig

and Datahin-urd
Orig to the Latin script. We refer to

the resulting Latin-script data as Datapol-ukr
Latn and

pol-ukr hin-urd

original transliteration original transliteration

#shared token types 2.5K 3.9K 2.6K 2.3K
#total token types 21.5K 9.6K 24.7K 2.4K

lexical overlap 11.6% 41.9% 10.4% 93.0%

Table 1: Lexical overlap between 10K randomly se-
lected pol, ukr, hin, and urd sentences from the training
data. We obtain the token types used in each language
and the intersection is regarded as the shared token types.
Lexical overlap is calculated as their ratio. There are
many shared ones which is due to special characters and
extensive code-switching. Transliterations improve lexi-
cal overlap. For hin-urd, the tokenizer only contains a
small number of Latin subwords, resulting in few shared
token types and total token types after transliteration.

Datahin-urd
Latn for pol-ukr and hin-urd pair respectively.

It is important to note that the original and translit-
erated data are in one-to-one correspondence. This
means that the ith line in Datapol-ukr

Latn is the translit-
eration of the ith line in Datapol-ukr

Orig .

4.3 Training Objectives
Masked Language Modeling (MLM). This is
the primary learning objective we use to train our
model variants. This objective improves the gen-
eral language modeling ability by masking certain
tokens in the input sentences and learning to predict
them. Following Devlin et al. (2019), we randomly
replace 15% tokens in the input sentences with a
special token: [mask] and use a language model-
ing head to reconstruct the original tokens from the
final contextualized embeddings.

Transliteration Contrastive Modeling (TCM).
This contrastive objective is proposed by Liu et al.
(2024b). It increases the similarity between pairs
of sentence-level representations composed of one
sentence in its original script and the corresponding
Latin transliteration. Following Liu et al. (2024b),
we obtain these representations by mean-pooling
the output of the 8th Transformer layer and calcu-
late the loss batch-wise: the positive samples are
the paired sentences within a batch; the negative
samples are any combinations of two sentences that
are not paired within a batch.

Transliteration Language Modeling (TLM).
This objective, proposed by Xhelili et al. (2024),
is similar to the translation language modeling of
Conneau and Lample (2019), where we use translit-
erations, instead of translations, to build sentence
pairs in the objective. Following (Xhelili et al.,
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SR-B (pol → ukr) SR-B (ukr → pol) SR-F (pol → ukr) SR-F (ukr → pol)

top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10

Model-1 74.7 88.2 92.2 74.9 89.1 92.4 77.3 91.1 93.5 78.7 91.4 94.5
Model-2 70.2 85.3 88.7 74.7 90.0 92.7 74.9 87.8 91.8 79.7 91.1 93.7
Model-3 76.4 89.8 92.9 79.8 92.4 95.1 75.9 89.9 94.6 81.1 91.8 94.4
Model-4 74.7 90.0 92.9 73.1 88.7 91.6 80.3 92.6 95.8 80.7 92.3 94.9
Model-5 82.0 91.8 93.6 78.2 90.7 93.6 81.6 92.8 95.7 84.8 94.1 97.0

SR-B (hin → urd) SR-B (urd → hin) SR-F (hin → urd) SR-F (urd → hin)

top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10

Model-1 52.7 71.3 78.2 44.9 64.0 74.7 83.5 94.2 96.1 81.7 92.5 95.0
Model-2 50.9 71.8 79.1 40.0 59.8 70.4 84.0 93.4 95.8 82.7 93.5 95.5
Model-3 70.2 82.0 87.6 77.6 91.1 93.6 85.2 94.3 95.7 86.2 95.2 96.2
Model-4 52.9 72.0 79.3 42.2 63.1 72.4 88.2 95.6 97.1 85.2 94.6 96.5
Model-5 65.1 81.6 86.4 71.8 84.4 90.4 88.4 95.4 97.0 86.7 94.7 96.8

Table 2: Retrieval performance. Bold (underlined): best (second-best) result for each column.

2024), we concatenate a sentence and its translit-
eration and perform MLM on the combined text.
To predict a token masked in the original sentence,
the model can either attend to tokens in the original
script or their transliterations, and vice versa.

4.4 Models
We train a SentencePiece Unigram tokenizer (Kudo,
2018; Kudo and Richardson, 2018) on Datapol-ukr

Orig

and Datahin-urd
Orig for each language pair, respectively.

We set the size of vocabularies to 30K for each pair.
The tokenizers are not adapted to the transliterated
data, i.e., Datapol-ukr

Latn and Datahin-urd
Latn , in order to

replicate the settings used by Liu et al. (2024b) and
Xhelili et al. (2024), as they achieve surprisingly
good performance without any tokenizer adapta-
tion. As shown in Table 1, lexical overlap in-
creases drastically for transliterated data even with-
out learning subwords from it. We then train five
model variants from scratch for each language pair
to thoroughly explore the effect of each component
of the transliteration-augmented pretraining. We
introduce the 5 model variants as follows (training
details are reported in §A).3

Model-1. These models are trained on either
Datapol-ukr

Orig or Datahin-urd
Orig only with MLM.

Model-2. These models are trained on the con-
catenation of the original and transliterated data
only with MLM. For example, we concatenate
Datapol-ukr

Orig and Datapol-ukr
Latn and use the resulted data

as the training data for pol-ukr pair.

Model-3. The training data is the same as the
data used for Model-2. However, both MLM and

3MLM is used in each model variant because it is important
for language modeling. Training the models from scratch only
with TCM or TLM can result in bad language modeling ability
and therefore such options are not considered in our study.

TCM objectives are used in training. The final loss
is the sum of MLM and TCM.

Model-4. The training data is the same as the
data used for Model-2. However, both MLM and
TLM objectives are used in training. The final loss
is the sum of MLM and TLM.

Model-5. The training data is the same as the
data used for Model-2. However, all objectives
are used in training: MLM, TCM, and TLM. The
final loss is the sum of MLM, TCM, and TLM.

4.5 Evaluation
Datasets and metric. Since sentence retrieval
directly evaluates the quality of crosslingual align-
ment, we focus on the sentence retrieval task as
our primary evaluation. We consider two datasets:
SR-B and SR-F. SR-B contains 450 parallel sen-
tences from the Bible in each language’s original
script. SR-F contains 1,012 parallel sentences from
Flores200 (Team, 2024), also in each language’s
original script. We report top-1, top-5, and top-10
accuracy for each direction in each language pair.

Results and discussion. Results are reported in
Table 2. We observe that Model-1 already achieves
very good retrieval performance, suggesting that
models can implicitly learn good crosslingual align-
ment even without any supervision signals, consis-
tent with previous research findings (Pires et al.,
2019; Dufter and Schütze, 2020). Surprisingly,
Model-2 generally performs worse than Model-1,
indicating that simply adding transliterations to the
training data does not improve crosslingual align-
ment between the two languages in their original
scripts. However, as long as any auxiliary learn-
ing objective is incorporated, retrieval performance
increases. The TCM objective is particularly ef-
fective: Model-3 and Model-5 achieve the best
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Polish-Ukrainian pair: Ukrainian is L1 (s), Polish is L2 (t).
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(b) Hindi-Urdu pair: Urdu is L1 (s), Hindi is L2 (t).

Figure 1: Histograms of similarities for matched sentence pairs and random pairs. Adding transliterated data in
pretraining improves the overall similarities for both matched and random pairs (Model-2). Leveraging auxiliary
objectives improves the model’s ability to differentiate between matched and random sentence pairs (Model-3,-4,-5).

overall retrieval performance across datasets for
both pol-ukr and hin-urd pairs. The TLM objec-
tive is less effective compared with TCM but still
helps to improve the alignment: Model-4 achieves
worse performance than Model-3 but outperforms
Model-1 and Model-2 in general. Our findings can
be summarized as follows: (1) vanilla MLM on
related languages with different scripts can already
achieve good crosslingual alignment, (2) adding
transliterated data in pretraining alone has a neg-
ative impact on crosslingual alignment, and (3)
alignment is improved when any auxiliary objec-
tive is included, especially TCM, which directly
operates on sentence-level representations.

5 Analysis

We interpret the results of §4.5 by establishing a
connection between crosslingual alignment and
four different types of similarities (§5.2). We
also analyze the dynamics of these similarities dur-
ing the pretraining phase (§5.3). Finally, we pro-
vide insights on how crosslingual alignment influ-
ences zero-shot crosslingual transfer performance
in downstream tasks (§5.4). Our analysis in the
following primarily focuses on SR-B, as the impact
of each component is more pronounced (Table 2).
See Appendix §B for additional analysis on SR-F.

5.1 Defining Similarities

For a sentence s written in its original script
in language L1, we denote as rs its translitera-
tion in Latin script, as t its translation in lan-
guage L2, and as rt its transliterated transla-

tion. We then define the transliteration similar-
ity as sim(M(s),M(rs)), the translation simi-
larity as sim(M(s),M(t)), the transliteration-
translation similarity as sim(M(rs),M(t)), and
the transliteration-transliteration similarity as
sim(M(rs),M(rt)), where M(·) takes a text as
input and encodes it as a fixed-size representation.
We mean-pool the output from the 8th layer to
form such fixed-size representations. For simplic-
ity, s is always ukr (resp. urd) and t is always pol
(resp. hin) for the pol-ukr (resp. hin-urd) pair, as
both sim(M(s),M(t)) and sim(M(rs),M(rt))
are the same when interchanging the languages.
See Appendix §C for the other direction.

5.2 Similarities and Alignment

As discussed in §3, good crosslingual alignment
does not necessarily require a model to assign high
similarity to matched sentence pairs (translations).
Instead, the model should be able to differentiate
matched pairs from non-matched pairs to achieve
better alignment. We display the similarity between
matched sentence pairs and between random sen-
tence pairs in Figure 1. We also compare the four
types of similarities in each model in Figure 2.

Adding transliterated data alone improves simi-
larity but not alignment. As shown in §4.5, sim-
ply adding transliterated data to the training data
does not improve crosslingual alignment. How-
ever, in Figure 2, we observe that translation simi-
larity in Model-2 improves compared to Model-1
(from 77 to 80 in terms of the average similarity
scores for the pol-ukr pair). This suggests that the
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(a) Polish-Ukrainian pair: Ukrainian is L1 (s), Polish is L2 (t).
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(b) Hindi-Urdu pair: Urdu is L1 (s), Hindi is L2 (t).

Figure 2: Comparison of different types of similarities. We observe that the inclusion of the transliterated data
not only improve those similarities that involve transliterations (i.e., sim(M(s),M(rs)), sim(M(rs),M(t)) and
sim(M(rs),M(rt))), but also the similarity between the translation pairs, i.e., sim(M(s),M(t)).

increased lexical overlap in the added transliter-
ated data (cf. Table 1) implicitly improves overall
similarities. Unfortunately, for this model, the sim-
ilarity between random sentence pairs is also in-
creased, as shown in Figure 1, which is detrimental
to crosslingual alignments. This observation agrees
with some previous studies showing that encoder-
only models can mistakenly assign high cosine
similarity scores to both matched and random word
pairs (Ethayarajh, 2019; Zhao et al., 2021).

Auxiliary learning objectives improve align-
ments. Figures 1 and 2 show that Model-4 im-
proves the translation similarity – similarity be-
tween the matched pairs, compared to Model-2,
thanks to the inclusion of TLM. Although the sim-
ilarity between random pairs also increases, the
similarity gap between matched pairs and random
pairs is slightly enlarged, contributing to a modest
improvement in retrieval performance and crosslin-
gual alignment. TCM is even more effective than
TLM at improving overall similarities (see Fig-
ure 2), while simultaneously improving the gap
between matched and random pairs (see Figure 1).
This can be attributed to the contrastive objec-
tive, which not only encourages representations of
paired sentences to be similar but also teaches the
model to differentiate unpaired sentences. Conse-
quently, we observe the best alignments in Model-3
and Model-5 for both language pairs.

Alignment can be improved even with a “bad”
tokenizer. Unlike the pol-ukr pair, where the tok-
enizer already contains many Latin-script subwords
due to Polish using the Latin script, the hin-urd pair
does not use this script at all. Therefore, the tok-
enization results for the transliteration of Hindi
or Urdu texts are “bad”: the tokenizer often pro-
duces very long sequences composed of individual
characters like “a” and “b”. As a result, the over-
all transliteration-transliteration similarity is very
high for all model variants, as shown in Figure 2,
especially when no transliterated data is incorpo-
rated in the pretraining data (Model-1). However,
despite such a “bad” tokenizer, the TCM objec-
tive significantly improves crosslingual alignment.
This indicates that TCM does not necessarily rely
on high-quality tokenizations of transliterated texts.
In other words, its effectiveness is robust.

5.3 Similarity Dynamics During Pretraining

To analyze the dynamics of similarities, i.e., their
variation during pretraining progression, we plot
all four types of similarities for each model and
each language pair at every 2K steps in Figure 3.4

Similarities involving transliteration decrease
if no transliterated data is added. We observe
high transliteration-transliteration similarity at the

4Each step corresponds to a single update of the parameters
during pretraining.
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(a) Polish-Ukrainian pair: Ukrainian is L1 (s), Polish is L2 (t).
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(b) Hindi-Urdu pair: Urdu is L1 (s), Hindi is L2 (t).
Figure 3: Dynamics of four types of similarities during training progression (from 2K to 50K checkpoints). We
calculate the average of all paired sentences in SR-B for each type of similarity in each checkpoint.

early stages of the pretraining in Model-1. How-
ever, because no transliterated data is added, this
similarity, along with other similarities involving
transliteration, gradually drops, as shown in Fig-
ure 3. When transliterated data is included, all
transliteration-related similarities increase through-
out pretraining (this effect is particularly clear
when comparing Model-2 with Model-1). This
trend can be explained by the fact that language
L1 in its original script and L1 in the Latin script
are intrinsically the same language. The model can
quickly learn alignment between them as long as
the transliterated data is included, even if explicit
alignment objectives, e.g., TCM, are not used.

Transliterations serve as an intermediary in
improving translation similarity. When translit-
erated data is included, translation similarity in-
creases more rapidly (as seen when comparing the
similarity progression of other models with Model-
1 in Figure 3). As all other similarities gradually
decrease in Model-1, we can infer that the faster im-
provement in translation similarity shown in other
models is due to the improved transliteration simi-
larity and transliteration-transliteration similarity,
by including transliterated data. For example, the
similarity between hin_Deva and hin_Latn (translit-
eration similarity) is improved, so is the similarity
between urd_Arab and urd_Latn (transliteration
similarity if we refer to urd as the source language
and the trend can be seen in Figure 9). The im-
proved lexical overlap in transliterated data boosts
the similarity between hin_Latn and urd_Latn. The
combined effect ultimately leads to further im-
provement in the similarity between hin_Deva and
urd_Arab (translation-translation similarity). We
can observe this intermediary effect is amplified
when TCM is applied, as it directly optimizes the

model for higher transliteration similarity (this sim-
ilarity is much higher in Model-3 and Model-5
compared to other models).

5.4 Downstream Crosslingual Performance
Although better alignment is expected to help
crosslingual transfer, Wu and Dredze (2020),
Gaschi et al. (2023) show that better token-level
alignment does not always improve performance.
We aim to further explore the connection be-
tween the sentence-level alignment – our fo-
cus – and downstream crosslingual performance.
We evaluate this connection using three datasets:
SIB200 (Adelani et al., 2024) for text classifica-
tion, WikiANN (Pan et al., 2017) for named en-
tity recognition (NER) NER, and Universal De-
pendencies (de Marneffe et al., 2021) for Part-of-
speech tagging (POS). We report both in-language
and crosslingual transfer performance for each lan-
guage pair, with the results presented in Table 3.

Auxiliary objectives can be detrimental for in-
language evaluation but beneficial for transfer.
We observe a decrease in performance when train-
ing and evaluating on the same language. For in-
stance, for SIB200, when training on Hindi and
evaluating on Hindi, Model-3, 4 and 5 are worse
than Model-1. Similar trends are observed for Pol-
ish and Urdu. Conversely, when training on one
language and evaluating on another, there is of-
ten a performance improvement. This suggests
that auxiliary objectives may negatively impact the
quality of the representations within a specific lan-
guage, resulting in worse in-language performance.
However, better alignment enhances the similar-
ity of representations for similar sentences across
languages, which can be beneficial for zero-shot
crosslingual transfer.
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SIB200 NER POS

pol ukr pol ukr pol ukr

→ pol → ukr → ukr → pol → pol → ukr → ukr → pol → pol → ukr → ukr → pol

Model-1 80.5 74.3 81.0 77.1 85.8 54.3 89.8 53.1 98.1 89.4 96.8 87.1
Model-2 78.7 74.2 80.2 71.8 85.8 54.8 90.0 54.4 98.1 89.7 96.8 86.7
Model-3 75.4 75.1 81.0 72.7 86.0 54.0 89.7 55.3 98.1 89.7 96.9 87.0
Model-4 79.8 76.8 83.0 78.8 86.8 51.2 90.1 55.1 98.1 90.2 96.9 87.8
Model-5 78.6 77.6 81.7 75.9 86.3 53.6 90.2 57.8 98.1 90.1 97.1 87.5

hin urd hin urd hin urd

→ hin → urd → urd → hin → hin → urd → urd → hin → hin → urd → urd → hin

Model-1 82.8 73.7 78.9 74.2 86.0 31.1 94.7 56.5 91.6 83.3 92.1 86.6
Model-2 83.1 75.1 77.6 76.3 86.1 36.7 95.5 55.0 91.6 84.1 92.0 87.2
Model-3 81.5 73.1 77.7 76.4 86.3 37.0 94.1 58.2 91.4 83.4 92.0 87.1
Model-4 82.0 72.9 77.1 74.9 86.8 34.4 94.9 62.0 91.5 83.7 92.0 87.2
Model-5 80.4 73.7 78.1 79.4 87.4 40.1 95.7 60.5 91.8 84.1 91.9 87.4

Table 3: Downstream performance. We fine-tune each model on the training set of one language (noted with bold
font), and evaluate the resulting model on both the same language (in-language evaluation, e.g., pol → pol) and the
other language (zero-shot crosslingual transfer evaluation, e.g., pol → ukr). The results are averaged over three
random seeds. Bold (underlined): best (second-best) result for each column.

Better crosslingual alignment does not always
improve transfer. Although Model-3, 4, and 5
demonstrate better alignment compared to Model-1
(cf. Table 2), the crosslingual transfer performance
does not substantially improve – especially when
considering the magnitude of alignment improve-
ment seen in Table 2. This is particularly clear in
sequential tasks like NER and POS, where all mod-
els achieve comparable performance, regardless of
whether the evaluation is in-language or crosslin-
gual. Even for SIB200, the improvement in Model-
3, 4 and 5 is inconsistent: there is much better
transfer performance for the directions pol → ukr
and urd → hin but slightly worse performance for
the directions ukr → pol and hin → urd. There-
fore, our results suggest that better sentence-level
crosslingual alignments do not consistently lead
to improved crosslingual transfer, especially for
sequential tasks such as NER and POS. We conjec-
ture that the lack of explicit token-level alignment
objectives with word-level aligned data in our mod-
els might explain why we do not see improvements
in these tasks, similar to the findings from Chaud-
hary et al. (2020) and Xhelili et al. (2024).

6 Conclusion

Our work presents the first in-depth study ex-
ploring why and how transliterations contribute
to better crosslingual alignment. We show that
adding transliterated data can improve crosslingual
alignment as transliteration acts as an intermedi-
ary between pairs of mutual translations. This
effect is particularly pronounced when auxiliary
alignment objectives are applied, allowing mod-
els to better distinguish matched pairs from ran-

dom pairs, thereby improving the overall align-
ment. However, our empirical results also show
that improved alignment does not consistently pro-
duce better downstream performance, suggesting
more research is needed to better understand the
relationship between crosslingual alignment and
crosslingual transfer.

7 Future Work

We see possible future work to overcome the lim-
itations mentioned in the Limitations Section. A
possible direction to expand this work is to explore
more language pairs, or even involve more than two
related languages in the training to investigate the
effect of transliteration in a highly multilingual con-
text. For further assessing token-level alignment,
one possible way is to use word-level aligned data,
which is unfortunately not much in the community.
As an alternative, one can use (round-trip) word
alignments, which have been shown to be very hard
to find (ImaniGooghari et al., 2023).

Limitations

This work presents the first attempt to explain why
the transliteration-augmented methods can improve
crosslingual alignment, which usually requires par-
allel data in the training or fine-tuning. One possi-
ble limitation is the number of language pairs we
consider: we only use two language pairs, each
of which contains two related languages that use
different scripts. Another possible limitation is
that we only focus on the sentence-level crosslin-
gual alignment in this paper and do not discuss the
token-level crosslingual alignment.
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A Training Details

To pretrain different model variants for each lan-
guage pair, we use the AdamW optimizer (Kingma
and Ba, 2015; Loshchilov and Hutter, 2019) with
(β1, β2) = (0.9, 0.999) and ϵ = 1e-6. The initial
learning rate is set to 5e-5. The effective batch size
is 1,024 in each training step, with gradient accu-
mulation set to 16 and 8 training instances (each
instance contains a pair of sentences, see paragraph
below for explanation) are used for each of the 8
NVIDIA RTX 2080Ti GPUs (8×8×16 = 1, 024).
We use FP16 training with mixed precision (Mi-
cikevicius et al., 2018). We store checkpoints every
2K steps and apply early stopping based on the best
average performance on SR-B retrieval task. The
pretraining takes around 2 days for each model.

Except for Model-1, all other models double
the training data due to the inclusion of transliter-
ated data. This can result in a different number of
parameter updates in an epoch between Model-1
and other models (the hyperparameters used by the
AdamW optimizer will be different for each step),
adding confounding variables to our analysis. To
solve this problem, every instance in each batch is
a pair of sentences in the pretraining. For Model-
1, two identical sentences (in the original script)
are used to form a pair, whereas a sentence and
its transliteration are used to form a pair in other
models. This setup ensures the total training steps
in an epoch are the same for all models.

B Additional Analysis on SR-F

We show the similarity between matched sentence
pairs and between random sentence pairs from SR-
F in Figure 4. We see a similar trend as for SR-B.
However, because each sentence in Flores (Team,
2024) is relatively simple and quite different from
the other sentences in the dataset, the similarity gap
between matched and random pairs is already quite
large. Therefore, the effect of including translitera-
tions or auxiliary objectives is marginal. Similarly,
we visualize the four types of similarities in each
model for SR-F in Figure 5. The trend remains
almost the same as for SR-B: including the translit-
erated data improves all similarities and the usage
of transliteration-based alignment objectives can
further improve overall similarities.

We plot all four types of similarities measured
using SR-F for each model and language pair
throughtout pretraining in Figure 6. The trend is al-
most identical to what we observe when measuring
the similarity using SR-B: including transliterations
has a direct effect on transliteration-transliteration
similarity and transliterations can implicitly im-
prove the translation similarity since translitera-
tions work as an intermediary.

C Additional Analysis on the Other
Direction

We also compute the different types of similarities
using the other directions for each language pair.
Specifically, we use pol → ukr for the pol-ukr pair
and hin → urd for the hin-urd pair. We show the
comparison of the similarities in Figure 7 (using
SR-B) and in Figure 8 (using SR-F). Additionally,
we show the dynamics of how the similarities vary
throughout the pretraining phase in Figure 9 (using
SR-B) and Figure 10 (using SR-F).

The general trend remains roughly the same for
the hin-urd pair regardless of which direction is
used for calculating the similarity. For the pol-ukr
pair, because Polish uses Latin script by default and
Uroman only removes the diacritics, the transliter-
ation similarity, i.e., sim(M(s),M(rs)), remains
high throughout the pretraining, as shown in Figure
9 and Figure 10. We also observe that, without
including transliterated data (Model-1), the model
already yields high transliteration similarity. Once
the transliterated data is included in the pretraining
(Model-2, -3, -4, and -5), the transliteration simi-
larity further improves, as shown in Figure 7 and
Figure 8, which is expected.
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(a) Polish-Ukrainian pair: Ukrainian is L1 (s), Polish is L2 (t).
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(b) Hindi-Urdu pair: Urdu is L1 (s), Hindi is L2 (t).

Figure 4: Histograms of similarities for matched sentence pairs and random pairs. Adding transliterated data in
pretraining improves the overall similarities for both matched and random pairs. Leveraging auxiliary objectives
improves the model’s ability to differentiate between matched sentence pairs from random sentence pairs.

Model-1 Model-2 Model-3 Model-4 Model-5

20

40

60

80

100

S
R

-F

sim(M(s),M(t))

Model-1 Model-2 Model-3 Model-4 Model-5

20

40

60

80

100
sim(M(s),M(rs))

Model-1 Model-2 Model-3 Model-4 Model-5

20

40

60

80

100
sim(M(rs),M(t))

Model-1 Model-2 Model-3 Model-4 Model-5

20

40

60

80

100
sim(M(rs),M(rt))

mean

(a) Polish-Ukrainian pair: Ukrainian is L1 (s), Polish is L2 (t).
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(b) Hindi-Urdu pair: Urdu is L1 (s), Hindi is L2 (t).

Figure 5: Comparison of different types of similarities (measured using SR-F).
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(a) Polish-Ukrainian pair: Ukrainian is L1 (s), Polish is L2 (t).
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(b) Hindi-Urdu pair: Urdu is L1 (s), Hindi is L2 (t).
Figure 6: Dynamics of four types of similarities during training progression (measured using SR-F).
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(a) Polish-Ukrainian pair: Polish is L1 (s), Ukrainian is L2 (t)
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(b) Hindi-Urdu pair: Hindi is L1 (s), Urdu is L2 (t).

Figure 7: Comparison of different types of similarities for directions pol → ukr and hin → urd (measured using
SR-B).
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(a) Polish-Ukrainian pair: Polish is L1 (s), Ukrainian is L2 (t).
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(b) Hindi-Urdu pair: Hindi is L1 (s), Urdu is L2 (t).

Figure 8: Comparison of different types of similarities for directions pol → ukr and hin → urd (measured using
SR-F).
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(a) Polish-Ukrainian pair: Polish is L1 (s), Ukrainian is L2 (t).
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(b) Hindi-Urdu pair: Hindi is L1 (s), Urdu is L2 (t).
Figure 9: Dynamics of four types of similarities during training progression for directions pol → ukr and hin → urd
(measured using SR-B).
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(a) Polish-Ukrainian pair: Polish is L1 (s), Ukrainian is L2 (t).
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(b) Hindi-Urdu pair: Hindi is L1 (s), Urdu is L2 (t).
Figure 10: Dynamics of four types of similarities during training progression for directions pol → ukr and hin →
urd (measured using SR-F).
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